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2 FORMULAE AND ASYMPTOTICS FOR COEFFICIENTS OF ALGEBRAIC FUNCTIONS

Abstract. We study the coefficients of algebraic functions
∑
n≥0 fnz

n. First,

we recall the too-little-known fact that these coefficients fn always admit

a closed form. Then we study their asymptotics, known to be of the type

fn ∼ CAnnα. When the function is a power series associated to a context-
free grammar, we solve a folklore conjecture: the critical exponents α can-

not be 1/3 or −5/2; they in fact belong to a proper subset of the dyadic

numbers. We initiate the study of the set of possible values for A. We ex-
tend what Philippe Flajolet called the Drmota–Lalley–Woods theorem (which

states that α = −3/2 when the dependency graph associated to the algebraic

system defining the function is strongly connected). We fully characterize the
possible singular behaviors in the non-strongly connected case. As a corollary,

the generating functions of certain lattice paths and planar maps are not de-
termined by a context-free grammar (i.e., their generating functions are not

N-algebraic). We give examples of Gaussian limit laws (beyond the case of the

Drmota–Lalley–Woods theorem), and examples of non-Gaussian limit laws.
We then extend our work to systems involving non-polynomial entire func-

tions (non-strongly connected systems, fixed points of entire functions with

positive coefficients). We give several closure properties for N-algebraic func-
tions. We end by discussing a few extensions of our results (infinite systems

of equations, algorithmic aspects).

Résumé. Cet article a pour héros les coefficients des fonctions algébriques.

Après avoir rappelé le fait trop peu connu que ces coefficients fn admet-

tent toujours une forme close, nous étudions leur asymptotique fn ∼ CAnnα.
Lorsque la fonction algébrique est la série génératrice d’une grammaire non-

contextuelle, nous résolvons une vieille conjecture du folklore : les exposants

critiques α ne peuvent pas être 1/3 ou −5/2 et sont en fait restreints à un sous-
ensemble des nombres dyadiques. Nous amorçons aussi l’étude de l’ensemble

des valeurs possibles pour A. Nous étendons ce que Philippe Flajolet appelait

le théorème de Drmota–Lalley–Woods (qui affirme que α = −3/2 dès lors
qu’un ”graphe de dépendance” associé au système algébrique est fortement

connexe) : nous caractérisons complètement les exposants critiques dans le

cas non fortement connexe. Un corolaire immédiat est que certaines marches
et cartes planaires ne peuvent pas être engendrées par une grammaire non-

contextuelle non ambigüe (i. e., leur série génératrice n’est pas N-algébrique).
Nous donnons un critère pour l’obtention d’une loi limite gaussienne (cas non

couvert par le théorème de Drmota–Lalley–Woods), et des exemples de lois

non gaussiennes. Nous étendons nos résultats aux systèmes d’équations de
degré infini (systèmes non fortement connexes impliquant des points fixes de

fonctions entières à coefficients positifs). Nous donnons quelques propriétés de

clôture pour les fonctions N-algébriques. Nous terminons par diverses exten-
sions de nos résultats (systèmes infinis d’équations, aspects algorithmiques).
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1. Introduction

Algebraic functions and their asymptotics are ubiquitous in combinatorics; we
review here some of the main reasons for this.

Algebraic functions and language theory. The theory of context-free gram-
mars and its relationship with combinatorics was initiated by the article of Noam
Chomsky and Marcel-Paul Schützenberger in 1963 [39], where it is shown that the
generating function of the number of words generated by a non-ambiguous context-
free grammar is algebraic. Since then, there has been much use of context-free
grammars in combinatorics; several chapters of the Flajolet & Sedgewick book
“Analytic Combinatorics” [65] are dedicated to what they called the “symbolic
method” (which is in large parts isomorphic to the Joyal theory of species [73, 20],
and when restricted to context-free grammars, it is sometimes called the “DVS
methodology”, for Delest–Viennot–Schützenberger, as the Bordeaux combinatorics
school indeed made a deep use of it [117, 47], e.g. for enumeration of polyomi-
noes [48] and lattice paths [59]). Context-free grammars also allow one to enumer-
ate trees [68, 89], sofic-Dyck automata [18], non-commutative identities [80, 98],
pattern-avoiding permutations [79, 87, 3, 17], some type of planar maps, triangu-
lations, Apollonian networks [26], non-crossing configurations, dissections of poly-
gons [62] (as studied by Euler in 1751, one of the founding problems of analytic
combinatorics!), see also [110]. Links between asymptotics of algebraic functions
and the (inherent) ambiguity of context-free languages was studied in [76, 61], and
for prefixes of infinite words in [5]. Growth rates are studied in [36, 37], in con-
nection with asymptotics of random walks [120, 38, 69, 83, 84]. Applications in
bioinformatics or for patterns in RNA are given in [96, 118, 50, 42, 119].
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Random generation of algebraic objects. The first efficient algorithm to
make uniform random generation of words of length n of a context-free gram-
mar involved n2(lnn)2 operations on average via fast Fourier transform and is due
to Hickey and Cohen [72]. Generating functions associated to context-free gram-
mars are the key tool to improve this average complexity: the recursive method,
coupled with the boustrophedon algorithm [66], lead to a time-complexity n lnn.
Asymptotics of their coefficients are used in the implementation of this method
with floating-point arithmetic [51]. The case of ambiguous grammars was also con-
sidered in [24]. A revolutionary change of paradigm on the generating functions
was done in [60], where the authors introduced what they called the “Boltzmann
method”; this lead to O(n) complexity to generate objects of size n ± ε(n), ben-
efitting new analytic investigations on the function. See also applications of this
method to algebraic objects in [46, 35] or grammars with parameters in [27].

Other occurrences of algebraic functions. The link between algebraic func-
tions and p-automatic sequences (numbers written in a given base via an automata)
is well illustrated by the Christol–Kamae–Mendès France–Rauzy theorem [40, 4].

More links with monadic second-order logic, tiling problems and vector addition
systems appears in [92, 121].

Algebraic functions via functional equations. Many algebraic functions
pop up in combinatorics [32] via tools other than context-free grammars: quite
often, they appear as the “diagonal” of rational functions [13, 15], or as solutions
of functional equations (solvable by the “kernel method” and its variants [9, 33]),
and the interplay with their asymptotics is crucial for analysis of lattice paths [10],
walks with an infinite set of jumps [7, 14] (which are thus not coded by a grammar
on a finite alphabet), or planar maps [11]. Sometimes, differential equations lead
to algebraic solutions, like in some urn models [90].

Algebraicity of permutation related problems. Since Knuth enumerated
permutations sortable by a stack, much attention has been drawn to permutations
avoiding a given pattern, or counting the number of appearances of a given pat-
tern. Many cases involved a Knuth-like approach (using the “kernel method”), or
an approach by (in)decomposable subclasses [79, 87, 3, 17], leading to algebraic
functions.

Algebraic functions and universality of critical exponents. When one
thinks about the asymptotics of the coefficients of generating functions, one often
gives the example of Catalan numbers

(
2n
n

)
/(n + 1) ∼ 4n/

√
πn3 (this is a direct

consequence of Stirling’s formula for n!, or can also be obtained by the saddle point
method or singularity analysis). One important fact with respect to the asymptotics
of coefficients of algebraic generating functions, is that it often involves the factor
1/
√
πn3. This was called in [65] the “Drmota–Lalley–Woods theorem”, due to

independent similar results of these three authors [53, 83, 121], relying on a “strong
connectivity” assumption of the system implicitly defining the algebraic function.
In this article, we extend this theorem by removing this restrictive assumption, to
give all the possible asymptotics for the important class of context-free algebraic
functions, and associated limit laws. In one sense, this could be considered as the
generalization of Perron–Frobenius theorem to the algebraic case, including also a
multivariate extension. We do this in a constructive way, which opens the door to
full algorithmization.
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Plan of this article:

• In Section 2, we give a few definitions, mostly illustrating the link be-
tween context-free grammars, solutions of positive algebraic systems, and
N-algebraic functions. We also prove some basic properties of such func-
tions.
• In Section 3, we survey some closure properties of algebraic functions and

give a closed form for their coefficients.
• In Section 4, we state our main theorem on the possible critical exponents

of algebraic functions (associated to a context-free grammar with positive
weights) and we give some consequences of it.
• In Section 5, we give finer results about asymptotics and the corresponding

Puiseux expansions, which incidentally prove our main theorem.
• In Section 6, we provide a complete picture for the asymptotic behavior

of the coefficients of functions that are solutions of positive systems of
algebraic equations when a “periodic behavior” occurs.
• In Section 7, we consider the mysterious set of all the radii of convergence of
N-algebraic functions, and some variants. We give some closure properties
of this set.
• In Section 8, we prove that the associated limit laws are Gaussian for a

broad variety of cases (thus extending the Drmota–Lalley–Woods theorem),
and we also give an argument explaining the diversity of other possible limit
laws.
• In Section 9, we give an analog of our main theorem for systems involving

entire functions.
• We end with a conclusion pinpointing some extensions (algorithmic consid-

erations, decidability questions, extension to infinite systems, to attribute
grammars).

Figure 1. Many combinatorial objects are algebraic. Sometimes,
it is for some non-trivial reasons, like e.g. Gessel random walks
(left) or planar maps (right). A nice consequence of our Theorem 3
is that these combinatorial structures (and many similar objects)
cannot be generated by a context-free grammar, because of their
asymptotics have the critical exponent −2/3 and −5/2.
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2. Definitions: N-algebraic functions and well defined systems

Coefficients of algebraic functions have a very constrained asymptotics; we will
focus on their “critical exponents”:

Definition 1 (Critical exponent of a sequence). For any sequence such that fn ∼
Cnαρ−n, α is called the critical exponent and ρ is the radius of convergence of the
corresponding generating function F (z) =

∑
n≥0 fnz

n. Moreover, if the sequence
fn has asymptotics depending on the modulo class of n, the definition extends nat-
urally by saying that fn has a (possibly different) critical exponent for each class.
The singularities of F located on its radius of convergence are called the dominant
singularities of F .

There is a dual point of view when one considers functions instead of sequences:

Definition 2 (Puiseux critical exponent of a function). For any function having
a Puiseux expansion F (z) =

∑
k≥k0 ak(z − ρ)rk (with ak0 6= 0), the number rk0

is called the valuation of this series, while the smallest value of rk which is not a
nonnegative integer and for which ak 6= 0 is called the Puiseux critical exponent
of F (z). In this article, ρ is by default assumed to be the radius of convergence of
F (z).

Examples: F (z) = 1+2(1−z)+5(1−z)2+(1−z)5/2+(1−z)3+(1−z)7/2(1+o(1))
has Puiseux critical exponent 5/2. F (z) = 1/(1−2z)+(1−2z)+(1−2z)5/2(1+o(1))
has Puiseux critical exponent -1.

The Flajolet–Odlyzko theory of singularity analysis [63] (which has roots in the
works of Darboux, Hankel, Hardy and Littlewood, . . . ) links the critical exponent α
of a sequence (fn) and the Puiseux critical exponent e of the corresponding function
F (z) via the relation α = −e − 1 (provided that ρ is the only singularity on the
circle |z| = ρ).

We will consider algebraic functions defined via systems of algebraic equations.
Such systems are ubiquitous in language theory. For the notions of automata, push-
down automata, context-free grammars, we refer to the first three chapters of [116]
(by Perrin on finite automata, by Berstel and Boasson on context-free languages,
by Salomaa [101] on formal languages and power series) or to the more recent sur-
vey [95] in [57]. Another excellent compendium on the subject is the handbook
of formal languages [100] and the Lothaire trilogy [86]. In language theory, it is
natural to consider equations involving positive integer coefficients, whereas for
other applications it is natural to consider positive real weights or probabilities.
Accordingly, we will consider equations having various types of coefficients:

Definition 3 (Well-posed systems and N-algebraic functions, Q+-algebraic func-
tions, . . . ). A “well posed” system is a system1

(1)


y1 = P1(z, y1, . . . , yd)
...

yd = Pd(z, y1, . . . , yd)

where each polynomial Pi is such that [yi]Pi 6= 1 and has coefficients in any set S
of real numbers that is closed under addition and multiplication (in this article, we

1In this article, we will often abbreviate the system (1) with the convenient short notation
y = P(z,y), where bold fonts are used for vectors.
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consider S = N, Z, Q+, or R+)2 and which has a tuple of solution (f1(z), . . . , fd(z)),
where each fi(z) is a power series with coefficients in S. Functions solutions of such
a system are called S-algebraic functions.

{
y1 = 3y2y1 + 4z

y2 = 23y2
1 + 5z{

y1 = 3y2y1 + 4z

y2 = 23y1 − 5z

{
y1 = 1

3zy2 + 25
4 zy1 + z

y2 = zy1 + zy2
y1 = 3.14zy1y2 + πz3y1y3

y2 = exp(−1)y1y2 + z3

y3 = z + cos(3)y2
3

Examples 1. The solutions of the above systems are examples of
functions which are N-algebraic (left, top), Z-algebraic (left, bot-
tom), Q+-algebraic (right, top), and R+-algebraic (right, bottom).

Remark: requiring that the solutions have real coefficients is indeed a restriction,
as e.g. the equation y = 1 + z + y2 has two power series solutions, but each of
them has complex coefficients. On the other hand, if the system is with positive
coefficients and such that [yi]Pi = 0 and Pi(0,0) = 0 for all i, then it would be
superfluous to require that the yi’s have nonnegative real coefficients, as this would
result by iteration (while a system like y = z+2y shows that the power series could
elsewhere have negative coefficients as soon as there is one i such that [yi]Pi > 1).
Similarly, when one considers just N-algebraic functions, one could also change the
condition [yi]Pi 6= 1 by the (apparently more restrictive) condition [yi]Pi = 0; this
would not actually change the set of N-algebraic functions (this easily follows from
our Proposition 2 hereafter).

We now give a definition which offers a fast “combinatorial” way to ensure that
a system is well posed:

Definition 4 (Well defined systems). The above system (1), y = P(z,y), is called
“well defined” if and only if

• (no monic production) the coefficient of each yj in each Pi is 0:
∀i∀j [yj ]Pi(0, 0, . . . , 0, yj , 0, . . . , 0) = 0,
• (no epsilon production) for all i, Pi(0, 0, . . . , 0) = 0,
• (terminating condition) for any yj, there is at least one yk reachable from
yj (i.e., ∃t > 0|At

jk 6= 0, where A is the adjacency matrix of the dependency

graph associated to the system, as illustrated by Figure 2 in Section 5.4),
such that Pk(z, 0, . . . , 0) 6= 0.

By design, any well defined system is well posed, but the converse is not true,
as can be seen from systems of Examples 2. We will discuss some analytic dis-
tinctions between these two notions in Section 5.1, as introducing both of them
allow us to simplify the wordings of our theorems, without losing generality on the
combinatorial or analytical problems we want to consider.

Remark. Several authors introduced different notions with some minor distinc-
tions: our “well defined” systems are thus related to the “proper” or “well posed”
or “well founded” notions of [39, 53, 97].

2We make use of the notations Q+ = {x ∈ Q, x ≥ 0}, R+ = {x ∈ R, x ≥ 0}, and [uk]P (u),
which stands for the coefficient of uk in P (u).
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{
y1 = 1

2y1 + 1
2y2 + z

y2 = 1
2y1 + 1

2y2 + z{
y = 1 + z + y2

{
y = z + 2y


y1 = 1 + y1y

4
3

y2 = 2y3

y3 = 1
2y2 + y2

3 + z


y1 = zy2 + zy1

y2 = 1 + z + zy2 + y3

y3 = 5y4

y4 = 1
10y3y4

y1 = zy2 + zy1 + z

y2 = 3y1 + zy2 + z

y3 = zy2
2 + zy1

Examples 2. The above list shows systems that are not well de-
fined. Well defined systems (our Definition 4) are just a convenient
way to prevent pathological cases like the examples on the two first
columns. The systems from the right column are not well defined,
but are “well posed” (our Definition 3): they have power series
solutions with nonnegative real coefficients.

The idea is always that it corresponds to context-free grammars for which one
has no “infinite chain rules” (no infinite chain of monic productions, no infinite
chain of epsilon productions).

In this article, we need this to handle probability generating functions (in order
to get general results on the limit laws), therefore we allow real weights. So the
situation is slightly more tricky than what previous authors considered, as they were
just needing to deal with systems having integer coefficients; indeed, in the case
of real coefficients, “analytic convergence” can compensate a “formal divergence”
(as for example for the grammar A → zA/2); this is why (in the notion of well
posed system), one allows the coefficients of monic productions to be 6= 0, as soon
as the spectral radius of the Jacobian of the associated system is < 1, as this
will guaranty a global contraction (we will also comment on this when discussing
our notion of well posed systems in our subsection 5.1; see also [114] for a more
topological point of view). It is true that the two rules “no monic productions” and
“no epsilon productions” are a little bit more restrictive than what is needed (as
illustrated by the first case in the right column of our Examples 2), but they make
it easy to test the “well definedness” of a system; what is more, for the systems not
fulfilling all the conditions of Definition 4 which nonetheless have an analytic and
combinatorial meaning, it is easy to transform them into a system fulfilling these
conditions (essentially by replacing some coefficients of the polynomials Pi by some
new formal parameters).

A little caveat. We mentioned the matter of formal convergence; let us recall
briefly that this is defined on the set of power series by the following ultrametric
distance:

d(F (z), G(z)) := 2−val(F (z)−G(z))

(val giving the exponent of the first non-zero monomial). This distance extends
to vectors of functions (and to multivariate series), and allows to apply the Ba-
nach fixed-point theorem: the system (1) being a contraction implies existence and
uniqueness of a solution of the system as a d-tuple of power series (y1, . . . , yd) (and
they are analytic functions near 0, as we already know that they are power series
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and algebraic by nature). A common mistake is to forget that there exist situa-
tions for which the system (1) can admit several solutions as power series for y1

(nota bene: there is no contradiction with our previous claim, which is considering
tuples). We illustrate this point via the system

(2)

{
y1 = z(1 + y2 + 2y2

1)

y2 = z(1 + y1 + y2
2)

.

If one eliminates y2 in this system, this gives that y1 is defined by the equation

(3) 4z2y4
1 − 4zy3

1 + (2z + 1 + 4z2)y2
1 + (z2 − 1− 2z)y1 + 2z2 + z = 0 ,

which has four solutions for y1: z + z2 + O
(
z3
)
, 1 + 3 z + 10 z2 + O

(
z3
)
, 1

2z
−1 −

3
2z −

5
4z

2 + O
(
z3
)
, and 1

2z
−1 − 1 − 5

2z −
39
4 z

2 + O
(
z3
)
. Here it is the case that

several of these solutions are power series, and it can even be proven that two
branches of Equation (3) are power series with positive integer coefficients (this is
not a contradiction with unicity of the solution in the Banach fixed-point theorem,
as Equation (3) is not a contraction in Q[[z]]). The analogous elimination of y1 in
the system leads to four solutions for y2: z + z2 +O

(
z3
)
, 1 + 3 z + 10 z2 +O

(
z3
)
,

1
2z
−1− 3

2z−
5
4z

2+O
(
z3
)
, and 1

2z
−1−1− 5

2z−
39
4 z

2+O
(
z3
)
. However, because of the

multidimensional fixed-point theorem, amongst the four pairs (y1, y2) of functions
satisfying the system, there is only one pair of power series (namely the one with
y1 ∼ y2 ∼ z):(

y1(z)
y2(z)

)
=

(
1 + 3z + 10z2 +O(z3)
1
z − 2z + 3z2 +O(z3)

)
,

(
y1(z)
y2(z)

)
=

(
z + z2 + 3z3 +O(z4)
z + z2 + 2z3 +O(z4)

)
,

(
y1(z)

y2(z)

)
=

(
1
2z − 1− 5

2z +O(z2)
1
z −

1
2 −

1
4z +O(z2)

)
, and

(
y1(z)

y2(z)

)
=

(
1
2z −

3
2z −

5
4z

2 +O(z3)
1
2 −

5
4z −

1
4z

2 +O(z3)

)
.

Different algebraic classes. By elimination theory (resultant or Gröbner
bases, see the discussion on this in [111, 94]), S-algebraic functions are algebraic
functions: it is possible to transform a system of equations in the yi’s in a single
equation involving just y1 and z. Now, we give a few trivial/folklore results: N-
algebraic functions correspond to generating functions of context-free grammars
(this is the Chomsky–Schützenberger theorem, see [39]), or, equivalently, pushdown
automata (via e.g. a Greibach normal form). They are closed by sum, product,
derivation. Z-algebraic functions have no natural simple combinatorial structures
associated to them, but they are related to N-algebraic functions via the following
proposition:

Proposition 1. Any Z-algebraic function is the difference of two N-algebraic func-
tions.

Proof. This can be seen by introducing two new sets of unknowns a and b, and
then by splitting in two the initial system:

y = P (z,y)⇐⇒ a− b = P (z,a− b) .

Indeed, expanding and collecting the positive terms gives an N-algebraic equation
for a, and collecting the negative terms gives an N-algebraic equation for b: there
is clearly no monic productions in right-hand side inherited from P (z,y). �
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For example, the Z-algebraic function defined by F = 1 + 3zF 2 − 3z2F 3 can
be written as the difference of two N-algebraic functions: F = A − B with A =
1 + 3zA2 + 3zB2 + 9z2A2B + 3z2B3 and B = 6zAB + 3z2A3 + 9z2AB2.

Proposition 2 (Coefficients in Z⇒ Z-algebraic). Any algebraic power series F (t)
in S[[t]], where S = R, Q̄, Q, or Z, is in fact an S-algebraic function in disguise.
More precisely, after a possible change of variable F → G = tvF + a, G is S-
algebraic, and the corresponding system has just one equation.

Proof. Let us start with an algebraic function F (t) satisfying a general polynomial
equation, namely Q(t, F (t)) = 0 (where Q is irreducible and has real coefficients).
We would like to prove that we can also define it via an equation of the type of
system (1), namely F (t) = P (t, F (t)).

To do this, we will use a little bit of Newton polygon theory: to each monomial
F (t)itj in Q(t, F (t)), one associates the point (i, j). The convex hull of the set of
points associated to Q(t, F (t)) is called the Newton polygon of Q. Now, imagine a
source of light below this polygon, which thus floodlights all the bottom segments
of the polygon (and only them). Each floodlighted segments has a slope (call it
σk), and a length on the x-axis (call it λk). The Newton polygon theory implies
that one has then λk roots of valuation −σk. This can be checked by a “plug and
identify” process.

Now, if F (t) is an algebraic power series of valuation v, the change of variable
F (t) → tvF (t) in its characteristic polynomial Q(t, F (t)) = 0 allows us to restrict
without loss of generality to power series F (t) having a non-zero constant term.

Equivalently, one of the points of the Newton polygon is (0, 0), and another point
is (0,m) for some m (because if not, there would be no root with integer valuation,
i.e. a power series solution). If m = 1, we got the shape of system (1). If m > 1,
then making the change of variable y → y + a leads to a new equation, in which
the coefficient of y is a polynomial in a, and any real value of a not cancelling this
polynomial leads to an equation satisfying the shape of system (1).

Now, what about the coefficients of this newly found P (t, F )? Well, they are
by design real, and if (at least) one of the coefficients (call it c) of this equation
would not be rational, then bootstrapping the equation F = P (t, F ) would imply
that the power series F (t) would have a coefficient (required to be rational) which
would also be a linear relation between this irrational coefficient c and other rational
numbers. The same holds for (S = Q̄) : just replace algebraic/transcendantal by
rational/irrational.

The same also holds with ”integer” (S = N) instead of ”rational”; it is however
more tricky in this last case, once we got via the previous argument a polynomial
P (t, F ) with rational coefficients, just apply the Newton polygon theory in a “p-
adic way”: first make a simplification by the lcm (call it `) of the denominators of
the coefficients of P (t, F ) (call p a prime factor of this lcm), and then consider the
Newton polygon (taking F and p as coordinates) of `y = `P (t, F ). There, the slope
of the line corresponding to our power series solution implies that its valuation in
p is negative, but as we know by hypothesis it is positive, it means that there were
not existing such a prime p, and therefore they were no pure rational coefficient in
P (t, F ). �

Remark: The above proposition does not hold for S = N, indeed, we show later
in Proposition 8 that N-algebraic functions can intrinsicly require more than one
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equation having nonnegative coefficients to be defined, while they can always be
defined with a single equation having positive and negative coefficients. A nice
consequence of the algebraicity of a power series F (z) with rational coefficients is
the Eisenstein lemma, namely that there exists an integer b such that F (bz) has
integer coefficients only: this is obvious thanks Proposition 2, as F (z) is then Q-
algebraic, and thus F (bz) (with a b killing all the denominators of the coefficients)
is then Z-algebraic. This is a way to prove that exp or log type functions like∑
zn/n!k and

∑
zn/nk are transcendental (see example VII.37 in [65]).

There is a natural extension of N-algebraic functions to a multivariate setting:
the multivariate function F (z) (for z a tuple of variables) is called S-algebraic if
there is a system such that y = P(z,y), where z = (z1, . . . , zd) and y = (y1, . . . , ym)
are tuples and where P = (P1, . . . , Pm) is a tuple of polynomials in d+m variables,
with coefficients in S.

Proposition 3 (Systems of N-algebraic equations have N-algebraic solutions).
Consider a system of equations y = N(z,y) where y and z are tuples, and where
each Ni is a multivariate S-algebraic function. Then the power series yi(z) solutions
of this system are S-algebraic functions.

Proof. One has a system of d equations yj = Nj(z, y1, . . . , yd), where each Nj(z,y)
is itself solution of a possibly large system Nj = Pj(z,y,Nj) (the reader need good
eyes here to distinguish bold fonts: Nj is here a tuple of which Nj is the first com-
ponent). By keeping trace of all the intermediate variables, one gets a huge system
and a polynomial Aj (with coefficients in S) such that yj = Aj(z,y,N1, . . . ,Nd);
thus yj is S-algebraic. Alternatively, this can be seen with the context-free gram-
mar approach, by doing a substitution: replacing some initial terminals by some
non-terminals. �

There is actually a nice combinatorial example of this type of equations:

Corollary 1 (N-algebraicity of classes of pattern-avoiding permutations). If the
generating function of the so-called ”simple” permutations (associated to a pattern
P ) is N-algebraic, then the generating function of permutations avoiding the pattern
P is also N-algebraic.

Proof. Permutations avoiding some patterns satisfy the functional equation C =
(1+C)(z+S(C))+C2, where S is the generating functions of the so-called ”simple”
permutations (see [3, 17]), which is known to be N-algebraic in many cases. For
such cases, our Proposition 3 therefore implies that the generating function C is
itself also N-algebraic. For sure, this is also trivially the case when there is a finite
number of simple permutations. �

Now, let us conclude this section by mentioning N-rational functions: an N-
rational function is a function solution of a system (1) where each polynomial Pi
has coefficients in N and total degree 1. Such functions correspond to generating
functions of regular expressions or, equivalently, automata (a result attributed to

Kleene [78]). Their coefficients satisfy a recurrence fn+d =
∑d−1
i=0 aifn+i, with

ai ∈ N. A lot is known about N-rational functions, and they are well characterized
by their analytic and asymptotic properties [23, 115]; our article aims at reaching
a similar level of knowledge about N-algebraic functions, but before to tackling
them in Section 4, we continue with facts that hold for algebraic functions in full
generality.
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3. Closed form for the coefficients of algebraic functions

A first natural question is how can we compute the n-th coefficient fn of an
algebraic power series? The fastest way is relying on the theory of D-finite functions.
A function F (z) is D-finite if it satisfies a linear differential equation with coefficients
which are polynomials in z; equivalently, its coefficients fn satisfy a linear recurrence
with coefficients which are polynomials in n. There are numerous algorithms to deal
with this important class of functions, which includes a lot of special functions from
physics, number theory and also combinatorics [110].

Proposition 4 (The Abel–Tannery–Cockle–Harley–Comtet Theorem).
Algebraic functions are D-finite. What is more, for an algebraic function F (z)
solution of a polynomial equation Q(z, F (z)) = 0 (where Q(z, y) has degree d in y),
then the dimension of the space spanned by the derivatives ∂kzF (z) is bounded by d.

Proof. In combinatorics, Comtet popularized the fact that algebraic functions are
D-finite (see [44, 45]). The key idea is to differentiate Q(z, F (z)) = 0 with respect
to z; this shows that each derivative ∂kzF (z) can be expressed as rational fraction
in z and F (z), taking Taylor expansions of these fractions and using the relation
Q(z, F ) = 0 allows then to write them as polynomials in F of degree at most d,
therefore they all live in the same space of dimension at most d, and thus it implies
the claimed relation between the derivatives. It is amusing that this is in fact an
old theorem rediscovered many times, by Tannery [113], Cockle and Harley [43, 70]
in their method for solving quintic equations via 4F3 hypergeometric functions.
Last but not least, this theorem can also be found in an unpublished manuscript
of Abel [1, p. 287]! �

The world of D-finite functions offers numerous closure properties; let us mention
some of them related to algebraic functions:

Proposition 5 (Holonomy and closure properties for algebraic functions).

(1) f and 1/f are simultaneously D-finite if and only if f ′/f is algebraic.
(2) f and exp(

∫
f) are simultaneously D-finite if and only if f ′/f is algebraic.

(3) Let g be algebraic of genus ≥ 1, then f and g(f) are simultaneously D-finite
if and only if f is algebraic.

(4) The Hadamard product of a rational and an algebraic function is algebraic.
(5) Let A be a context-free language and let R be a rational language, then

one has a closure by intersection, Hadamard product, set difference: A∩R,
A�R, A−R, and R−A are context-free (and thus have algebraic generating
functions).

(6) Each algebraic function is the diagonal of a bivariate rational function.
(7) In finite fields, Hadamard products of algebraic functions are algebraic.
(8) The set of generalized hypergeometric functions nFn−1 which are algebraic

is well identified.
(9) It is possible to decide if a D-finite equation has algebraic solutions.

Proof. (1) is due to Harris & Sibuya [71], (2) and (3) to Singer [107], (4) to Jun-
gen [74]. (5) can be proven via the (pushdown) automata point of view (see
also [22]). (6) is due to Denef and Lipshitz [49], (7) to Furstenberg [67], (8) to
Schwarz [105] and Beukers & Heckman [25]. It is still a challenge to find an effi-
cient algorithm for (9), beyond the constructive approach given by Singer [106]. �
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The linear recurrence satisfied by fn allows one to compute in linear time all
the coefficients f0, . . . , fn. More precisely, it is proved in [28] that there exists an
algorithm of complexity O(nd2 ln d), where d is the degree of the function. If one
just wants the n-th coefficient fn, it is possible to get it in O(

√
n) operations [41].

Many of these features (and a few others related to random generation and context-
free grammars, and corresponding asymptotics) are implemented in the ”Algolib”
library, a set of Maple packages developed by Flajolet, Salvy, Zimmermann, Chyzak,
Mezzarobba, . . . (see http://algo.inria.fr/libraries/), see also the SageMath
package by Kauers & al. [88].

A less known fact is that these coefficients admit a closed form expression in terms
of a finite linear combination of weighted multinomial numbers. The multinomial
number is the number of ways to divide m objects into d groups, of cardinality
m1, . . . ,md (with m1 + · · ·+md = m):

[u1
m1 · · ·udmd ](u1 + · · ·+ ud)

m =

(
m

m1, . . . ,md

)
=

m!

m1! . . .md!
.

More precisely, one has the following theorem:

Theorem 1 (The Flajolet–Soria formula for coefficients of an algebraic function).
Consider a power series implicitly defined by a polynomial equation Q(z, f(z)) = 0
(plus initial conditions for f(z), in case the equation has several branches which are
power series); therefore (up to a change of variable as explained in Proposition 2),
f(z) can equivalently be defined by f(z) = P (z, f(z)) where P (z, y) is bivariate
polynomial such that [y]P 6= 1 and P (z, 0) 6= 0. Then, the Taylor coefficients of
f(z) are given by the following finite sum

(4) fn =
∑
m≥1

1

m
[znym−1]Pm(z, y).

Accordingly, applying the multinomial theorem on P (z, y) =
∑d
i=1 aiz

biyci leads to

(5) fn =
∑
m≥1

1

m

∑
m1+···+md=m

b1m1+···+bdmd=n
c1m1+···+cdmd=m−1

(
m

m1, . . . ,md

)
a1
m1 . . . ad

md ,

where all the mi’s are nonnegative integers; this sum is finite as it is more easily
seen via the equivalent formula

(6) fn =

n∑
m=0

∑
m1+···+md=m+1
b1m1+···+bdmd=n
c1m1+···+cdmd=m

m!
a1
m1

m1!
. . .

ad
md

md!
.

Proof. We consider y = P (z, y) as the perturbation at u = 1 of the equation
y = uP (z, y), on which we apply (this is legitimate as P (z, 0) 6= 0) the Lagrange
inversion formula (considering u as the main variable, and z as a fixed parameter);
this gives: [um]y = 1

m [ym−1]P (z, y)m. Then, summing for all m (the sum is con-
verging to y(z), as it is well defined) and extracting [zn] on both sides leads to a
non-trivial equality (and therefore to Equation (4)), because [y]P (z, y) 6= 1.

Note that Formula (4) still holds even if P is not a polynomial, but more generally
a power series ∈ C[[z, y]]. �
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This Flajolet–Soria formula (we coin the term) was first published in the habil-
itation thesis of Michèle Soria in 1990, and then in 1998 in the INRIA proceedings
of the Algorithms Seminar, it is also mentioned in section VII.34 p. 495 in [65];
it has also been found by Gessel (as published in 1999 in the exercise 5.39 p. 148
of [110]), and it was finally also rediscovered in 2009 by Sokal [109]. It is worth
pinpointing that Lagrange [82] initially presented his inversion formula in order to
solve algebraic equations of any degree (considering the coefficients of the equations
as parameters).

It is noteworthy that if P has 3 terms or less, then the multiple sum in Formula 5
reduces to a single term, and it remains then just a simple sum on m. For instance,
if we consider the equation

(7) f(z) = z + z2f2(z) + z3f3(z),

we find for the coefficients the nice form (matter of taste!):

(8) fn+1 =

b 23nc∑
m=d 35ne

m!

(n+ 1−m)!(5m− 3n)!(2n− 3m)!
.

It is not possible to get this nice formula via a naive application of Lagrange’s
inversion formula, but it is a direct application of Theorem 1.

If one consider the case of the equation for the generating functions of d-ary trees,
namely y = 1 + zyd, then the formula simplifies a lot: each nested sum involves
just one term; this gives the classical result fn = 1

(d−1)n+1

(
dn
n

)
.

More generally, the coefficients of an algebraic function defined by y = P (z, y)
are therefore given by d − 2 nested sums of binomials, where d is the number of
terms of P (z, y). Let d1 be the z degree of P and let d2 be the y degree of P . The
worst case number of nested sums in Equation (6) is therefore (1 + d1)(1 + d2)− 3.
E.g., if the y and z degree are bounded by 2, one will have 6 nested sums at most,
as it is the case for P (z, y) = 1 + y2 + z + zy + zy2 + z2 + z2y + z2y2, while
P (z, y) = 1 + zy2 + z2y2 will lead to just one sum.

This can lead to impressive identities like several thousands of nested sums which
actually simplify in a non trivial way to a single factorial-like product; an example
of such a phenomena follows from the observation of Rodriguez-Villegas that

F (z) =
∑
n≥0

(30n)!n!

(15n)!(10n)!(6n)!
zn

is a (generalized hypergeometric) algebraic function of minimal degree 483840.
More generally, it is an interesting algorithmic question to get the minimal number
of nested sums giving the coefficients fn (see [103] for an approach related to Karr’s
ΠΣ-fields). Also, the set of sequences which can be expressed as nested sums of
multinomials are exactly the set of diagonals of rational functions (see [31, 93]).

All those ”closed forms” are nice for arithmetical/combinatorial properties, but
they are not the right way to access to any type of universal asymptotics for the
coefficients fn; in the next section, we use a completely different approach to tackle
these asymptotics questions.
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4. Critical exponents for coefficients of algebraic function

“It would at least be desirable to determine directly, from a positive (but
reducible) system, the type of singular behaviour of the solution, but the
systematic research involved in such a programme is yet to be carried out.”
Quotation of Philippe Flajolet and Robert Sedgewick [65, p. 493]

In this section, we will characterize the singular behaviors of such systems, thus
answering the wish of Flajolet & Sedgewick. Our approach relies on the theory
of Puiseux expansions which implies that the critical exponents are pure rational
numbers for pure algebraic functions. (Pure algebraic means algebraic but not
rational, pure rational means rational but not integer.) The full question is which
subset of rational number do we get? We first start with the following proposition,
which shows that all rational numbers are obtained if we do not constrain the
algebraic function to satisfy a positive system of the type y = P(z,y):

Theorem 2. For any rational number r that is not a negative integer, there exists
an algebraic power series F (z) =

∑
n≥0 fnz

n with positive integer coefficients fn
which have critical exponent r, i.e. fn ∼ CnrAn (for some positive constants A,C).
What is more, this power series is Z-algebraic.

Proof. First, consider F (z) := 1−(1−a2z)1/a
az , where a is any positive or negative

integer. Accordingly, its coefficients are given by fn =
(

1/a
n+1

)
a2n+1(−1)n. The fact

that the fn are positive integers was proven in [85], via a link with a variant of
Stirling numbers. We give here another shorter proof. First, the Newton binomial
theorem applied on (1− azF )a = (1− a2z) leads to an algebraic equation for F (z):

F (z) = 1 +

a∑
k=2

(
a

k

)
ak−2(−1)kzk−1 (F (z))

k
.

Then, if one sees this equation as a fixed point equation (as a rewriting rule in
the style of context-free grammars), it is obvious that the fn’s belong to Z. But

as fn+1 = a (a(n+1)−1)fn
n+2 , it is also clear that the fn’s are indeed positive integers.

Thus, we got any Puiseux critical exponent 1/a, and we now want to get any Puiseux
critical exponent b/a, where b is any positive integer (not a multiple of a). For sure,
it is not possible to take directly F b as it does not have Puiseux critical exponent
b/a (but 1/a), so we consider G(z) = e(azF (z)−1)b (where e = 1 if a > b mod (2a)
and e = −1 elsewhere), which gives a series with integer coefficients (because of the
integrality of the coefficients of F ), positive coefficients (excepted a few of its first
coefficients, as seen via the Newton binomial expansion). Removing these negative
coefficient terms gives a power series with only positive integer coefficients, with a
Puiseux expansion G(z) = e(−1)b(1−a2z)b/a and consequently its coefficients have
the asymptotics Cn−1−b/aa2n for some C > 0. �

One may then wonder if there is something stronger. For example, is it the case
that for any radius of convergence, any critical exponent is possible? It happens
not to be the case, as can be seen via a result of Fatou: a power series with
integer coefficients and radius of convergence 1 is either rational or transcendental
(in fact the transcendental case is necessarily involving a natural boundary, this
was a conjecture of Pólya proved by Carlson). However, one has the following neat
generic behavior:
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Theorem 3 (Main result: dyadic critical exponents for R+-algebraic function).
Any power series F (z) =

∑
n≥0 fnz

n which is a solution of a well defined positive

polynomial system of equations y = P(z,y) (i.e. any R+-algebraic function, and a
fortiori any N-algebraic function) has the following asymptotic behavior:

• If F (z) has a single singularity ρ on its radius of convergence |z| = ρ, then
we have

fn ∼ C
1

Γ(1 + α)
nαρ−n

for some positive (algebraic if P or F have algebraic coefficients) constants
C and ρ, and a dyadic critical exponent α which belongs to the set

(9) D2 = {−1− 1

2k
: k ≥ 1} ∪ {m

2k
− 1 : m ≥ 1, k ≥ 0} .

This set D2 of possible critical exponents is sparse on [−3/2,−1) (starting
with the values {− 3

2 ,−
5
4 ,−

9
8 ,−

17
16 , . . .}) and dense on (−1,+∞), where it

contains all dyadic numbers.
• If F (z) has several singularities on its radius of convergence |z| = ρ,

then there exists an integer p ≥ 1 such that for every residue class ` ∈
{0, 1, . . . , p − 1} we either have fn = 0 for sufficiently large n with n ≡
` mod p or

fn ∼ C`
1

Γ(1 + α)
nα`An` , n ≡ ` mod p,

where A` and C` are positive (algebraic if P or F have algebraic coefficients)
constants and the critical exponent α` belongs to the set D2 defined in (9).

Proof. In the case of a single singularity on the radius of convergence, this theorem is
the consequence of our stronger theorem on the Puiseux expansion of R+-algebraic
functions (see Theorem 4 in Section 5.2). The periodic case (this essentially means
that F (z) has several dominant singularities, as may be seen from F (z) = 1/(1 −
9z2) + 1/(1 − 8z3), which is 6 periodic) involves some additional care, and we
consider the full details of such cases in Section 6 (Theorem 6); this even gives a
proof which works in a more general setting than well defined polynomial systems.
The algebraicity of the constants C,A`, ρ follows from our Proposition 2, while
coupling it with our results on the Puiseux expansions (in the next Sections) with
the so-called “transfer” Theorem VI.3 from [65]. �

Accordingly, we have the following two propositions:

Proposition 6 (Dyadic critical exponents for N-algebraic functions). All the crit-
ical exponents of Theorem 3 are indeed obtained, even for the subclass of R+-
algebraic functions made of N-algebraic functions.

Proof. By singularity analysis [65], there is a direct link between the singular be-
havior of F (z) and the critical exponent of its coefficients fn, namely: if F (z) ∼
(1− Az)α then fn ∼ 1

Γ(−α)n
−1−αAn (when ρ = 1/A is the only singularity on the

radius of convergence |z| = ρ). We will therefore show that all the singular behav-
iors corresponding to our dyadic set D2 of critical exponents are indeed obtained.
The system of equations y1 = z(y2 + y2

1), y2 = z(y3 + y2
2), y3 = z(1 + y2

3) has the
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following (explicit) solution

y1(z) =
1− (1− 2z)1/8

√
2z
√

2z
√

1 + 2z +
√

1− 2z + (1− 2z)3/4

2z

y2(z) =
1− (1− 2z)1/4

√
2z
√

1 + 2z +
√

1− 2z

2z
and y3(z) =

1−
√

1− 4z2

2z
.

Here y1(z) has dominant singularity (1−2z)1/8 and it is clear that this example can
be generalized: indeed, consider the system yi = z(yi+1 + y2

i ) for i = 1, . . . , k − 1,

and yk = z(1 + y2
k), it leads to behavior (1 − 2z)2−k

for each k ≥ 1. Now, taking
the system of equations y = z(ym0 + y), y0 = z(1 + 2y0y1) leads to a behavior

(1 − 2z)−m2−k

for each m ≥ 1 and k ≥ 0. See also [77, 112] for another explicit
combinatorial structure (a family of colored trees related to a critical composition)
exhibiting all these critical exponents. �

Proposition 7 (Non N-algebraicity). Planar maps and several families of lattice
paths (like Gessel walks) are not N-algebraic (i.e., they cannot be generated by an
unambiguous context-free grammar). The Franel numbers (and other sequences
counting some tuples of integer compositions having the same numbers of parts)
are not algebraic.

Proof. This comes as a nice consequence of our Theorem 3: none of the families
of planar maps of [11] can be generated by an unambiguous context-free grammar,
because of their critical exponent −5/2. Also, the tables [29] of lattice paths in
the quarter plane and their asymptotics (where some of the connection constants
are guessed, but all the critical exponents are proved, and this is enough for our
point) allow one to prove that many sets of jumps are giving a non-algebraic gen-
erating function, as they lead to a critical exponent which is a negative integer or
involving 1/3. One very neat example is Gessel walks (their algebraicity was a nice
surprise [30]), where the hypergeometric formula for their coefficients leads to an
asymptotic 4n/n2/3 that is not compatible with N-algebraicity.3

The Franel number of order m, defined by
∑n
k=0

(
n
k

)m
, and other sequences

counting some tuples of integer compositions having the same numbers of parts [13],

(like e.g. the sequence
∑n
k=0

(
n−k
k

)m
) do not have an algebraic generating function

(for m ≥ 3), as their asymptotics involves a non algebraic multiplicative constant
C = algebraic number/π(m−2)/2 (for even m > 2) or an negative integer critical
exponent (for odd m > 2), both cases being incompatible with Theorem 3. �

The critical exponents − 3
4 ,−

1
4 ,

1
4 which appear for walks on the slit plane [34]

and other lattice paths questions [30] are compatible with N-algebraicity, but these
lattice paths are in fact not N-algebraic (one can use Ogden’s pumping lemma
to prove that these walks cannot be generated by a context-free grammar). To
get a constructive method to decide N-algebraicity (input: a polynomial equation,
output: a context-free specification, whenever it exists) is a challenging task.

3The fact that critical exponents involving 1/3 were not possible was an informal conjecture
in the community for years (see e.g. [61, 32] and Note 2 in [64]). We thank Philippe Flajolet,
Mireille Bousquet-Mélou and Gilles Schaeffer, who encouraged us to work on this question. Non-

algebraicity of Franel numbers was another folklore conjecture, see e.g. in [13]; we thank Alin
Bostan who pinpointed this example to us, he has also a nice proof of their non-algebraicty via a
p-Lucas property satisfied by this sequence.
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It is well-known that any N-rational function has star height at most 2, e.g. the
regular expression (x(x(xx∗)∗)∗)∗ involves 3 nested stars but can also be written
as 1 + x + x∗(3x)∗x2 + x2x∗. For context-free grammars, one could consider the
Chomsky and Greibach normal forms as a “similar flavor” result. On the other
hand, one consequence of our Theorem 4 is that there exist context-free languages
with unbounded “non-terminal height”, more precisely:

Proposition 8 (Unbounded number of non-terminals for context-free grammars).
For all k ∈ N, there exists a context-free language requiring inherently at least k non-
terminals for any grammar generating it and there exists a context-free language
requiring inherently at least k non strongly connected components for any grammar
generating it.

Proof. Indeed, the integer k (in Theorem 3) is the number of “nested dominant
critical components” (as is transparent from our proof in Subsection 5.4), and each
of these components requires at least one non-terminal. Multicolored supertrees
are an example of a structure requiring k non-terminals: they are a generalization
of Example VI.10 in [65], they are “trees of trees of trees...” with nodes of 2 colors,
defined via Tk+1 = Tk[2ZTk] and T0 = Z × Seq(T0). �

In this section, we characterized the critical exponents of coefficients of algebraic
functions; can we also characterize the subdominant critical exponents? Well, for
algebraic functions, it is a consequence of their local Puiseux expansions and of
singularity analysis that their coefficients behave e.g. like

fn = Annα

∑
k≥0

ak
1

nk

+Bnnβ

∑
k≥0

bk
1

nk

+O(Cn)

(where C < B, with A > B or A = B and α > β); what is more, we have proven
in Theorem 3 that for N-algebraic functions (and more generally for Q+-algebraic
functions), α belongs to a specific subset of dyadic numbers. It is thus natural to ask
what can be said on β? In fact, the union of Proposition 1 (Z-algebraic functions are
the difference of two N-algebraic functions) and Theorem 2 (Z-algebraic functions
can have any rational critical exponent) implies that subdominant critical exponents
β of N-algebraic functions can be any rational number which is not a negative
integer.

5. Finer asymptotics for R+-algebraic functions

The main goal of this section is to obtain a theorem on the Puiseux expansion
of R+-algebraic functions.

The first subsection 5.1 gives precise conditions on the system. Subsection 5.2
gives our fundamental result, Theorem 4, which implies Theorem 3 of Section 4.
Subsection 5.3 introduces the notion of dependency graph and a few preliminary
lemmas, while the last subsection, Subsection 5.4, gives the proof of Theorem 4.

5.1. Well defined versus well posed systems of functional equations. In
Definitions 3 and 4, we have described the so-called well posed and well defined
systems of algebraic equations y = P(z,y), and by definition it is clear that every
positive well defined system is well posed, too. (One just has to start with y0 = 0
and consider the iteration yk+1 = P(z,yk) that converges formally and analyti-
cally to a tuple of power series (f1(z), . . . fd(z)) = limk→∞ yk with non-negative
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coefficients and the property fi(0) = 0.) However, as already indicated, there are
also meaningful systems with power series solutions that are not well defined in
the sense of Definition 4. The essential point is that such a meaningful system
has power series solutions yj = fj(z) with non-negative coefficients. (Of course,
if the algebraic system is positive then we can expect non-negative coefficients, in
particular if the iteration from above converges.)

Let us make this more precise by formulating an analytic condition for systems
being meaningful.

Definition 5 (Analytically well defined system). A positive system of polynomial
equations y = P(z,y) will be called analytically well defined if P(0,0) = 0, if

the Jacobian Py(0,0) =
(
∂Pi

∂yj
(0,0)

)
has spectral radius smaller than 1, and if all

solution functions yj = fj(z) (with fj(0) = 0) are neither zero nor polynomials.

The condition on the spectral radius of Py ensures that the matrix I−Py(0,0)
(which is the Jacobian of the system y − P(z,y) = 0) is invertible so that the
implicit function theorem implies that there is a unique tuple of analytic solution
(f1(z), . . . , fd(z)) with fj(0) = 0. Furthermore this solution is obtained as the
limit (f1(z), . . . fd(z)) = limk→∞ yk of the iteration yk+1 = P(z,yk) with y0 = 0
(actually the iteration is uniform for |z| ≤ η, where η > 0 is sufficiently small). Since
all the iterates yk are polynomials with non-negative coefficients, the (uniform)
limit has the same non-negativity property. Note that this convergence need not
be formal as the example y = z + 1

2y shows.
As mentioned above the condition P(0,0) = 0 is not a real restriction. If

P(0,0) 6= 0 and if there exists a non-negative vector y0 with P(0,y0) = y0 such
that the spectral radius of Py(0,y0) is smaller than 1 then the same argument
as in the preceding paragraph shows that there exists a unique tuple of analytic
solution (f1(z), . . . , fd(z)) with (f1(0), . . . , fd(0)) = y0. Furthermore, by making a
shift to reduce it to the case P(0,0) = 0. We set ỹ = y + y0 so that we obtain a

system for ỹ of the form ỹ = P̃(z, ỹ) with P̃(z, ỹ) = P(z, ỹ + y0) − y0. Since P

has non-negative coefficients, the same holds for P̃. Consequently, there is no loss
of generality to assume that we have a system y = P(z,y) with P(0,0) = 0.

Finally, it is very easy to detect, whether a meaningful system has some zero or
polynomial solutions fj(z). Anyway, if zero or polynomial solutions fj(z) appear
we just replace all appearances of yj by fj(z) and remove the j-th equation. This
leads to a subsystem, where no solution fj(z) is zero or a polynomial. The Jacobian
of the new (and smaller) system is just a submatrix of the original Jacobian and,
thus, has a spectral radius that is not larger than that of the original one. So if the
spectral radius of the Jacobian of the original system is smaller than 1, we get the
same property for the new system.

Summing up it is no loss of generality to consider analytically well defined sys-
tems. Furthermore well defined systems are also analytically well defined.

Lemma 1. Every well defined system y = P(z,y) is analytically well defined. And
every analytically well defined system is well posed.

Proof. By definition a well defined system satisfies P(0,0) = 0. Furthermore, the
condition [yj ]Pi(0, 0, . . . , yi, . . .) = 0 implies that Py(0,0) is the zero matrix which
has spectral radius 0. Finally the terminating condition ensures that there are no
zero or polynomial solutions fj(z).
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We already discussed that every analytically well defined system has a tuple
of power series solutions fj(z) with non-negative coefficients. This completes the
proof of the lemma. �

There are several reasons why we distinguish between well defined and analyt-
ically well defined systems of equations. From a formal point of view well defined
systems are very easy to describe, since we just have to look at the polynomial
system. On the other hand it excludes some meaningful systems (in particular sys-
tems having epsilon production or loops of monic productions with a total weight
< 1). When it comes to proofs, it is easier to work with analytic conditions like the
condition on the spectral radius, and therefore we will mainly rely on analytically
well defined systems. A good motivation for this approach is that the analysis of
the behavior of the spectral radius r(Py(z, f(z))) actually plays a dominant rôle in
the proof of Theorem 4.

5.2. Critical exponents of R+-algebraic functions. Our first main goal is to
characterize the Puiseux critical exponents of the singular expansions of fj(z) at
the radius of convergence ρj , when we are considering power series solutions of
analytically well defined positive polynomial systems of equations. The main ob-
servation is that these exponents are special dyadic rational numbers – in contrast
to general algebraic functions (see Theorem 2).

Theorem 4. Let y = P(z,y) be an analytically well defined positive polynomial
system of functional equations.

Then the solutions fj(z) have positive and finite radii of convergence ρj and the
Puiseux critical exponents are either of the form 2−kj for some integer kj ≥ 1 or of
the form −mj2

−kj for some integer mj ≥ 1 and kj ≥ 0. In particular the singular
behavior of fj(z) around ρj is either of type

(10) fj(z) = fj(ρj) + cj(1− z/ρj)2−kj
+ c′j(1− z/ρj)2·2−kj

+ · · · ,

where cj 6= 0 (and an integer kj ≥ 1) or of type

(11) fj(z) =
dj

(1− z/ρj)mj2−kj
+

d′j

(1− z/ρj)(mj−1)2−kj
+ · · · ,

where dj 6= 0 (and integers mj ≥ 1 and kj ≥ 0).

This theorem gives already a partial result on the asymptotic structure of the
coefficients fj;n of fj(z). If we assume that ρj is the only singularity on the circle
of convergence |z| = ρj (which we call the aperiodic case) then the transfer theorem
of Flajolet and Odlyzko [63] implies that fj;n is asymptotically given by

(12) fj;n ∼ Cjnαjρ−nj (n→∞),

where Cj > 0, ρj > 0, and αj is either of the form αj = −2−kj − 1 for some integer
kj ≥ 1 or of the form αj = mj/2

kj − 1 for some integers kj ≥ 0 and mj ≥ 1.
Actually, we will provide a complete answer to the problem in the periodic case

too; see Theorems 5 and 6. In all cases we obtain asymptotic properties as stated in
(12); however, we have to distinguish between residue classes modulo some positive
integer p, and the asymptotic scale might be different in each residue class. In order
to make the presentation more transparent we deal first with Theorem 4 and then
consider the more involved question of periodicities.
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5.3. Dependency graph and auxiliary results. A main ingredient of the proof
of Theorem 4 is the analysis of the dependency graph G of the system yj =
Pj(z, y1, . . . , yd), 1 ≤ j ≤ d. The vertex set is {1, . . . , d} and there is a directed
edge from i to j if Pj depends on yi (see Figure 2). If the dependency graph is
strongly connected then we are in a very special case of Theorem 4, for which one
has one of the following two situations (see [53]):

Lemma 2 (Rational singular behavior). Let y = A(z)y + B(z) be an affine an-
alytically well defined system of equations, where the dependency graph is strongly
connected. Then the functions fj(z) have a joint polar singularity ρ of order one
as the dominant singularity:

fj(z) =
cj(z)

1− z/ρ
,

where cj(z) is non-zero and analytic at z = ρ.

Proof. In the affine case the Jacobian of the system equals A(z). Hence, by as-
sumption, the spectral radius of A(0) is smaller than 1; this implies that f(z) can
be represented as

f(z) = (I−A(z))−1B(z)

if |z| is sufficiently small. Since the dependency graph is strongly connected it fol-
lows that the matrix A(z) is a positive and irreducible matrix if z > 0. Consequently
by Perron–Frobenius theory the spectral radius r(A(z)) is a strictly increasing and
continuous function in z > 0. Hence, there exists a unique ρ > 0 with r(A(ρ)) = 1.
Again, by Perron–Frobenius theory, the spectral radius is the dominant eigenvalue
of A(ρ) that is simple, too. This also implies that the function

z 7→ det(I−A(z))

has a simple root at z = ρ. Of course this leads to a simple polar singularity for
f(z). Note that this singularity has to appear for all functions fj(z), 1 ≤ j ≤ d,
since the system is strongly connected. �

Lemma 3 (Algebraic singular behavior). Let y = P(z,y) be an affine analytically
well defined polynomial system of equations that is not affine and where the depen-
dency graph is strongly connected. Then the functions fj(z) have a joint radius of
convergence ρ and Puiseux singular exponent 1/2 at z = ρ, that is, they can be
locally represented as

fj(z) = gj(z)− hj(z)
√

1− z

ρ
,

where gj(z) and hj(z) are non-zero and analytic at z = ρ.

Proof. 4 Since the system is positive and well posed, there exists a unique solution
f(z) with f(0) = 0 which has non-negative coefficients. By assumption the spectral
radius of the Jacobian Py(0,0) is smaller than 1. Since the dependency graph is
strongly connected the matrix Py(z, f(z)) is a positive and irreducible matrix for
z > 0 (as long as f(z) is regular). Furthermore the spectral radius r(Py(z, f(z)))) is
a strictly increasing and continuous function in z > 0. Recall that (by the implicit
function theorem) f(z) is certainly regular if r(Py(z, f(z)))) < 1. Hence, it follows

4The proofs of Lemma 2 and 3 could be simplified, since we work just with algebraic functions.
However, in Section 9 we will also consider entire systems of functional equations and the present

proof generalizes to this situation.
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that there exists ρ > 0 with the property that f(ρ) exists (although it will not be
a regular point) and r(Py(ρ, f(ρ)))) = 1. Thus, we can now apply the Drmota–
Lalley–Woods theorem [54, 65] which implies that ρ is the dominant singularity for
fj(z) and they are all of square-root type. �

In the proof of Theorem 4 we will use extended versions of Lemmas 2 and 3,
where we introduce additional parameters, that is, we consider systems of functional
equations of the form

y = P(z,y,u),

where P is now a polynomial in z,y,u with P(0,0,0) = 0 and non-negative coeffi-
cients and where the dependency graph (with respect to y) is strongly connected.
We also assume that r(Py(0,0,0)) < 1 so that we can consider the solution that we
denote by f(z,u). We also consider situations where u is strictly positive from the
very beginning. In this case we restrict ourselves to situations where f(0,u) exists
and where the spectral radius of the Jacobian Py(0, f(0,u),u) is smaller than 1.

If we are in the affine setting (y = A(z,u)y +B(z,u)) it follows that f(z,u) has
a polar singularity:

(13) fj(z,u) =
cj(z,u)

1− z/ρ(u)
,

where the functions ρ(u) and cj(z,u) are non-zero and analytic (see Lemma 4).
Please observe that we have to distinguish two cases. If A(z,u) = A(z) does not
depend on u then ρ(u) = ρ is constant and the dependency from u just comes
from B(z,u). Of course, if A(z,u) depends on u then ρ(u) is not constant. More
precisely it depends exactly on those coordinates of u that appear in A(z,u).

Similarly, in the non-affine setting we obtain representations of the form

(14) fj(z,u) = gj(z,u)− hj(z,u)

√
1− z

ρ(u)
,

where the functions ρ(u), gj(z,u), and hj(z,u) are non-zero and analytic. In this
case ρ(u) is always non-constant and depends on all coordinates of u (see Lemma 4).

Actually, we have to be careful with the property that ρ(u) is analytic. By
looking at the above proofs it immediately follows that ρ(u) exists but analyticity
is not immediate. For notational convenience we will denote by D0 the set of
positive real vectors u for which r(Py(0, f(0,u),u)) < 1.

Lemma 4. The function ρ(u) that appears in the representations (13) and (14) is
analytic in a proper complex neighborhood of D0. Moreover, if u ∈ D0 is real then
ρ(u) tends to 0 when u approaches the boundary of D0 in a way that all coordinates
of u are non-decreasing.

Proof. We recall a general method for reducing the system y = P(z,y,u) to a
single equation if the dependency graph is strongly connected. We split between
the first equation y1 = P1(z, y1,y,u) and y = P(z, y1,y,u), where y = (y2, . . . , yd)
and P = (P2, . . . , Pd). Suppose that r(Py(ρ,y0,u0)) = 1 for some u0 ∈ D0 (and

ρ = ρ(u0), y0 = y0(u0)) then by Perron–Frobenius theory r(Py(ρ, y1,0,y0,u0)) < 1

since Py is the submatrix that results from Py by deleting the first row and column.

Hence, by the implicit function theorem, there is an analytic solution f(z, y1,u) of
the subsystem (locally around ρ, y1,0,u0) that we can insert into the first equation
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so that we are left with a single equation:

y1 = P1(z, y1, f(z, y1,u),u) = Q(z, y1,u).

In the affine case this rewrites to y1 = a(z,u)y1+b(z,u) or y1 = b(z,u)/(1−a(z,u)).
Since we are in the well posed case, a(z,u) depends on z and u. Furthermore
a(ρ(u0,u0)) = 1. Since we certainly have az(ρ(u0),u0) > 0 the implicit function
theorem implies that ρ(u) is analytic locally at u0 ∈ D0.

In the non-affine case, the situation is similar but slightly more involved. Since
the equation y1 = Q(z, y1,u) is singular for z = ρ, y1 = y1,0,u = u0 we have:

y1,0 = Q(ρ, y1,0,u0), 1 = Qy1(ρ, y1,0,u0).

Furthermore this small system can be used to calculate ρ(u) (locally around u0.
Here u is the variable and ρ = ρ(u), y1,0 = y1,0(u0) are the unknown functions.
By the implicit function theorem we just have to observe that the corresponding
Jacobian (

Qz Qy1 − 1
Qzy1 Qy1y1

)
=

(
Qz 0
Qzy1 Qy1y1

)
is regular. We certainly have Qz > 0 and Qy1y1 > 0 (if the system is non-affine).
Hence, the determinant of the Jacobian is non-zero; this implies that ρ(u) is analytic
in a complex neighborhood of u0 ∈ D0.

Finally, if u increases and gets close to the boundary of D0, then the spectral
radius r(Py(0, f(0,u),u)) is close to 1. This implies that the radius of convergence
ρ(u) has to be close to zero. �

5.4. Proof of our Theorem 4 on the possible Puiseux expansions. In order
to give a flavor of the proof of Theorem 4 in the general case, we first discuss a
simple example. Suppose that we are dealing with the system of equations de-

picted in Figure 2. The first step is to consider the reduced dependency graph G̃

which is obtained by the following procedure. The vertices of G̃ are the strongly
connected components of G, these are the maximal strongly connected subgraphs.
In our example, these components are {1}, {2}, {3, 4}, {5, 6}. Next, two different

components C1, C2 in G̃ are linked by a directed edge if there exist vertices v1 ∈ C1

and v2 ∈ C2 that are linked in G. The resulting graph G̃ (that is also depicted in
Figure 2) is acyclic and comprises precisely the connectivity relation in G. Further-

more, this directed acyclic graph (DAG) G̃ indicates how the system of equations
yj = Pj(z, y1, . . . , yd) can be solved. First, one considers all components in G (ver-

tices in G̃) with zero in-degree. (Since G̃ is acyclic such vertices have to exist.) In
our example, these are the components {3, 4} and {5, 6} which correspond to the
subsystems

y3 = P3(z, y3, y4)
y4 = P4(z, y3, y4)

and
y5 = P3(z, y5, y6)
y6 = P4(z, y5, y6) .

These subsystems can be independently solved and their solutions f3(z), f4(z) and
f5(z), f6(z), respectively, can be put into the remaining equations:

y1 = P1(z, y1, y2, f5(z))

y2 = P2(z, y2, f3(z), f5(z)).

This resulting system of equation for the unknown y1 = f1(z), y2 = f2(z) corre-
sponds to a dependency graph, where the corresponding vertices 3, 4 and 5, 6 are
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y1 = P1(z, y1, y2, y5)

y2 = P2(z, y2, y3, y5)

y3 = P3(z, y3, y4)

y4 = P4(z, y3, y4)

y5 = P5(z, y5, y6)

y6 = P6(z, y5, y6).

2 5 6

3 4

1

2 5,6

3,4

1

Figure 2. A positive system, its dependency graph G and its re-

duced dependency graph G̃. None of these graphs are here strongly
connected: e.g. the state 1 is a sink; it is thus a typical example of
a system not covered by the Drmota–Lalley–Woods theorem, but
covered by our new result implying dyadic critical exponents.

deleted. This is depicted in Figure 2. As above, we can solve all equations that
correspond to components in the reduced dependency graph with zero in-degree.
In our example, this is only the component {2}. With this solution f2(z) (where
we already use the previous solutions f3(z), f5(z)), we can finally obtain y1 = f1(z)
by solving the remaining equation

y1 = P1(z, y1, f2(z), f5(z)).

Of course, this procedure generalizes easily to any system of functional equations
of the form yj = Pj(z, y1, . . . , yd).

Actually, we will do a two-step procedure. First, for each component of the
dependency graph we solve the corresponding system, where the input functions are
considered as additional parameters u (as discussed in Section 5.3). For example,
for the component {2}, one should consider the solution f2(z; y3, y5).

According to the generalizations of Lemma 2 and Lemma 3 these functions have
either a polar singularity or a square-root singularity ρ(u) (that depends on the
parameters). In the second step we then insert step by step the solutions of the
subsystems and get the solution of the system. The main problem is to trace the
leading singularity. For example, in the first example in the proof of Proposition 6,
the square-root singularities coalesce and give rise to singularities of fourth and
eighth roots. Similarly, in the second example in the proof of Proposition 6, a polar
and a square-root singularity give rise to a singularity of the form 1/

√
1− 2z.

The main problem in the proof of Theorem 4 is to show that this insertion process
does not create other singularities than stated.

We fix some notation. Let G denote the dependency graph of the system and

G̃ the reduced dependency graph. Its vertices are the strongly connected compo-
nents C1, . . . CL of G. We can then reduce the dependency graph to its components
(see Figure 2). Let y1, . . . ,yL denote the system of vectors with coordinates corre-
sponding to the components C1, . . . CL and let u1, . . . ,uL denote the input vectors
related to these components. In the above example we have C1 = {1}, C2 = {2},
C3 = {3, 4}, C4 = {5, 6}, y1 = y1, y2 = y2, y3 = (y3, y4), y4 = (y5, y6), and
u1 = (y2, y5), u2 = (y3, y5), u3 = ∅, u4 = ∅.
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As mentioned above in the first step, for each strongly connected component C`
we solve the corresponding subsystem in the variables z and u` and obtain solutions
f(z,u`), 1 ≤ ` ≤ L. In our example these are the functions f1(z,u1) = f1(z; y2, y5),
f2(z,u2) = f2(z; y3, y5), f3(z,u3) = (f3(z), f4(z)), f4(z,u4) = (f5(z), f6(z)).

Finally, for each component C` we define the set D` of real vectors u` for which
the spectral radius of the Jacobian of the `-th subsystem evaluated at z = 0,
y` = f`(0,u` is smaller than 1.

Since the dependency graph G̃ is acyclic, there are components C`1 , . . . , C`m with
no input, that is, the corresponding functions f`1(z), . . . , f`m(z) can be computed
without any further information. By Lemmas 2 and 3, they either have a polar
singularity or a square-root singularity, that is, they are of the types that are
included in the statement of Theorem 4.

Now, we proceed inductively. We consider a strongly connected component C`
together with its function f`(z,u`) and assume that all the functions fj(z) that
correspond to the input coordinates u` are already known and that their leading
singularities are of the two types stated in Theorem 4. By the discussion following
Lemma 2 and 3 it follows that coordinate functions in f`(z,u`) have either a com-
mon polar singularity or a common square-root singularity ρ(u`). We distinguish
between three cases:

(1) First, let us assume that f`(z,u`) comes from an affine system and, thus, has
a polar singularity. Since all functions in f`(z,u`) have the same form we just
consider one of these functions and denote it by f(z,u`):

(15) f(z,u`) =
c(z,u`)

1− z/ρ(u`)
.

If ρ(u`) = ρ′ is constant then the only dependency from u` comes from the numera-
tor c(z,u`). Since this solution comes from an affine system, c(z,u`) is just a linear
combination of the polynomials of B(z,u`) with coefficient functions that depend
only on z (this follows from the expansion of (I−A(z))−1B(z,u`)). Furthermore,
since f(z,u`) is (in principle) a power series in z and u` with non-negative coef-
ficients the coefficients of this polynomial (if z is some positive real number) have
to be non-negative, too.

When we substitute u` by the functions fj(z) that correspond to u`, we obtain
the functions f(z) that correspond to the component C`. We have to consider the
following subcases:
(1.1) The dominating singularities ρj of the fj(z)’s are larger than ρ′:

In this case the resulting dominating singularity ρ` is ρ′ and we just get a
polar singularity for f(z).

(1.2) At least one of the dominating singularities ρj of the functions fj(z) is smaller
than ρ′:
Let ρ′′ denote the smallest of these singularities. If all of the functions fj(z)
with ρj = ρ′′ have a singular behavior of the form (10) then we just make
a local expansion of c(z,u`) at the corresponding points fj(ρ

′′) (for uj) and
observe again an expansion of this form. Note the largest appearing kj reap-
pears in the expansion of f(z).
Second, if at least one of the functions fj(z) with ρj = ρ′′ is of type (11) then
we use the property that c(z,u`) is just a polynomial in u` (with non-negative
coefficients). It is clear that the leading singular behavior comes from these
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functions; actually, they have to be multiplied and added. However, since
functions of the type (11) are closed under multiplication and addition, this
gives again a function of type (11). Note that the coefficient functions that
depend just on z have to be expanded at ρ′′, too, and do not disturb the
overall structure.

(1.3) The smallest dominating singularities ρj of the functions fj(z) equals ρ′:
Here we can argue similarly to the previous case. If all of the functions fj(z)
with ρj = ρ′ have a singular behavior of the form (10) then we perform a local

expansion in the numerator. Let k̃ be the largest kj that appears. Then we

interpret the polar singularity (1−z/ρ′)−1 as (1−z/ρ′)−m2−k̃

with m = 2k̃ and
obtain a singular expansion of the form (11). If at least one of the functions
fj(z) with ρj = ρ′ is of type (11) then we use the polynomial structure of the
numerator as above and obtain an expansion of the form (11). By combining
this with the factor (1 − z/ρ′)−1 we finally obtain an expansion of the form
(11) for f(z), too.

(2) Second, let us (again) assume that f`(z,u`) comes from an affine system (and
has a polar singularity) of the form (17); however, we now assume that ρ(u`) is
not constant but depends on some of the uj (not necessarily on all of them). In
this case we study first the behavior of the denominator when uj is replaced by
the corresponding functions fj(z). For the sake of simplicity we will work with
the difference ρ(uj) − z. Of course, this is equivalent to the discussion of the
denominator 1− z/ρ(uj), since the factor ρ(uj) can be also put to the numerator.
Finally, let J ′` denote the set of indices of functions uj for which the function ρ(u`)
really depends on.

Let ρ′ denote the smallest radius of convergence of the functions fj(z), j ∈ J ′`.
Then we consider the difference δ(z) = ρ((fj(z))j∈J′`)−z. We have to consider the
following subcases for the denominator:
(2.1) δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ

′′))j∈J′` ∈ D`:

First, we note that δ(z) has at most one positive zero since ρ((fj(z))j∈J′`) is

decreasing and z is increasing. Furthermore, the derivative satisfies δ′(ρ′′) > 0.
Consequently, we have a simple zero ρ′′ in the denominator.

(2.2) We have δ(ρ′) = 0 such that (fj(ρ
′))j∈J′` ∈ D`:

In this case all functions fj(z), j ∈ J ′`, with ρj = ρ′ have to be of type (10).
Consequently δ(z) behaves like

c(1− z/ρ′)2−k̃

+ . . . ,

where c > 0 and k̃ is the largest appearing kj (among those functions fj(z)
with ρj = ρ′).

(2.3) We have δ(ρ′) > 0 such that (fj(ρ
′))j∈J′` ∈ D`:

In this case all functions fj(z), j ∈ J ′`, with ρj = ρ′ have to be (again) of type
(10). Consequently δ(z) behaves like

c0 − c1(1− z/ρ′)2−k̃

+ . . . ,

where c0 > 0 and c1 > 0 and k̃ is the largest appearing kj (among those
functions fj(z) with ρj = ρ′). Hence, 1/δ(z) is of type (10).

Note that there are no other subcases. This follows from the fact that ρ(u`) → 0
if u` approaches the boundary of D`. This means that if we trace the function
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z → δ(z) for z > 0 then we either meet a singularity of δ(z) or we pass a zero of
δ(z) before (fj(z))j∈J′`) leaves D`.

Finally, we have to discuss the numerator (as in the above case). Note that there
might occur uj with j 6∈ J ′`, so that more functions fj(z) than in the denominator
are involved. Nevertheless, in all possible subcases we can combine the expansions
of the numerator and denominator and obtain for f(z) either type (10) or (11).

(3) Finally, let us assume that f`(z,u`) comes from a non-affine system and, thus,
has a square-root singularity. Again, since all functions in f`(z,u`) have the same
form we just consider one of these functions and denote it by f(z,u`):

(16) f(z,u`) = g(z,u`)− h(z,u`)

√
1− z

ρ(u`)
.

In this case ρ(u`) depends on all components of u` which makes the analysis slightly

more easy. As above, we will study the behavior of the square-root
√
ρ(u`)− z

instead of
√

1− z/ρ(u`) since the non-zero factor
√
ρ(u`) can be put to h(z,u`).

Let ρ′ denote the smallest radius of convergence of the functions fj(z) that
correspond to u`. Here we have to consider the following subcases:
(3.1) δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ

′′)) ∈ D`:
This means that ρ((fj(z))− z has a simple zero. Thus, we can represent this
function as

ρ((fj(z))− z = (ρ′′ − z)H(z),

where H(z) is non-zero and analytic at ρ′′. Consequently√
ρ((fj(z))− z =

√
ρ′′ − z

√
H(z)

and we observe that f(z) has a (simple) square-root singularity.
(3.2) We have δ(ρ′) = 0 such that (fj(ρ

′)) ∈ D`:
In this case all functions fj(z) with ρj = ρ′ have to be of type (10). Hence,
the square-root of δ(z) behaves as√

c(1− z/ρ′)2−k̃ + . . . =
√
c(1− z/ρ′)2−k̃−1

+ . . . ,

where k̃ equals the largest appearing kj plus 1. Thus, f(z) is of type (10).
(3.3) We have δ(ρ′) > 0 such that (fj(ρ

′))j∈J′` ∈ D`:

In this case all functions fj(z), with ρj = ρ′ have to be (again) of type (10).
Consequently the square-root of δ(z) behaves like√

c0 − c1(1− z/ρ′)2−k̃ + . . . =
√
c0

(
1− c1

2c0
(1− z/ρ′)2−k̃

+ . . .

)
,

where c0 > 0 and c1 > 0 and k̃ is the largest appearing kj (among those
functions fj(z) with ρj = ρ′). Hence, f(z) is of type (10).

This completes the induction proof of Theorem 4.

6. Periodicities

When we are interested in the asymptotic properties of the coefficients of R+-
algebraic equations, we need the structure of all singularities z on the radius of
convergence |z| = ρ. When they are several such singularities, some periodic be-
haviors can appear and justify the following definition:
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Definition 6 (strong (a)periodicity). We will call a function f(z) that is solution
of a positive system of algebraic equations strongly aperiodic if z = ρ is the only
singularity on the circle |z| = ρ.

Similarly, we call such a function f(z) strongly periodic with period p > 1 if
f(z) is not strongly aperiodic but can be represented as f(z) =

∑p
j=0 z

jfj(z
p) such

that all functions fj(z) are either polynomials or strongly aperiodic functions and
at least one of these functions is strongly aperiodic.

The main purpose of this section is to prove the following property.

Theorem 5. Every function f(z) that is solution of an analytically well defined
positive polynomial system of equations (see Definition 5 of Section 5) is either
strongly aperiodic or strongly periodic (with some period p > 1).

In particular this implies the following asymptotic relations for the coefficients
of solutions of a positive polynomial system.

Theorem 6. Suppose that f(z) is a solution of an analytically well defined positive
polynomial system of equations (see Definition 5 of Section 5). Then there exists
an integer p ≥ 1 such that for all j = 0, 1, . . . , p − 1 we either have fn = 0 for
almost all n ≥ n0,j with n ≡ j mod p or

fn ∼ Cjnαjρ−nj (n→∞, n ≡ j mod p),

where Cj > 0, ρj > 0, and αj is either of the form αj = −2−kj −1 for some integer
kj ≥ 1 or of the form αj = mj/2

kj − 1 for some integers kj ≥ 0 and mj ≥ 1.

Proof. If f(z) is strongly aperiodic, then the radius of convergence ρ is the only
singularity on the circle |z| = ρ and the kind of possible singularities is given by
Theorem 4. Furthermore, since f(z) is an algebraic function, it can be analytically
continued to a region of the form {z ∈ C : |z| < ρ + η} \ [ρ,∞) for some η > 0.
Consequently we can apply the transfer principle of Flajolet and Odlyzko [63] and
obtain the proposed asymptotic expansion for the coefficients.

In the periodic case we just apply this for fj(z), 0 ≤ j < p. �

The proof of Theorem 5 runs along similar lines as the proof of Theorem 4, that
is, we partition the dependency graph into strongly connected components and
solve the system step by step. The core of the proof is to check in every step that
each solution is strongly aperiodic or strongly periodic.

For this purpose we will have to split the solution functions into several parts.

Lemma 5. Suppose that y = P(z,y) is an analytically well defined positive poly-
nomial system of equations and y = f(z) = (f1(z), . . . , fd(z)) is the solution. Then

for every p ≥ 1 we can represent fk(z), 1 ≤ k ≤ d, as fk(z) =
∑p−1
j=0 z

jfk,j(z
p)

and the functions fk,j(z) − fk,j(0), 1 ≤ k ≤ d, 0 ≤ j < p, that are no polynomi-
als are again solutions of an analytically well defined positive polynomial system of
equations ỹ = P̃(z, ỹ)

Proof. Let y = P(z,y) be an analytically well defined positive system of polynomial

equations that has y1 = f(z) as one of its solutions. By substituting y =
∑p−1
j=0 z

jyj ,

and expanding the polynomials of P(z,y) it follows that we can represent it as

P(z,y) =

p−1∑
j=0

zjPj(z
p,y0, . . . ,yp−1).
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Hence, if we consider the p× d-dimensional system

yj = Pj(z,y0, . . . ,yp−1), 1 ≤ j < p ,

then with ỹ = (y0, . . . ,yp−1) and P̃ = (P0, . . . ,Pp−1) we obtain a proper positive

polynomial system ỹ = P̃(z, ỹ), where the functions fk,j(z) (that are defined by

fk(z) =
∑p−1
j=0 z

jfk,j(z
p)) are solutions. Of course, if fk,j(0) > 0 we can shift the

system to have solutions fk,j(z)− fk,j(0)) and we can remove polynomial solutions
from the system.

The final step is to show that the spectral radius of the Jacobian P̃ỹ (for z = 0
and yk,j = fk,j(0))) is again smaller than 1. Actually, it is an easy exercise to show
that the spectral radii are the same. More precisely if λ is a positive eigenvalue
of P̃ỹ with a positive eigenvector, then it is a positive eigenvalue of Py (with a
corresponding positive eigenvector), too. We illustrate the idea of the proof in a
slightly simplified situation. Suppose that we have the system y = P(z,y) and we
write y = y1 +y2 and P(z,y1 +y2) = P1(z,y1,y2)+P1(z,y1,y2) and consider the
extended system y1 = P1(z,y1,y2), y2 = P2(z,y1,y2). Let λ > 0 be an eigenvalue
of (

P1,y1
P1,y2

P2,y1
P2,y2

)
with a positive eigenvector x = (x1,x2), that is,(

P1,y1
P1,y2

P2,y1 P2,y2

)(
x1

x2

)
= λ

(
x1

x2

)
.

By multiplying from the left with (I, I) and by observing that Py = Py1
= P1,y1 +

P2,y1 = Py2 = P1,y2 + P2,y2 , we obtain

Py (x1 + x2) = λ (x1 + x2) .

It is clear now how we can adapt this example to the original situations. �

Lemma 6. Suppose that f(z) =
∑
n≥0 anz

n is a strongly aperiodic function with
non-negative coefficients an and radius of convergence ρ. Then for every p ≥ 1 we
can represent f(z) as

f(z) =

p−1∑
j=0

zjfj(z
p),

where the functions fj(z) =
∑
n≥0 aj+pnz

n, 0 ≤ j < m, are strongly aperiodic and
have the same kind of dominating singularity.

Proof. By Lemma 5, we already know that fj(z) is solution of an analytically
well defined positive polynomial system of equations. Furthermore, fj(z) can be
represented as

fj(z) =
1

p

p−1∑
`=0

e−2πij`/pf(z1/pe2πi`/p).

Since f(z) is strongly aperiodic, the radius of convergence ρ is the unique singularity
on the circle of convergence |z| = ρ. Hence, ρ1/p is the radius of convergence of fj(z)

and (again) the only singularity of fj(z) on the circle of convergence |z| = ρ1/p.
Since the coefficients (aj+pn)n≥0 have the same kind of asymptotic expansion as

(an)n≥0, it also follows that fj(z) ( for z ∼ ρ1/p) and f(z) (for z ∼ ρ) have the
same kind of singularity. �
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We start our considerations concerning the proof of Theorem 5 with a strongly
connected affine system. In order to make the statements (and proofs) simpler we
assume that we have already reduced the system to a single equation of the form
y = a(z)y + b(z), where a(z) and b(z) are rational functions with non-negative
coefficients that are regular for |z| < ρ+ ε for some ε > 0, where ρ > 0 is given by
a(ρ) = 1 and is the radius of convergence of f(z) = b(z)/(1− a(z)).

Lemma 7. Suppose that a(z) and b(z) are non-zero rational functions with non-
negative coefficients that are regular for |z| ≤ ρ, where ρ > 0 is given by a(ρ) = 1.
Furthermore, we assume that a′(z) 6= 0. Then f(z) is strongly aperiodic or strongly
periodic (with period p for some integer p > 1) such that all singularities on the
circle of convergence are poles of order 1.

We note that this lemma can be generalized to functions f(z) that are solutions
of not necessarily strongly connected affine systems, see [102, Theorem 10.1]. The
only difference is that the order of poles might be larger than 1 in the not strongly
connected case, however, the order of ρ is the maximum appearing order.

Proof. Let a(z) =
∑
n≥0 anz

n. Since an ≥ 0 and a(z) 6= 0 it is clear that there exists

a unique ρ > 0 with a(ρ) = 1 which is (by assumption) the radius of convergence
and also a polar singularity of f(z). Now, suppose that z = ρζ is also a singularity
of f(z), where |ζ| = 1. Then we certainly have a(ρζ) = 1. On the other hand, we
have

|a(ρζ)| =

∣∣∣∣∣∣
∑
n≥0

anρ
nζn

∣∣∣∣∣∣ ≤
∑
n≥0

anρ
n = 1.

which implies that all inequalities have to be equalities. In particular we have
apρ

pζp = apρ
p for some p > 0 for which ap > 0. Consequently ζm = 1. Thus, we

are certainly in the strongly aperiodic or strongly periodic case. �

The example

f(z) =
1

1− z
+

1

1− z2
=

2 + z

1− z2

shows that even a single equation of the form y = z2y+2+z can lead to a (strongly)
periodic case with period p = 2 > 1, where the behavior in both residue classes
is different and non-zero. However, if we use the method of Lemma 5 we can
reduce this equation to a system with only strongly aperiodic solutions. If we set
y = y0 + zy1, then we have

z2y + 2 + z = z2(y0 + zy1) + 2 + z = (2 + z2y0) + z(1 + z2y1).

Hence, if we consider the system {y0 = 2 + zy0, y1 = 1 + zy1}, then we have as
solutions f0(z) = 2/(1− z) and f1(z) = 1/(1− z) which are strongly aperiodic and
give back the original solutions f(z) as

f(z) = f0(z2) + zf1(z2).

It is interesting to observe that in non-affine and strongly connected systems
there is only one residue class modulo p, where the coefficients are non-zero. This
is proved in the next lemma. As in the affine case we assume that we have already
reduced the system of equations to a single equation; as in the affine case the right
hand side of the equation is not anymore a polynomial, but an algebraic function.
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Actually, the reduction procedure (compare also with the proof of Lemma 4) leads
to an equation that satisfies the following regularity conditions.

Lemma 8. Suppose that P (z, y) =
∑
k,` ak`z

ky` is an algebraic function with non-
negative coefficients such that ak` > 0 for some ` ≥ 2 and a01 < 1. Furthermore,
let ρ > 0 denote the radius of convergence of the solution f(z) of the equation
y = P (z, y) and suppose that there exist ε > 0 such that P (z, y) is regular for
|z| < ρ+ ε and |y| < f(ρ) + ε.

Let p be the largest positive integer for which there exists an integer r ≥ 0 such
that P (z, 0) can be represented as P (z, 0) = zrq(zp) for a proper function q(z) with
non-negative coefficients and that p divides k + r(`− 1) for all ak` > 0 with ` > 0.
If p = 1, then f(z) is strongly aperiodic and if p > 1, then f(z) is strongly periodic

with period p and can be represented as f(z) = zrf̃(zp), where f̃(z) is strongly
aperiodic.

Proof. Let ρ > 0 be the radius of convergence of f(z) and η = f(η) > 0. Then we
have P (ρ, η) = η and Py(ρ, η) = 1. If |z′| = ρ then we have |f(z′)| ≤ f(|z′|) = η and
consequently |Py(z′, f(z′))| ≤ Py(|z′|, |f(z′)|) ≤ Py(|z′|, f(|z′|)) = 1. Hence, if z′ is
a singularity, that is, we certainly have Py(z′, f(z′)) = 1, then all these inequalities
have to be equalities. From |f(z′)| = f(|z′|) it follows (similarly to the proof of

Lemma 7) that f(z) can be written as f(z) = zrf̃(zp) (for some integers r ≥ 0
and p ≥ 1) and z′ is of the form z′ = ρe2πj/p (for some integer j that is coprime
to m). Consequently from Py(z′, f(z′)) = 1 and f(z′) = ηe2πijr/p it follows that
p divides k + r(` − 1) for all pairs (k, `) for which ak` > 0 and ` > 0. Finally,
we also have f(z′) = P (z′, f(z′)) which implies that P (z, 0) can be represented as
P (z, 0) = zrq(zp) for a polynomial q.

Conversely we can search for the largest positive integer p for which there exists
an integer r ≥ 0 such that P (z, 0) can be represented as P (z, 0) = zrq(zp) and that
p divides k+ r(`− 1) for all pairs (k, `) with ak` > 0 and ` > 0. It is clear that the
power series of f(z) is divisible by zr. Furthermore, we can represent P as

P (z, y) = zrq(zp) + zr
∑

k≥0,`≥1

ak,`z
k+r(`−1)(y/zr)` = zrQ(zp, y/zr)

for some proper function Q. Hence, y = y/zr solves the equation y = Q(zp, y) and

can be represented as f(z) = f̃(zp). This implies that f(z) = zrf̃(zp). Finally, since
p was chosen to be the largest integer satisfying the above mentioned properties it
follows that f̃(z) is strongly aperiodic. Otherwise, we could iterate the procedure
and obtain a contradiction. �

In order to complete the proof of Theorem 5, we now follow the proof of Theo-
rem 4 and observe step by step that all functions are strongly aperiodic or strongly
periodic. For this purpose we will frequently use the set F of algebraic func-
tions f for which there exists p ≥ 1 and (algebraic) functions fj , 0 ≤ j < p,
with f(z) =

∑p
j=0 z

jfj(z
p) and the functions fj , 0 ≤ j < p, have positive radii

of convergence which are the only singularities on the circles of convergence and
all dominating singularities are of the types described in Theorem 4. This set of
functions has the following property.

Lemma 9. The set F is closed under taking sums and products.
Furthermore, suppose that f ∈ F has only one singularity ρ on the circle of

convergence and f(ρ) is finite. Let c(z, u) be a power series c(z, u) =
∑
n,k an,kz

nuk
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with non-negative coefficients an,k that is analytic at (ρ, f(ρ)) and there is some n
and some k > 0 with an,k > 0. Then the function g(z) = c(z, f(z)) is in F , too, and
has again the property that ρ is the only one singularity on the circle of convergence.

Proof. Suppose that f and g are in F and have radii of convergence ρ1 and ρ2 and
periods p1 and p2. Of course, we only have to consider the case ρ1 = ρ2.

If p1 = p2 = 1 it is immediate to see that f + g and f · g are in F .
If p1 > 1 or p2 > 1, then let p denote the smallest common multiple of p1 and

p2. With the help of Lemma 6 it follows that we can represent f and g as

f(z) =

p−1∑
j=0

zjfj(z
p) and g(z) =

p−1∑
j=0

zjgj(z
p),

where fj and gj have the property that there is only one singularity on the circle
of convergence. Hence, it follows similarly to the case p1 = p2 = 1 that f + g and
f · g are in F .

Finally, in order to handle the function g(z) = c(z, f(z)) we just have to observe
(by a local expansion) that g(z) has the same kind of singularity as f(z) (at z = ρ)
and that there are no other singularities for |z| ≤ ρ other than ρ. �

In order to prove Theorem 5, we show now inductively that all appearing solution
functions of an analytically well defined systems are contained in F .

Suppose that we are considering a strongly connected component C` and the
corresponding system y` = P`(z,y`,u`), where u` denotes the input vector that
corresponds to those components that have been already solved before (and for
which we can assume by induction that they are in F).

As in the proof of Theorem 4, we distinguish between three cases:

(1) First, let us assume that f`(z,u`) comes from an affine system of the form
y` = A`(z)y` + B`(z,u`), that is, the matrix I −A`(z) does not depend on u or
equivalently

(17) f(z,u`) =
c(z,u`)

1− z/ρ′
,

where c(z,u`) is a polynomial in u` with non-negative coefficients. Note that the
coefficient functions cj(z)/(1− z/ρ′) are in F .

When we substitute u` by the functions fj(z) that correspond to uj (and, thus,
are in F), then it follows from Lemma 9 that the resulting function is in F .

(2) Second, let us (again) assume that f`(z,u`) comes from an affine system y` =
A`(z,u`)y` + B`(z,u`), where A`(z,u`) depends on some of the uj . As above, let
J ′` denote the set of indices of functions uj on which A`(z,u`) really depends. Of
course, if we represent f(z,u`) as

f(z,u`) =
c(z,u`)

1− z/ρ(u`)
,

then J ′` is precisely the set of indices of functions uj on which the function ρ(u`)
depends. Note that c(z,u`) is a polynomial in the uj with j 6∈ J ′`. (In what
follows we will denote the coefficients of this polynomial by cr(z, (uj)j∈J′`). We

note that for all r the function cr(z, (uj)j∈J′`)/(1 − z/ρ(uj)j∈J′`) is a power series

with non-negative coefficients in z and (uj)j∈J′` .)
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Let ρ′ denote the smallest radius of convergence of the functions fj(z), j ∈ J ′`.
Then we consider the difference δ(z) = ρ((fj(z))j∈J′`)−z. We have to consider the
following cases:
(2.1) δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ

′′))j∈J′` ∈ D`:
Here, we have a polar singularity and with the help of Lemma 7 we deduce
that cr(z, (fj(z))j∈J′`)/(1−z/ρ((fj(z))j∈J′`)) is in F . Hence, it follows (again)
from Lemma 9 that the resulting function is in F .

(2.2) We have δ(ρ′) = 0 such that (fj(ρ
′))j∈J′` ∈ D`:

In this case, we first replace the system y` = A`(z,u`)y+B`(z,u`) by another
one. By assumption, we know that all functions fj(z) are strongly aperiodic
(with periods pj). We define p as the least common multiple of the periods pj
and by Lemma 6 we can represent them all as fj(z) =

∑p−1
i=0 z

ifj,i(z
p) with

strongly aperiodic functions fj,i(z). Formally, this means that we replace the

parameters uj by
∑p−1
i=0 z

iuj,i. Furthermore, by following the proof method of
Lemma 5 we split the (original d-dimensional) system into a p×d-dimensional
system, where the solutions fi(z) correspond to the original one by f(z) =∑p−1
i=0 z

ifi(z
p). Let us denote this new system by ỹ` = Ã`(z, ũ`)ỹ`+B̃`(z, ũ`).

It is easy to check that this new system is either strongly connected or the
corresponding dependency graph decomposes into several strongly connected
components without any link between these components. For the sake of
simplicity, we assume that we have only one component (in the other case we
have to deal with each component separately, however, this does not produce
any difficulty).
The advantage of this construction is that all functions fj,i(z) (that have to
be substituted for uj,i) are strongly aperiodic which implies that |fj,i(z)| <
fj,i(|z|) if z is not a positive real number.
It might occur that the new system (or one of the new systems) falls into the
cases (2.1) or (2.3). In these cases, we proceed as explained there. Thus, we
can assume that we are again in case (2.2). We note that the function ρ̃(ũ`)

is determined by the property that the positive matrix Ã`(z, ũ`) has spectral
radius 1. Since this matrix is irreducible, it follows that the spectral radius
is strictly smaller than 1 if at least one of the entries decreases in modulus.
Hence, if we substitute the uj,i by fj,i(z), there is certainly no singularity
if |z| = ρ̃′ but z 6= ρ̃′. Consequently, the only singularity of the resulting
function is on the circle of convergence z = ρ̃′ and we know already from the
proof of Theorem 4 which kind of singularity will appear.
Summing up, it follows that the solution of the expanded system is strongly
aperiodic and, thus, the solution of the original system is either strongly
aperiodic or strongly periodic.

(2.3) We have δ(ρ′) > 0 such that (fj(ρ
′))j∈J′` ∈ D`:

We first apply the same transformation of the system as in case (2.2) and are
led to one (or several) strongly dependent new system. Of course, some of
them might be of types (2.1) or (2.2). But then we just apply the procedure
there; however, it is important to note that it is not necessary to apply the
transformation again, since we have already reached the goal that all functions
fj,i(z) are strongly aperiodic.
In order to simplify the notation, we stick with the original notation of the
system y` = A`(z,u`)y` + B`(z,u`).
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In this case, we can represent the function f(z) that results after substitution
as a polynomial in fj(z) with j 6∈ J ′ with coefficient functions that are ana-
lytic in z and (fj(z))j∈J′ at z = ρ′ and (fj(ρ

′))j∈J′ . Of course all coefficients
in the power series expansions are non-negative. By extending the last part
of Lemma 9 to several (strongly aperiodic) functions, it follows that the co-
efficients functions are in F which implies (via Lemma 9) that the resulting
function is in F .

(3) Finally, let us assume that f`(z,u`) comes from a non-affine system and, thus,
has a square-root singularity of the form (16). In this case ρ(u`) depends on all
components of u`. As above, we set δ(z) = ρ(u`)−z and let ρ′ denote the smallest
radius of convergence of the functions fj(z) that correspond to u`.
(3.1) δ(ρ′′) = 0 for some ρ′′ < ρ′ such that (fj(ρ

′′)) ∈ D`:
Here, we are precisely in the situation of Lemma 8. From the very beginning,
we can substitute uj by the functions fj(z) and thus obtain either a strongly
aperiodic function or a strongly periodic function, where only one residue class
modulo m appears.

(3.2) We have δ(ρ′) = 0 such that (fj(ρ
′)) ∈ D`:

As in case (2.2), we first replace the original system y` = P`(z,y`,u`) by

a new one ỹ = P̃`(z, ỹ`, ũ`) which might decompose into several strongly
connected but non-affine systems. As above, we assume that it is just one
system and that it is again of type (3.2). Here, the function ρ̃(ũ`) is given

by the property that the Jacobian P̃ỹ(z, ỹ`, ũ`) has spectral radius 1. As in
the proof of part (2.2), the spectral radius is smaller than 1 if at least one
entry of this matrix decreases in modulus. This again implies that there are
no singularities on the cycle of convergence |z| = ρ′ other than ρ′. And the
kind of singularity that appears for z = ρ′ is already known from the proof of
Theorem 4.
Summing up we again get that the solution of the expanded system is strongly
aperiodic and, thus, the solution of the original system is either strongly
aperiodic of strongly periodic.

(3.3) We have δ(ρ′) > 0 such that (fj(ρ
′))j∈J′` ∈ D`:

We proceed similarly to the case (2.3). We first expand the system as in case
(3.2) and assume (without loss of generality) that the new system is again of
type (3.3) (and for the sake of simplicity we stick with the original notation).
In this case the spectral radius of P`,y`

(z,y`,u`) is smaller than 1 for u` =
(fj(ρ

′))j∈J′` . Thus, it follows that we can invert the system of equations

y` = P`(z,y`,u`) locally to y` = Q(z,u`) which implies that the resulting
function f(z) is singular at z = ρ′ (and we know from the proof of Theorem 4
that the kind of singularities of yj(z) are inherited). Furthermore, it follows
that there are no other singularities on the circle of convergence |z| = ρ′ other
than ρ′. This follows from the fact that the spectral radius of the Jacobian
stays smaller than one and that the functions fj(z) are not singular for |z| = ρ′,
z 6= ρ′.

This completes the proof of Theorem 5.

7. Possible radius of convergence of Q+-algebraic functions

In this section we briefly discuss the radius of convergence ρ that can appear
in a positive algebraic system with rational coefficients. Of course, ρ has to be a
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positive algebraic number; however, it is not immediate whether all positive alge-
braic numbers actually appear. Let us begin with an assertion for more restricted
systems of equations:

Conjecture 1 (Radius of N-rational functions). All positive algebraic numbers
≤ 1 appear as a radius of convergence of solutions of a positive affine system of
equations with integer coefficients.

Note that the Berstel–Soittola theorem [108] implies that dominant roots have to
differ by root of unity factors (this is why e.g. (z+5z2)/(1 +z−5z2−125z3) is not
N-rational). It is not trivial to see in which way this theorem affects Conjecture 1,
but this conjecture (which we do not believe to be true, e.g. it is a challenge to find
an N-rat function with ρ = (1 + 21/3)/3) implies the following weaker conjecture:

Conjecture 2 (Radius of N-algebraic functions). All positive algebraic numbers
≤ 1 appear as a radius of convergence of solutions of a positive algebraic system of
equations with integer coefficients.

If F (z) is N-algebraic, then F (az) (for any rational a) is Q+-algebraic, so it is
clear that Conjecture 2 implies the following conjecture:

Conjecture 3 (Radius of Q+-algebraic functions). All positive algebraic numbers
appear as a radius of convergence of solutions of a positive algebraic system of
equations with rational coefficients.

For each of these conjectures, it is also natural to ask what are the properties of
the set of corresponding radii of convergence, e.g. to what extent are they closed
under sum or product? In what follows we present some properties of the set of
these algebraic numbers which led us to the above conjecture.

Theorem 7. The set R of radii of convergence of Q+-algebraic functions has the
following properties:

(1) All positive roots of equations of the form p(z) = 1, where p(z) is a poly-
nomial with non-negative rational coefficients, are in R, in particular all
rational numbers and all roots of rational numbers.

(2) If ρ1 ∈ R and ρ2 is a radius of convergence that appear in positive rational
systems, then ρ1ρ2 ∈ R.

(3) All positive quadratic irrational numbers are in R.

Proof. (i) Suppose that p(z) is a polynomial with non-negative rational coefficients
and z0 a positive solution of the equation p(z) = 1. Then it is certainly the radius
of convergence of y = f(z) that satisfies the equation y = z+ p(z)y. Since p(0) < 1
this equation is well posed. By setting p(z) = z/ρ or p(z) = zm/α, it follows that
rational numbers ρ and roots ρ = α1/m are in R.

(ii) The fact that the Hadamard product of an algebraic function with a rational
function is algebraic [74] has a non-commutative version [104]; this implies that
the Hadamard product of an N-algebraic function with an N-rational function is
N-algebraic. The same holds for Q+ instead of N.

We first assume that we are in the aperiodic case. Then the asymptotic expan-
sion for the coefficients an and bn of the Q-algebraic function and the Q-rational
function are of the form an ∼ Anαρ−n1 and bn ∼ Bnβρ−n2 so that we can directly
consider the Hadamard product anbn ∼ ABnα+β(ρ1ρ2)−n and observe that the
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radius of convergence ρ of the Hadamard product is just the product ρ1ρ2. Since
the Hadamard product is Q+-algebraic it follows that ρ1ρ2 ∈ R.

Now, suppose that a(z) is Q+-algebraic but not aperiodic. Then we can represent

a(z) as a(z) =
∑p−1
j=0 z

jaj(z
p), where the functions aj(z) are Q+-algebraic, too, and

there is at least one function, say aj0(zp), that has the same radius of convergence
as a(z). Hence, if we consider the function

ã(z) =
(
1 + z/ρ+ (z/ρ)2 + · · · (z/ρ)p−1

)
aj0(zp) ,

then ã(z) is again Q+-algebraic and the coefficients ãn have an asymptotic ex-

pansion of the form ãn ∼ Ãnαρ−n1 (for all n and not only in a residue class). A
similar procedure works for an aperiodic Q+-rational function and we can proceed
as above.

(iii) Finally, we suppose that ρ = α + β
√
m is a positive quadratic irrational

number (where α and β are rational numbers and m is a square-free positive inte-
ger). We have to distinguish several cases. First, suppose that α < 0 and β > 0.
Since ρ = α+ β

√
m > 0, this implies α2 − β2m < 0. If we set

p(z) =
2α

α2 − β2m
z +

1

β2m− α2
z2 ,

then p(z) has positive coefficients and we also have p(α+β
√
m) = 0. Consequently,

ρ is in R. Moreover we certainly have cn ∼ dρn for the coefficients of the solution
of y = z + p(z)y. Next, suppose that α > 0 and β < 0. In this case we have
α2 − β2m > 0 so that ρ is root of the polynomial z2 − 2αz + (α2 − β2m) = 0
which cannot be written in an equivalent form p(z) = 1, where p(z) has non-
negative coefficients. Here, we consider the (rational) system of equations y1 =
z + (az + y2)y1, y2 = bz + czy2, where y1 = f1(z) has the solution

f1(z) =
z

1− az − bz
1−cz

=
z(1− cz)

1− (a+ b+ c)z + acz2
.

Consequently, if there are non-negative rational numbers a, b, c with a + b + c =
2α/(α2 − β2m) and ac = 1/(α2 − β2m), then we are done. For a moment set

a = c = 1/
√
α2 − β2m. Then the trivial inequality α >

√
α2 − β2m implies

2α

α2 − β2m
>

2√
α2 − β2m

Hence, by setting

b =
2α

α2 − β2m
− 2√

α2 − β2m

we obtain a + b + c = 2α/(α2 − β2m) and ac = 1/(α2 − β2m) with non-negative
a, b, c. The only problem is that a, b, c are not rational (in general). However, we

can choose a to be a proper rational approximation of 1/
√
α2 − β2m and then set

c = 1/(a(α2−β2m)) and b = 2α/(α2−β2m)− a− c. By continuity, we can choose
this rational approximation in a way that a, b, c are all positive. Consequently, ρ is
in R. Moreover, we again have cn ∼ dρn for the coefficients of the solution of f1(z).

If α > 0 and β > 0, then we write ρ = α + β
√
m in the form α + β

√
m =

1
α2−β2m (α− β

√
m) if α2−β2m > 0 and in the form α+β

√
m = 1

β2m−α2 (−α+ β
√
m)

if α2 − β2m < 0. In both cases, ρ equals the product ρ1ρ2, where ρ1 and ρ2 are
radii of convergence of (proper) positive rational systems. Consequently, ρ is in R,
too. �
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8. Limit laws

8.1. The limit law version of the Drmota–Lalley–Woods theorem. In sev-
eral applications in combinatorics, we are not only interested in a univariate sit-
uation where z is the counting variable, but we are also interested in a second
parameter that we count with the help of another variable (say u). Hence, we
are led to consider systems of equations of the form y = P(z,y, u). Of course,
if we set u = 1, we come back to the original counting problem. The next theo-
rem (from [53]) shows that the limiting distribution of the additional parameter is
always Gaussian if the system is strongly connected:

Theorem 8 (Drmota–Lalley–Woods, limiting distribution version: Gaussian limit
law for strongly connected systems). Suppose that y = P(z,y, u) is a strongly
connected and analytically well defined entire or polynomial system of equations
that depends on u and has a solution f(z, u) that exists in a neighborhood of u = 1.
Furthermore let h(z, u) be given by

h(z, u) =
∑
n≥0

hn(u)zn = H(z, f(z, u), u),

where H(z, y, u) is entire or a polynomial function with non-negative coefficients
that depends on y and suppose that hn(u) 6= 0 for all n ≥ n0 (for some n0 ≥ 0).

Let Xn be a random variable which distribution is defined by

E[uXn ] =
hn(u)

hn(1)
.

Then Xn has a Gaussian limiting distribution. More precisely, we have E[Xn] =
µn+O(1) and Var[Xn] = σ2n+O(1) for constants µ > 0 and σ2 ≥ 0 and

1√
n

(Xn − E[Xn])→ N(0, σ2).

8.2. More Gaussian examples, beyond the Drmota–Lalley–Woods case.
If the system of equations is not strongly connected, then we can still define a
random variable Xn, however, it is not necessarily Gaussian as we will see in the
next section. Nevertheless, it is possible to state sufficient conditions where a
Gaussian limiting distribution is present.

Theorem 9 (Gaussian limit law for non-strongly connected systems). Let y =
P(z,y, u) be a system of equations as in Theorem 8 with the only difference that
it is not strongly connected. Furthermore, we assume that the function h(z, 1) is
strongly aperiodic. For every strongly connected component C` of the dependency
graphs G, let ρ` denote the radius of convergence of those functions fj(z, 1) that
correspond to C`. If all ρ` are different, then Xn (defined as in Theorem 8) has a
Gaussian limiting distribution.

Proof. We start by setting u = 1 and check the proof of Theorem 4. If all the ρ` are
different, then the only cases that can appear are case (2.1) and case (3.1). In all
other cases, the new radius of convergence is inherited from another function fj(z).
Actually, the same situation holds if u varies in a sufficiently small neighborhood
of 1. By the implicit function theorem, it follows that there exists ρ′′(u) with
ρ(fj(ρ

′′(u))) = ρ′′(u), that is, we get the same singularity structure with a small
perturbation because of u. This is precisely the situation that is needed for the
proof of the central limit theorem for Xn (see [65]). �
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8.3. Non-Gaussian limit laws. This section illustrates the wide variety of distri-
butions followed by a parameter in a non-strongly connected grammar. What is a
“limiting distribution”? There is no universal answer to this, but roughly speaking,
one says that a random variable Xn has a limiting distribution (or a limit law) if
the curve (k,Prob(Xn = k)) (possibly renormalized) has a limit when n goes to
infinity. This leads to continuous distributions as well as discrete distributions, and
this is even leading to less considered limiting distributions, like multivalued func-
tions. There is thus a full zoo of limiting distributions, and the following theorem
shows that they even occur for simple models:

Theorem 10 (Diversity of possible limit laws for context-free systems). Let Xn be
the number of occurrences of any given pattern (this pattern could be a given letter!)
in a word of length n generated by a grammar (or even by a simpler model of a
Markov chain, with an alphabet of 2 letters, each letter having an integer weight).
Then Xn can follow “any limit law”, in the sense that there exist some patterns
and some grammars for which the limit curve (for large n) of (k/n,Prob(Xn = k))
can, be arbitrarily close to any càdlàg multi-valued curve in [0, 1]2.

Proof. This is a consequence of the fact that one can get any piecewise-affine func-
tion, as proved in [8], so by the Weierstrass theorem one gets any continuous (or
càdlàg) distribution. Due to the (possible) periodic behavior of the coefficients of
the distribution functions, there is also a (possible) periodic behavior of the limit-
ing distribution, that is, for every fixed residue class modm we get different laws.
Putting these finitely many limit laws into one figure leads to a multi-valued curve,
as illustrated in Figure 3. �

Figure 3. This figure, taken from [8], gives the distribution of the
letter ”b” in words of length n = 8200 in a language generated by
an ad-hoc regular expression of a few lines. It gives a (discrete)
probability distribution which looks like the word “NONGAUS-
SIAN”. The key point of this example is that it is designed such
that if one rescales the plot by dividing its width by n, then the
distribution is converging towards a curve, which still looks like
“NONGAUSSIAN”. Note that this curve is, at the limit, a curve
of a multivalued functional (as can be seen in the O, G, A, S, I
letters), however we achieve it for finite length words via a single
valued function, by interlacing two sequences mod 2. This figure
illustrates the huge diversity of possible limit laws, even for the
distribution of a single letter. It is possible to play the same game
starting from continuous distribution instead of discrete distribu-
tion.
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9. Beyond the algebraic case: positive systems of entire functions

In this section, we will see that most parts of the analysis of positive polynomial
systems of equations also work for positive entire systems; however we cannot ex-
pect the same universal algebraic behavior as for pure polynomial systems, as the
following example shows.

Example 1. The system of equations

(18)


y1 = z(ey2 + y1)

y2 = z(1 + 2y2y3)

y3 = z(1 + y2
3)

has the following explicit solutions:

(19)


f1(z) = z

1−z exp
(

z√
1−4z2

)
f2(z) = z√

1−4z2

f3(z) = 1−
√

1−4z2

2z .

So, while the subsystem for y2, y3 is just polynomial (and they behave as stated in
Theorem 4), the solution for y1 has clearly a non-algebraic singularity.

As we have seen in the proof of Theorem 4, the main troubles come from the
interactions with the affine case, which has to be treated with care. The good news
is that if we just require that our system has no affine subsystem, then we can
obtain a universal algebraic behavior with a singularity of the form (10):

Theorem 11 (Dyadic exponents for entire systems). Let y = P(z,y) be an an-
alytically well defined positive system of functional equations, where P consists of
entire functions and we have

(20)
∂2Pj
∂y2

j

6= 0, 1 ≤ j ≤ d.

Then the solutions fj(z) have positive and finite radii of convergence ρj and a
Puiseux critical exponent of the form 2−kj with integers kj ≥ 1, that is, the singular
behavior of fj(z) around ρj is of type

(21) fj(z) = fj(ρj) + cj(1− z/ρj)2−kj
+ c′j(1− z/ρj)2·2−kj

+ · · · ,
where cj 6= 0 and where kj is a positive integer.

Remark: Instead of assuming condition (20), it is also sufficient that the subsys-
tems y` = P`(z,y`,u`) (corresponding to the strongly connected component C`)
are not affine in y`. Indeed, both assumptions are sufficient to obtain a singular
expansion of the form (21).

Proof. First of all, Lemma 3 and 4 hold for entire systems of equations. Further-
more, the condition (20) ensures that no subsystem is affine. Hence, by checking
the proof of Theorem 4, only singularities of type (21) occur. Actually, we only have
to go through case (3), and in all these cases we obtain solutions of type (21). �

It is possible to cover some cases where affine subsystems occur. For example,
the following theorem ensures that non-algebraic singularities (like in Example 1)
do not occur:
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Theorem 12. Let y = P(z,y) be an analytically well defined positive system of
functional equations, where P consists of entire functions. Furthermore we assume

that for each j = 1, . . . , d we either have
∂2Pj

∂y2j
6= 0 or if Pj is affine in yj, then we

have

(22)
∂2Pj
∂yj∂yi

6= 0 for all i 6= j with
∂Pj
∂yi
6= 0.

Then the solutions fj(z) have positive and finite radii of convergence ρj. Further-
more, the singular behavior of fj(z) around ρj and a Puiseux critical exponent of
the form 2−kj with integers kj ≥ 1 or of the form −2−kj with integers kj ≥ 0, that
is the singular behavior of fj(z) around ρj is of type

(23) fj(z) = fj(ρj) + cj(1− z/ρj)2−kj
+ c′j(1− z/ρj)2·2−kj

+ · · · ,
where cj 6= 0 and where kj is a positive integer, or of type

(24) fj(z) =
dj

(1− z/ρj)2−kj
+ d′j + d′′j (1− z/ρj)2−kj

+ · · · ,

where dj 6= 0 and kj are non-negative integers.

Instead of assuming condition (22) it is also sufficient that just the affine subsys-
tems y` = P`(z,y`,u`) = A`(z,u`)y` + B`(z,u`) (corresponding to the strongly
connected component C`) have the property that A`(z,u`) depends on all compo-
nents of u`.

Proof. By checking the proof of Theorem 4, we observe that we only have to consider
the cases (2) and (3). More precisely in case (2), δ(z) depends on all yj (that
correspond to uj). If we are in case (3), then we obtain a singularity of type (23)
as in the proof of Theorem 11.

Let us discuss case (2) in more details:

• For the case (2.1) we obtain a polar singularity ρ′′ that is smaller than all
singularities of the functions fj(z). Hence we obtain a singular expansion
of type (24) (with k = 0).

• For the case (2.2) we obtain a singularity of type (24), where the exponent
2−k is inherited from the functions fj . Note that the numerator is of type
(23) since the denominator depends on all possible functions fj and, thus,
no new singularity can appear in the numerator.

• Finally for the case (2.3) we obtain a singularity of type (23) that is inher-
ited from the functions fj(z) (of smallest radius of convergence).

�

This concludes our investigations of the numerous variants of system of equations
leading to an algebraic behavior.
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10. Conclusions

Now that we have a better picture of the behavior of positive systems of equations
and of the asymptotics of the coefficients of the corresponding solutions, several
extensions are possible and we plan to say more in future works on the following
questions:

• Algorithmic aspects: In order to automate finding the asymptotics, one
has to follow the correct branch of the algebraic equations; this is doable
by a disjunction of cases following the proof of our main theorem, cou-
pled with an inspection of the associated spectral radii. This leads to a
more ”algebraic” approach suitable for computer algebra, bypassing some
numerical methods like e.g. the Flajolet–Salvy ACA (analytic continua-
tion of algebraic) algorithm [65]. With respect to the Pisot problem (i.e.,
deciding if one, or an infinite number of fn are zeroes), finding the best
equivalent for N-algebraic functions of the Skolem–Mahler–Lech theorem
for N-rational functions is also a nice question [2, 19]. It is also of interest
to get algorithms to decide if fn ≥ 0 for all n [75]. The binomial formula
of Section 3 leads to many identities; it is not always easy to predict when
the nested sums can be simplified. This has some links with diagonals of
rational generating functions.
• Decidability of N-algebraicity: The converse by Soittola [108, 23] of

a theorem of Berstel [21] shows that it is possible to decide if a rational
function is in fact an N-rational function. There is an effective version of
this decidability result [16]; Koutschan [81] completed the details in order
to get the first implementation of the algorithm. Giving an algorithm to
decide in a constructive way if a function is N-algebraic would be nice.
• Extension to differential systems: It is possible to follow a similar

approach for linear systems of differential equations, where there is however
a broader type of behaviors.
• Extension to infinite systems: If one considers systems having an infi-

nite (countable) number of unknowns yi(z), it is proved in [91] that strongly
connected systems also lead to a square-root behavior. It is proved in [55]
that the limit law is Gaussian (as soon as a Jacobian operator associated
to the system is compact). When the conditions of strong connectivity or
of compactness are dropped, many different behaviors may appear, but it
is possible to describe interesting subclasses having a regular behavior.
• Extension to attributed grammars: Attribute grammars were intro-

duced by Knuth. Many interesting parameters (like internal path length in
trees or area below lattice paths [12, 58, 99]) are captured by such gram-
mars. They lead to statistics with a mean which is no longer linear. For
a large class of strongly connected positive systems (with a Jacobian con-
dition), it leads to the Airy function, and it is expected that it is also the
case for a class of functional equations allowing also negative coefficients.
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The genesis of this article is due to Philippe Flajolet. The topic of the
paper is in fact very much linked to Philippe Flajolet. The story goes as follows.
In the early 90’s, Philippe tried to organize at a more international level the com-
munities of people interested in mathematical tools for the average-case analysis of
algorithms. This lead to a series of meetings, which soon became the annual inter-
national conference ”AofA”. The first meeting was organized at Dagstuhl in 1993
by Philippe, Helmut Prodinger, and Rainer Kemp; it had many fascinating talks
(including e.g. Knuth’s presentation of his ”giant paper on the giant component”,
with Janson,  Luczak, and Pittel), and, as it should be with Philippe, many discus-
sions around a glass of beer. During one of these discussions, in the next meeting
in 1995, Philippe suggested to Michael Drmota the topic of positive and strongly
connected systems of equations, and convinced him to work more also on limit
laws. This lead to the article [53], which together with [52] and [56] were the be-
ginning of Drmota’s life in analytic combinatorics. Philippe kindly internationally
promoted the main theorem from [53] by calling it Drmota–Lalley–Woods theorem,
since similar results were obtained independently by Lalley [83] and Woods [121].

In his PhD thesis [6] under the supervision of Philippe Flajolet, Cyril Banderier
considered some enumerative and asymptotics properties of lattice paths and pla-
nar maps. The corresponding articles [9, 10, 11] were the beginning of Banderier’s
life in analytic combinatorics. Many families of maps and lattice paths have al-
gebraic generating functions. It was then natural to ask if they can be generated
by a context-free grammar, and to what kind of asymptotics context-free gram-
mars can lead, beyond the Drmota–Lalley–Woods theorem. Encouraged by Mireille
Bousquet-Mélou and Gilles Schaeffer, who also tried to tackle this question [32], he
further investigated this problem with his student Hanane Tafat Bouzid, who gave
in the chapter 3 of her PhD thesis [112] a constructive list of critical exponents for
N-algebraic functions.

Philippe is also partly responsible for the present general result (dyadic exponents
for Puiseux expansion around the radius of convergence). When Michael Drmota
presented an incomplete pre-version of this general result in the ANR Boole meeting
in May 2010 in Paris, it was again Philippe who asked for an unconditional result for
positive polynomial systems. Drmota and Banderier then realized that they were
both working on the same problem, so they joined forces for the present article,
which is thus naturally dedicated to the memory of Philippe!
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