
Smoothed Analysis of Three Combinatorial ProblemsCyril Banderier Kurt Mehlhorn Rene Beier�April 3, 2003AbstratSmoothed analysis ombines elements over worst-ase and average ase analysis. Foran instane x the smoothed omplexity is the average omplexity of an instane obtainedfrom x by a perturbation. The smoothed omplexity of a problem is the worst smoothedomplexity of any instane. Spielman and Teng introdued this notion for ontinuousproblems. We apply the onept to ombinatorial problems and study the smoothedomplexity of three lassial disrete problems: quiksort, left-to-right maxima ounting,and shortest paths. This opens a vast �eld of nie analyses (using for example generatingfuntions in the disrete ase) whih should lead to a better understanding of omplexitylandsapes of algorithms.1 IntrodutionFor most algorithms, there is a disrepany between the worst ase and the average ase be-havior. Both quantities onvey very useful informations and lead to di�erent type of analysis.For ombinatorial algorithms, in the Art of Computer Programming [14℄ Knuth exhaus-tively illustrated how disrete mathematis and analysis niely meets omputer siene togive inredibly aurate informations, for example leading to full asymptoti expansions forthe omplexity of some algorithms. In this artile, we onentrate on a new notion, alled\smoothed analysis" (reently introdued by Spielman and Teng [20℄) whih is intermediatebetween average ase analysis and worst ase analysis and whih (we will see) allows to followthe nie wedding initiated by Knuth. The smoothed omplexity of an algorithm ismaxx Ey2U�(x) C(y) ;where x ranges over all inputs, y is a random instane in a neighborhood of x (whose sizedepends on the smoothing parameter �), E denotes expetation, and C(y) is the ost of thealgorithm on input y. In other words, worst-ase omplexity is smoothed by onsidering theexpeted running time in a neighborhood of an instane instead of the running time at theinstane. If U�(x) is the entire input spae, smoothed analysis beomes average ase analysis(whereas it beomes worst ase analysis if U�(x) is redued to x). Smoothed analysis givesinformation whether instane spae ontains dense regions of hard instanes, see Figure 1.The smoothed omplexity of an algorithm is low if worst-ase instanes are \isolated events"in the instane spae.�Max-Plank-Institut f�ur Informatik, Stuhlsatzenhausweg 85, 66123 Saarbr�uken (Germany) banderie,rbeier,mehlhorn�mpi-sb.mpg.de,http://www.mpi-sb.mpg.de/units/ag1/people.html; the three authorsare supported by the Future and Emerging Tehnologies programme of the EU under ontrat number IST-1999-14186 (ALCOM-FT) 1



Figure 1: Instane spae is indiated by the lines at the bottom of the �gures and theneighborhood of an instane is simply an interval around the instane. In the situation onthe left, the smoothed omplexity will be equal to the worst ase omplexity (for all smallenough �), and in the situation on the right, the smoothed omplexity dereases sharply as afuntion of �.Spielman and Teng [20℄ showed that the smoothed omplexity of the simplex algorithm(with the shadow-vertex pivot rule) for linear programming is polynomial. Linear program-ming is a ontinuous problem. The input is a sequene of real numbers1 (a ost vetor, aonstraint matrix, a right-hand side). The smoothing operation adds Gaussian noise with pa-rameter � to eah number in the input. The expeted running time of the simplex algorithmfor suh a perturbed instane is polynomial in 1=� and the number of input variables. Theother papers on smoothed analysis [2, 7℄ also disuss ontinuous problems.We apply the onept of smoothed analysis to problems de�ned on sequenes and naturalnumbers. In both ases we �rst de�ne a natural model of perturbation and then analyze somealgorithms.Partial Permutations: Our �rst model applies to problems de�ned on sequenes. It isparameterized by a real parameter p with 0 � p � 1 and is de�ned as follows. Considera sequene s1; s2; : : : ; sn. Selet eah element (independently) with probability p and let mbe the number of seleted elements (in average m = pn). Take one of the m! permutationsof m elements (uniformly at random) and let it at on the seleted elements. E.g., forp = 1=2 and n = 7, one might selet m = 3 elements (namely, s2, s4, and s7) out ofan input sequene (s1; s2; s3; s4; s5; s6; s7). Applying the permutation (312) to the seletedelements yields (s1; s7; s3; s2; s5; s6; s4). The probability to obtain this sequene in this wayis p3(1� p)4=3!. We will analyze quiksort (Setion 2) and maxima �nding (Setion 3) underthe partial permutations model.Partial Bit Randomization: Our seond model applies to problems involving naturalnumbers. It is parameterized by an integer k (k � 0). For eah integer, the last k bits arerandomly modi�ed. This model is a disrete analogue of the model onsidered by Spielmanand Teng. However, in our model the expetation of the resulting distribution is not neessar-ily equal to the unperturbed value. We analyze the running time of a shortest path algorithmunder partial bit randomization (Setion 4).2 QuiksortWe analyze quiksort under partial permutations. We assume that quiksort takes the �rstelement of the list as the pivot and splits the input list with respet to the pivot into two1By suitable saling we may assume that all numbers are in [�1;+1℄.2



parts: the elements smaller than the pivot and the elements larger than the pivot. We assumethat the order of elements in the resulting two sublist is unhanged.Theorem 1 (Quiksort under Limited Randomness) The expeted running time (i.e.,number of omparisons) of quiksort on a partial permutation of n elements is O((n=p) lnn).Proof: We utilize a proof, based on randomized inremental onstrutions [5℄, for the fullyrandomized version of quiksort. We will only ount the number of omparisons C. Assumethat we have a permutation of the numbers 1 to n. Let Xij be the indiator variable whih is1 i� i and j are ompared in a run of quiksort with i being the pivot. Clearly C =Pi;jXij .Fat 1 Xij = 1 i� i ours �rst among the elements with value between i and j.Thus for a random permutation prob(Xij = 1) = 1=(j � i + 1) and hene the expetednumber of omparisons is Xi 6=j 1j � i+ 1 � 2n X2�k�n 1k � 2n lnn :Next we estimate prob(Xij = 1) for partial permutations. Let s1, . . . , sn be our initialpermutation and let L = (8=p) lnn. If i is among s1, . . . , sL, or jj � ij � L, we estimateprob(Xij = 1) for a total ontribution of O(n=p lnn).Next assume that there are at least L elements preeding i in the initial permutation andthat ji � jj > L. We split our estimate for prob(Xij = 1) into two parts. For the �rst part,we assume that i is seleted and for the seond part, we assume that i is not seleted.So assume �rst that i is seleted and let l = ji � jj. The probability that at most lp=2elements between i (exlusive) and j (inlusive) are seleted is less than exp(�lp=8). If morethan lp=2 elements are seleted, Xij = 1 implies that i is �rst in the permutation of theseleted elements and hene prob(Xij = 1) � 8=(lp). Together we obtainprob(Xij = 1) � exp(�lp=8) + 8=(lp)and hene X1�i�nXl�L exp(�lp=8) + 8=(lp) = O(n=p lnn) :Assume next that i is not seleted and let i be the ki-th element in the initial sequene.The probability that less than pki=2 elements before i are hosen or less than pjj � ij=2elements between i and j or more than 2pn elements are hosen altogether is less thanexp(�pki=8) + exp(�pjj � ij=8) + exp(�pn=2):We need to sum over i and j and obtain:Xki�LXj exp(�pki=8) =Xl�LXj exp(�pl=8)= nXl�0 exp(�pL=8) exp(�p=8)l=Xl�0 exp(�p=8)l� 11� exp(�p=8)= O(1=p) :3



and, by the same argument: Xi�LXl�L exp(�lp=8) = O(1=p)and, sine n � ki for all i: Xi Xj exp(�pn=2) = O(1=p):So assume that the required number of elements are hosen. If i is before i+1 to j in thepartial permutation, it must be the ase that none of the pl=2 seleted (l = jj � ij) elementsbetween i and j is inserted before i. The probability for this is less than�2pn� ip=22pn �lp=2 � exp(�ilp=(4n))Next observe that X1�i�n X1�l�n exp(�ilp=(4n)) � X1�i�n 11� exp(�ip=(4n))� X1�i�n 8nip� 8n lnnpsine 1� e�x � x=2 for 0 � x � 1 and hene 1=(1 � e�x) � 2=x.Remark: When we onsider the perturbation of the lassial worst-ase; we are able to getlosed form formulae for the Xij 's (one has to distinguish 10 subases, most of them involving7 nested sums). From these sums (involving binomials), it is possible to get the di�erentialequation satis�ed by their generating funtions, and then the Frobenius method allows to getthe full asymptoti sale, whih gives a 2pn lnn omplexity. A generating funtion approahan also be used for the next setion. More details are given in the Appendix.Pitfalls: The expeted running time of quiksort on random permutations an be analyzedin many di�erent ways. Many of them rely on the fat that the subproblems generated byreursive alls are again random permutations. This is not true for partial permutations2 asthe following example demonstrates.Consider an input 1; 2; 3; 4 and de�ne q := 1� p. Assume that 2 is the pivot element andhene the seond subproblem onsists of the numbers 3; 4. If 2 is the pivot (�rst element afterpermutation), at least the numbers 1 and 2 are seleted. Conditioned on the fat that 1 and2 are seleted and 2 is made the �rst element we obtain subproblem (3; 4) with probabilityprob((3; 4)) = q2+3=2pq+p2=2 and subproblem (4; 3) with probability prob((4; 3)) = 1=2pq+p2=2. Applying partial permutations on input sequene 3; 4 gives prob((3; 4)) = q2+2pq+p2=2and prob((4; 3)) = p2=2.2In the �rst version of this paper, we fell into this pitfall.4



We also point out that the ontent of the �rst position, even if it is seleted, is not arandom element of the sequene. It is more likely to be the original element than any otherelement. The other elements are equally likely. This unbalane results from the fat that ifonly one element is seleted, the permutation of the seleted elements has very little freedom.The expeted maximum reursion depth of quiksort on random permutations is O(lnn).For partial permutations the expeted maximum reursion depth is 
(pn=p). We will showin the next setion that the number of left-to-right-maxima in a partial permutation might beas large as 
(pn=p). The number of left-to-right-maxima is the number of times the elementn is ompared to a pivot element. Thus some elements may take part in as many as 
(pn=p)reursive alls. Thus it is not true that every element takes part in O((1=p) lnn) alls withhigh probability.The asymptotis expansion that we got for quiksort shows that this algorithm is alreadyquite eÆient for p� 1n lnn ; this gives a threshold after whih the divide and onquer strategyof quiksort \wins" (eases to have a quadrati omplexity), even if the inputs is (in one sense)already almost sorted. We also showed that the perturbation of the worst ase for quiksortis eventually the worst ase among all the perturbations: quiksort has a dominant pi, witha rather sharp transition (f Figure 1). We will see in the next setion that is not always thease: another simple ombinatorial algorithms, like �nding a maximum in a list, an revealsome surprises!3 Left-to-Right MaximaThe simplest strategy to determine the largest element in a sequene is to san the sequenefrom left to right and to keep trak of the largest element seen. The number of hanges to theurrent maximum is alled the number of left-to-right maxima in the sequene. The sequene1; : : : ; n has n left to right maxima and the expeted number of left to right maxima in arandom permutation of n elements is Hn = 1 + 1=2 + � � � + 1=n.It is somehow surprising that the perturbation of the above mentioned worst ase is not theworst ase among all perturbations (when we swith from the lassial uniform distributionmodel to the partial permutation model):Theorem 2 (Left-to-Right Maxima under Limited Randomness) Under the partialpermutation model, the smoothed number of left-to-right maxima is
(pn) and O(p(n=p) log n)whereas the number of left-to-right maxima of the list (1; : : : ; n) is thenln(pn) +  + 2 1� pp +�12 + 2 (1� p)p2 � 1n +O( 1n2 ) ;where  � :5772 is Euler's onstant.Proof: We �rst give the two �rst asymptoti terms for the perturbation of the lassialworst-ase (see the appendix for a generating funtion proof whih gives the full asymptotis).The sequene 1; : : : ; n has n left-to-right maxima. Smoothing dereases the number toabout ln(pn) + 2=p as we show next. Let Xi be the probability that the i-th position is not5



seleted and is a maximum and let Yi be the probability that the i-th position is seleted andis a maximum.Consider �rst a seleted position i. A seleted position ontains a maximum i� it is amaximum among the seleted elements. Assume that it is a maximum among the seletedelements. Then its value is at least i and hene it is also a maximum when the elementsnot seleted are onsidered. ThusPi Yi is simply the number of maxima among the seletedelements. The number of seleted elements onentrates around pn and heneE[Xi Yi℄ � log(pn) :Assume next that i is not seleted. We start with the observation that Xi and Xn+1�ihave the same distribution. Consider i < n=2. Position i stays a maximum if non of thepreeding i�1 elements move to a position larger than i. Analogously, position n+1� i staysa maximum if non of the sueeding i� 1 elements move to a position smaller than i+1� i.We therefore onentrate on i � n=2.If k1 elements among the �rst i� 1 and k2 elements among the last n� i are seleted, theprobability that i stays a maximum isf(k1; k2) = k1! � k2!(k1 + k2)! :The expression for f(k1; k2) is dereasing in both arguments. Namely,f(k1; k2 + 1)f(k1; k2) = k1! � (k2 + 1)! � (k1 + k2)!(k1 + k2 + 1)! � k1! � k2! = k2 + 1k1 + k2 + 1 � 1 :We want to ompute E[Pi�n=2Xi℄. We split the sum into two parts: i � (16=p) log n andi � (16=p) log n.For the seond part, i � (16=p) log n, we expet to selet about pi � 16 log n elementsless than i and about p(n� i) � pn=2 elements larger than i. The probability that we seletless than half the stated number in either part is less than exp(�(16=8) log n) = O(n�2) byCherno� bounds. If at least 8 log n elements smaller i are seleted and at least pn=4 elementslarger i are seleted the probability that i is a maximum is less thanf(8 log n; pn=4) = O(n�2):Thus prob(Xi = 1) = O(n�2).We turn to the i's with i � (16=p) log n. If none of the �rst i � 1 elements is seleted istays a maximum. If at least one for the �rst i � 1 elements is hosen, the probability thati stays a maximum is at most e�pn=16 + 4=pn. The �rst term aounts for the fat that lesspn=4 elements larger i are seleted and the seond term aounts for the fat that at leastpn=4 elements larger i are seleted and none of them is moved to a position before i. Thusprob(Xi = 1) � (1� p)�(1� p)i�1 + e�pn=16 + 4=pn�and heneE[ Xi�(16=p) log nXi℄ � 1� pp + (1� p)16 log np (e�pn=16 + 4=pn) = 1� pp (1 + o(1)) :6



We onlude E[Xi (Xi + Yi)℄ � log(pn) + 2(1� p)p + o(1)for onstant p. In fat, onstant p is not required. The argument works as long as log n=(p2n) =o(1), i.e., for p�plogn=n.We now ome to the �rst aÆrmation of the theorem: the omplexity of the worst aseamong all perturbations. We show that, for p < 1=2, the smoothed number of left-to-rightmaxima in a permutation of n elements may be 
(pn=p). Consider the sequenen� k; n� k + 1; : : : ; n; 1; 2; : : : ; n� k � 1 (where k =pn=p) :Let a � pk and b � p(n� k) be the number of seleted elements in the �rst and seond partof the sequene respetively; the �rst part onsists of the �rst k elements. For large n, theprobability that a > 2pk or b < pn=2 is exponentially small by Cherno� bounds. So assumea � 2pk and b � pn=2. The probability that all elements seleted in the �rst part are putinto the seond part by the random permutation of the seleted elements is at leastq := b � (b� 1) � � � (b� a+ 1)(a+ b) � (a+ b� 1) � � � (b+ 1)sine the number of hoies for the �rst element is only b out of a+ b, the number of hoiesfor the seond elements is only b� 1 out of a+ b� 1, and so on. We haveq � �b� aa+ b�a = �1� 2aa+ b�a = exp�a ln�1� 2aa+ b�� � exp�� 4a2a+ b� :sine ln(1� x) � �2x for 0 � x � 3=4. Using the bounds a � 2pk and b � pn=2 we getq � exp�� 4a2a+ b� � exp��4(2p)2n=ppn=2 � � e�32 :We onlude that with onstant probability the number of left-to-right maxima in the per-turbed sequene is at least k � a � k(1� 2p) = 
(pn=p) for p < 1=2.We next show an almost mathing upper bound. Let s1; : : : ; sn be an arbitrary permu-tation of the numbers 1 to n, let k = p8(n=p) log n, and let I be the set of indies suhthat i � k and si � n � k. Basially, I ignores the �rst k and the largest k elements of thepermutation. We estimate how many si with i 2 I are left-to-right maxima in the perturbedsequene. Then the total number of maxima is at most 2k larger.Consider a �xed si with i 2 I. If si is seleted and is a maximum in the partial permuta-tion, it must be a maximum among the seleted elements. The expeted number of left rightmaxima among the seleted elements is ln pn.So assume that si is not seleted. With high probability there are at least kp=2 elementspreeding si among the seleted elements, there are at least kp=2 elements larger than siamong the seleted elements, and there are at most 2np seleted elements. Therefore theprobability that si is a maximum in the perturbed sequene is bounded by�2np� kp=22np �kp=2 � �1� k4n�kp=2 � exp(�k2p=(8n)) = 1nand hene the expeted number of left-to-right maxima in the perturbed sequene isO(p(n=p) log n) :7



4 Single Soure Shortest Path ProblemsWe onsider the single soure shortest path problem with nonnegative integer edge weights.As usual, let n andm denote the number of nodes and edges respetively. We assume our edgeweights to be in [0; 2K�1℄, i.e., edge weights areK bit integers. Meyer [16℄ has shown that theaverage omplexity of the problem is linear O(n+m). He assumes edge weights to be randomK bit integers and that a ertain set of primitive operations on suh integers an be performedin onstant time (addition, �nding the �rst bit where two integers di�er, . . . ). The algorithman be used for arbitrary graphs. An alternative algorithm was later given by Goldberg [10℄and his work is the starting point for this setion. The worst ase omplexity of his algorithmis O(m+ nK). Algorithms with better worst ase behavior are known [1, 3, 18, 12℄.Theorem 3 (Shortest Paths under Limited Randomness) Let G be an arbitrary graph,let  : E 7! [0; : : : ; 2K � 1℄ be an arbitrary ost funtion, and let k be suh that 0 � k � K.Let  be obtained from  by making the last k bits of eah edge ost random. Then the singlesoure shortest path problem an be solved in expeted time O(m+ n(K � k)).With full randomness the expeted running time is O(m + n), with no randomness therunning time is O(m+nK). Limited randomness interpolates linearly between the extremes.Proof:For a node v, let min in ost(v) be the minimum ost of an inoming edge. Goldberg hasshown that the running time of his algorithm isO(n+m+Xv (K � logmin in ost(v) + 1);where min in ost(v) denotes the minimal ost of an (direted) edge with target node v. Nextobserve that min in ost(v) is the minimum of indeg(v) numbers of whih the last k bits arerandom; here indeg(v) is the indegree of v. For an edge e, let r(e) be the number of leadingzeroes in the random part of e. Then E[r(e)℄ = 2 andK � logmin in ost(v) � K � k +maxfr(e) ; e 2 inedges(v)g� K � k +Xfr(e) ; e 2 inedges(v)gThus E[K � logmin in ost(v)℄ � K � k +O(indeg(v))and the time bound follows.In our model of limited randomness, the last k bits of eah weight are set randomly.Alternatively, one might selet bits with probability p and set seleted bits to random values.With this de�nition, the smoothed omplexity beomes O(m=p). For an edge e, let r(e) bethe number of leading zeroes in the weight of e. Then E[r(e)℄ � 2=p andK � logmin in ost(v) � maxfr(e) ; e 2 inedges(v)g� Xfr(e) ; e 2 inedges(v)gThus E[K � logmin in ost(v)℄ � O(indeg(v)=p)and the time bound follows. 8



5 ConlusionWe analyzed the smoothed omplexity of three ombinatorial problems. Smoothed omplexitygives additional information about the distribution of hard instanes in instane spae. Webelieve, that the analysis of further disrete problems is a worthwhile task.From a tehnial viewpoint, asymptoti expansions for higher moments (e.g., the variane)and the limit laws seems to be harder to get for yet, even with the help of omputer algebrasystems (some stohasti inequalities ould be a way to takle the distribution problem). Itinvolves a kind of funtional equations (see our Quiksort analysis), sparsely enounteredin analysis of algorithms until now, whih seems however to have some deep ombinatorialproperties. It an be expeted that most of these funtional equations will in fat behave likedi�erential equations of the Cauhy{Euler type, whih are better understood (see the ratheromplete artile [4℄) but for whih to get expliit formulae (or numerial approximations) forthe onstants hidden in the big-oh term (and in further asymptoti terms) is sometimes areal hallenge.From a more theoretial viewpoint, it is natural to raise the question \Is there any relevantnotion of smoothed omplexity ompleteness?", quite similarly to the DistNP omplete lassde�ned by Levin [15, 11℄. While lassial worst-ase omplete problems are rather well-known,this average-omplete problems were introdued quite reently. A smoothed omplexity om-pleteness would give a valuable riterion for problems on whih one ould use ryptographishemes on a rather wide region of instanes. For example, the paper [21℄ shows that randomknapsak has an almost linear time omplexity. Its smoothed analysis approah on�rmssomething whih is sometimes forgotten: the fat that NP -ompleteness is not the most rel-evant notion for ryptography (even if this sometimes implies an exponential average aseomplexity, like for the permanent); many exponential worst-ase algorithms have in fat apolynomial omplexity, independently of P 6= NP ! This also on�rms the onjeture thatworst-ase NP problems are thought to have an average ase polynomial omplexity, as soonas the initial distribution of inputs is \reasonable" (omputable in \polynomial time").From a pratial viewpoint, the thresholds obtained with this smoothed analysis approah(binding the perturbative parameter with n, and getting the ratio for whih there is a jumpof omplexity, if any, in the algorithms) ould also suggest to use meta-algorithms whih test(if this test is heap) if one is in a \hot" area of omplexity (with respet to a �rst algorithm)and then to swith to another algorithm whih is known to have a better behavior for thisarea.In onlusion, we really believe that smoothed omplexity is a key idea whih suggestsus to revisit all the lassial algorithms, using some new triks or some nie mathematis fortheir analyses, while allowing us to get a better understanding of the omplexity landsapesof these algorithms.Aknowledgements. This work was partially supported by the Future and Emerging Teh-nologies programme of the EU under ontrat number IST-1999-14186 (ALCOM-FT). Duringthe redation of this artile, Cyril Banderier was supported by the INRIA postdotoral pro-gram and by the Max-Plank-Institut.
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6 AppendixDue to the limitation on the number of pages, we give in this appendix a proof of our assertion(in Theorem 2) about the perturbation of the lassial worst ase for left-to-right maxima.In ombinatoris, left-to-right maxima are often alled \reords"; a bijetion due to Foatalinks them to the number of yles in the permutation (for whih a generating funtionapproah is easy, leading to (1 � z)�u and thus to the Stirling numbers). This suggeststhat generating funtions ould also be useful for our smoothed analysis. This is indeed thease (we refer to [9℄ for an extensive presentation of generating funtions and use of omplexanalysis for the analysis of algorithms/ombinatorial strutures):Theorem 4 The average number of left-to-right maxima in a partial permutation of (1; : : : ; n)is LR(n) = ln(pn) +  + 2 1� pp +�12 + 2 (1� p)p2 � 1n +O( 1n2 ) ;where  � :5772 is Euler's onstant.What should we expet? At both ends of the partial permutation, piees of length 1=p (inaverage) are not seleted and in the remaining part, one should see about ln(pn) left-to-rightmaxima from the seleted elements. Here is a rigorous proof of this:Proof: [Proof via generating funtions.℄ Note LRs(n) (resp. LRns(n)) the average numberof left-to-right maxima arising from seleted (resp. nonseleted) elements. One now studiesthe asymptoti ontribution of these two quantities to the sum LR(n) = LRs(n) + LRns(n).Contribution of seleted left-to-right maxima:LRs(n) = E[ nXi=1 Yi℄ = nXk=0�nk�pk(1� p)n�kHk ;(with H0 = 0). This formula is obtained by looking at all the on�gurations with k seletedelements, eah left-to-right maximum there is a left-to-right for the whole sequene, andeah seleted left-to-right maximum in the whole sequene is a left-to-right maximum in thesubsequene made up of the seleted elements, thus in average there is Hk suh left-to-rightmaxima. Set � = p1�p and q := 1� p, thusLRs(n) = qn nXk=0�nk��kHk : (1)In this sum, one reognizes an Euler transform: the transformation of a sequene fn into asequene Pnk=0 �nk�fk. It is easy to hek that if F (z) is the generating funtion assoiated tofn, then F ( z1�z )1�z is the generating funtion assoiated to its Euler transform. In our ase, thegenerating funtion of �kHk is ln 11��z1��z , and its Euler transform isXn�0 nXk=0�nk��k!Hk zn = ln 11�� z1�z1� � z1�z 11� z = ln 1�z1�(�+1)z1� (�+ 1)z : (2)
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Taking into aount the multipliation by qn in (1), one performs the substitution z 7! qzin (2) and one gets Xn�1LRs(n)zn = ln(1�qz1�z )1� z : (3)The radius of onvergene is 1 < 1=q and analysis of singularity gives LRs(n) = Hn+ ln(p) +o(Cn) (for C < 1), then, using Hn = ln(n) +  + 12n � 112n2 +O( 1n3 ) , one hasLRs(n) = ln(pn) +  + 12n +O( 1n2 ) :Contribution of nonseleted left-to-right maxima: The probability to have a non seletedmaximum at position i is given byprob(Xi = 1) = i�1Xk1=0 n�iXk2=0�i� 1k1 ��n� ik2 �pk1+k2qn�k1�k2 k1!k2!(k1 + k2)! ;where q := 1 � p. This formula is obtained by onsidering the k1 seleted elements before i(as i is non seleted, the value i is at position i and all the k1 seleted elements are � i � 1whih is a left-to-right maximum) and k2 seleted elements after i ( 1(k1+k2)! is the \weight" ofthe hosen permutation). A nie (onjetural) observation is that prob(Xi 6= 1) is unimodal(for i = 1; : : : ; n) but we don't need this fat. One wants to �nd the asymptotis ofLRns(n) = nXi=1 prob(Xi = 1)= nXi=1 i�1Xk1=0 n�iXk2=0�i� 1k1 ��n� ik2 �pk1+k2qn�k1�k2 k1!k2!(k1 + k2)! :In order to get the generating funtion assoiated to this triple sum, one an use some basitransformations, like the (inverse) Borel transform (multipliation or division of the sequeneby n!), the Euler transform, the Hadamard produt... All these transformations are losedin the spae of D-�nite funtions (funtions whih satisfy a linear di�erential equations withpolynomial oeÆients), and are easily performed with a omputer algebra pakage suh asGfun [19℄. For example, the generating funtion (3) is given by B�1�exp(z) B� ln( 11��z )1��z ��where B stands for the Borel transform and B�1 for the inverse Borel transform. Similarmanipulations for the LRns(n)'s lead to the generating funtionXn�1LRns(n)zn = �q ln(1� z) + q ln(1� qz)2(1� z(1� p2 ))2 + q(1� z)(1 � z(1� p2 )) :As 1 < 1=(1 � p=2) < 1=q, the radius of onvergene is 1 for the �rst log and the lastsummand, and 11�p=2 for the seond log, so singularity analysis gives (with r := 1�p2 ):LRns(n) = r� 4p2n +O( 1n2 )�+ r�n ln(2p � 1)rn +O(rn)�+ 2qp + qr ( pp� 2)nSumming the ontribution of LRns(n) and LRs(n) gives the theorem.This \shows" that the ontribution of the subsequent summands begins to be as importantas the log part when p � 1pn lnn . 13


