An interface theory for
service-oriented design

José Fiadeiro and Anténia Lopes

t%ﬁ University of AFERY. UNIVERSIDADE
Leicester Al==1" DE LISBOA

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

m Component model/description

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

m Component model/description

© answers the question “what does the component do2”

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

m Component model/description

answers the question “what does the component do?”

does not constrain the environment

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

m Component model/description

answers the question “what does the component do?”
does not constrain the environment

examples: the body of a method (or a Pascal
procedure), an I/O automaton, a Mealy machine, ...

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

m Component model/description

answers the question “what does the component do?”
does not constrain the environment

examples: the body of a method (or a Pascal
procedure), an I/O automaton, a Mealy machine, ...

can be composed (subject to compatibility conditions)

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

B Component model/description

relational nets:

O a process consists of a set | of input ports, a set O of output ports
and a satisfiable predicate on the set of ports

O a channel is a pair of ports

O the net is consistent in the sense that there is I/O valuation that

satisfies the process predicates and the identities induced by the
channels.

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

B Component model/description

relational nets:

O of output ports
DivByGced

 valuation that
-induced by the

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

x.Z Assume Q
x>0 A y>0 5
yzg> Guarantee @

2>0

L LOgstoss

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

A Interface model/description

x.Z Assume Q
x>0 A y>0 £
y:Z_> Guarantee @

2>0

L LOgstoss

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

A Interface model/description

answers the question “how can the component be used2”

x.Z Assume
x>0 A y>0
y.Z Guarantee

2>0

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

A Interface model/description

answers the question “how can the component be used2”

it constrains the environment by specifying the conditions

under which the component expects to be used

x.Z Assume
x>0 A y>0
y:.Z Guarantee
B 2>0

Thursday, 6 January 2011

C?_z:_Z>

L LOZSIOSSNY@sadoRouiapely

Alfaro & Henzinger on CBD

A Interface model/description

answers the question “how can the component be used2”

it constrains the environment by specifying the conditions
under which the component expects to be used

examples: parameter types, design by contract (assume/
guarantee conditions), interface automata, ...

Assume
x>0 A y>0

=z
Guarantee 9‘ >

>0

Thursday, 6 January 2011

L LOZSIOSSNY@sadoRouiapely

Alfaro & Henzinger on CBD

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

| Interfaces vs components

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

| Interfaces vs components

interfaces support top-down design (through refinement)
whereas components support bottom-up design (through
abstraction)

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Alfaro & Henzinger on CBD

| Interfaces vs components

interfaces support top-down design (through refinement)
whereas components support bottom-up design (through
abstraction)

they are related by a notion of implementation; interfaces
are normally required to be implementable

Thursday, 6 January 2011

L LOZSIOSSNY@sadoRouiapely

Alfaro & Henzinger on CBD

| Interfaces vs components

interfaces support top-down design (through refinement)
whereas components support bottom-up design (through
abstraction)

they are related by a notion of implementation; interfaces
are normally required to be implementable

ideally, implementation is compositional (which is the
purpose of component-based design)

Thursday, 6 January 2011

L LOZSIOSSNY@sadoRouiapely

how is SOC different from CBD?

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

how is SOC different from CBD?

A two different notions of composition:

CBD is integration-oriented — “the idea of component-
based development is to industrialise the software
development process by producing software
applications by assembling prefabricated software

components” (A. Elfatatry. Dealing with change: components versus
services. CACM, 50(8), 2007)

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

how is SOC different from CBD?

A two different notions of composition:

CBD is integration-oriented — “the idea of component-
based development is to industrialise the software
development process by producing software
applications by assembling prefabricated software

components” (A. Elfatatry. Dealing with change: components versus
services. CACM, 50(8), 2007)

Hence, interfaces for CBD must describe the means
through which software elements can be plugged
together to build a product.

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

how is SOC different from CBD?

m two different notions of co

Interfaces such as
assume/guarantee fall into this
category: they specify the

combinations of input values that
oAV HeYYeYL- e components implementing an interface
applications by assemb must accept (assumptions) and the
combinations of output values that the
environment can expect from

them (guarantees).

ge edns

CBD is integration-orientg
based development is t

components” (A. Elfatatry. [
services. CACM, 50(8), 2007

Hence, interfaces for CBD must
through which software elements can be plugged
together to build a product.

L LOZS!0SSNY@SsadoT:R0419peI4

Thursday, 6 January 2011

how is SOC different from CBD?

A two different notions of composition:

CBD is integration-oriented — “the idea of component-
based development is to industrialise the software
development process by producing software
applications by assembling prefabricated software

components” (A. Elfatatry. Dealing with change: components versus
services. CACM, 50(8), 2007)

Hence, interfaces for CBD must describe the means
through which software elements can be plugged
together to build a product.

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

how is SOC different from CBD?

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

how is SOC different from CBD?

A two different notions of composition:

SOC is interaction-oriented — services respond to the
necessity for separating “need from the need- fulfilment
mechanism” [Elfatatry] and address the ability of
software elements to engage with other parties to
pursue a given business goal.

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

how is SOC different from CBD?

A two different notions of composition:

SOC is interaction-oriented — services respond to the

necessity for separating “need from the need- fulfilment

mechanism” [Elfatatry] anQag :

For example, we can
. . design a seller that may need to
pursue a given busin RN supplier if the local
stock is low (the need); the discovery and
selection of, and binding to, a specific
supplier (the need-fulfilment mechanism) are
not part of the design of the seller but
performed, at run time, by the
underlying middleware

(SOA)

software elements to eng

LLOZSI0SsSny@Sa2d0o7p0419Pe]

Thursday, 6 January 2011

how is SOC different from CBD?

A two different notions of composition:

SOC is interaction-oriented — services respond to the
necessity for separating “need from the need- fulfilment
mechanism” [Elfatatry] and address the ability of
software elements to engage with other parties to
pursue a given business goal.

Hence, service interfaces must describe the properties
that are provided (so that services can be discovered) as
well as those that may be required from external
services (so that the middleware can select a proper

L LOZSIOSSNY@Sad0T1R0.19pelS

provider).

Thursday, 6 January 2011

how is SOC different from CBD?

m two di nposition:

The latter are not assumptions on the es respond to the
environment as in CBD — in a sense, a
service creates the environment that it needs
to deliver what it promises.

he need- fulfilment
' the ability of
other parties to

Hence, service interfaces Rust describe the properties

that are provided (so that seNjices can be discovered) as
well as those that may be required from external

services (so that the middleware can select a proper

L LOZS!0SSNY@SsadoT:R0419peI4

provider).

Thursday, 6 January 2011

how is SOC different from CBD?

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

how is SOC different from CBD?

A two different computational models:

CBD is I/O-oriented — typical component algebras are
synchronous: the client knows and invokes the server
with input values and waits for the return.

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

how is SOC different from CBD?

A two different computational models:

CBD is I/O-oriented — typical component algebras are
synchronous: the client knows and invokes the server
with input values and waits for the return.

SOC is intrinsically asynchronous and conversational.

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

how is SOC different from CBD?

A two different computational models:

CBD is I/O-oriented — typical component algebras are
synchronous: the client knows and invokes the server
with input values and waits for the return.

SOC is intrinsically asynchronous and conversational.

O However, most existing models for choreography are indeed
synchronous...

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

how is SOC different from CBD?

A two different computational models:

CBD is I/O-oriented — typical component algebras are
synchronous: the client knows and invokes the server
with input values and waits for the return.

SOC is intrinsically asynchronous and conversational.

O However, most existing models for choreography are indeed
synchronous...

O Our approach is orchestration-oriented: we propose to model
the workflow through which a service is orchestrated as being
executed by a network of processes that interact asynchronously
and offer interaction-points to which clients and external services
(executed by their own networks) can bind.

Thursday, 6 January 2011

L LOZSIOSSNY@Sad0T1R0.19pelS

our research questions

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

our research questions

®m What is a suitable notion of interface for such

asynchronous networks of processes that deliver a

service?®

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

our research questions

®m What is a suitable notion of interface for such

asynchronous networks of processes that deliver a

service?®

What is an asynchronous network of processes?

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

our research questions

B What is a suitable notion of interface for such
asynchronous networks of processes that deliver a
service?

What is an asynchronous network of processes?

B What notion of interface composition is suitable
for the loose coupling of the business processes

that orchestrate the interfaces?

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

asynchronous relational nets (ARNs)

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

asynchronous relational nets (ARNs)

m Highlights

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

asynchronous relational nets (ARNs)

m Highlights

Services are delivered by networks of processes/
components — as in SCA (the Service Component
Architecture)

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

asynchronous relational nets (ARNs)

m Highlights

Services are delivered by networks of processes/
components — as in SCA (the Service Component
Architecture)

Processes interact by exchanging messages

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

asynchronous relational nets (ARNs)

m Highlights

Services are delivered by networks of processes/
components — as in SCA (the Service Component
Architecture)

Processes interact by exchanging messages

Messages are transmitted through channels

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

asynchronous relational nets (ARNs)

| Highlights

Services are delivered by networks of processes/
components — as in SCA (the Service Component
Architecture)

Processes interact by exchanging messages
Messages are transmitted through channels

Temporal logic is used for describing processes and
channels — actions consist of message delivery (mj),
processing (m?), discarding (m3) or sending (m!)

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

processes

B A process consists of

A finite set of mutually-disjoint ports

A consistent set of LTL formulas - LerE
(collections of messages)

+ means incoming
- means outgoing

Seller

buy 1 du -F-
naix (buyj>(pricelal>product!)) 1 @t product
price 1 @ | . <5 | details
fwd details | &b | (detailsj><>fwd_details!) T

L LOZSIOSSNY@Sad0T1R0.19pelS

Thursday, 6 January 2011

channels

®m A channel consists of

A set of messages

A consistent set of LTL formulas over delivery and
sending of messages

—e.g., U(m! O Omj)

(the channel is reliable - it delivers the message
once it is published)

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Thursday, 6 January 2011

Ly
Q
o
®@.
=
o
R
—
o
o
(0]
wn
®
>
<
n
7
S,
n
N
o

ARNs

®m An ARN is a simple graph where

Nodes are labelled with processes

Edges are labelled with connections (wires+attachments)

SELLERWITHSUPPLIER
Seller] [Supplier) %
buy 1 | _ : i~ product request i ~ " %
price | ' C{buyi=><>(price!a<>product)) | ! g: [(requestj>invoice!) ;
fwd_details, ' [(detailsj><>fwd_details!) (1", details invoice |_ _ g
J [J(product!>request;) L | S

Thursday, 6 January 2011

ARNs

2 graph where

An interaction point: a port
that is not connected ith processes
fMed with connections (wires+attachments)

® ARNWcan be composed by interconnecting
inteffaction-points (via channels)

LLERWITHSUPPLIER
Seller] [Supplier)
buy 1 &b | . i~ " product request i~ ~ "
orice | _..'_ C(buyj><> (price!a<>product!)) :‘:: i | Cl(requestj>invoice!)
fwd_details | _-'_ [(detailsji><>fwd_details!) | '™, details invoice | _ |

— —_ = —_

J [J(product!>request;) L

Thursday, 6 January 2011

L LOZSIOSSNY@Sad0TR0.19pelS

m Relational nets (de Alfaro & Henzinger) are
required to be jointly consistent - inputs and

outputs match, i.e. the processes can communicate

® What about ARNs?

The set of infinite traces of an ARN « that are projected
to models of all processes and channels is

Ao = {A€24": VpeP(A |4, €Ap,) ANVcEC (N4, EA5,)}

ny@sadooliapel

Consistency means Ay # @

L LOgstoss

Thursday, 6 January 2011

progress-enabled ARNs

®m We consider instead finite behaviours

The set of finite traces that are projected to prefixes of
models of all processes and channels is

11, = {WEQAO‘*: VpEP(ﬂ"Apéﬂqsp) N\ VCEC(T(‘ACEHQPC)}

An ARN « is progress enabled iff its processes are
always able to make progress while interacting through
the channels

ny@sadooliapel

Vrell ,LdACA, (m-A)ell,

L LOgstoss

Thursday, 6 January 2011

the first tricky question...

B (When) is the composition of two progress-enabled
ARNs progress enabled?

This needs to be understood in terms of a computational
and communication model in which it is clear what
dependencies exist between the different parties.

We take it to be the responsibility of processes to publish
and process messages, and of channels to deliver them.
This requires that processes are able to buffer incoming
messages and that channels are able to buffer published
messages, thus making them ‘co-operative’.

L LOZSIOSSNY@Sad0T1R0.19pelS

Thursday, 6 January 2011

co-operative processes

m An ARN « is delivery-enabled in relation to an
interaction point <p,M> iff

For every (.A)€[[« and B C D<, m>={p.mj: meM},
(m.BU(A\D<p,m>) €]]«

That is, any prefix can be extended with any set of
messages delivered at that interaction-point.

ny@sadooliapel

L LOZSIOSS

Thursday, 6 January 2011

co-operative channels

m A channel h=<M,®> is publication-enabled iff

For every (1M.A)€]]o and B C Ex={p.m!: meM},
(m.BU(A\EL) €]
That is, any prefix can be extended by the publication of

a set of messages, i.e. the channel should not prevent
processes from publishing messages.

ny@sadooliapel

L LOZSIOSS

Thursday, 6 January 2011

First theorem

B Let « be a composition of a1 and a2 by
inferconnecting interaction points <p1,M1> and
<p2,M2> via a channel h.

Then, « is progress-enabled if:

o1 and &2 are progress-enabled

o1 and 2 are delivery-enabled in relation to <pi,M1>
and <p2,M2>, respectively

h is publication-enabled

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Interfaces

m A service interface consists of:

Sets |17 (of provides-points) and I~ (of requires-points)
For every provides-point r, a process <{M},®.>

For every requires-point r:

O a process <{M:},®:> that is delivery-enabled
O a channel <M, %> that is progress-enabled

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Interfaces

m A service interface consists of:
Sets |~ (of provides-points) and 1= (of requires-points)
For every provides-point r, a process <{M},®.>

For every requires-point r:

O a process <{M:},®:> that is delivery-enabled
O a channel <M, %> that is progress-enabled

ISELLER o

o

1. o

th details "ap| LI(details>Cdetallsi) | b details S

f 0

fwd dgt;ﬁs: | product | | [C(product!>product;) , product S

|\ | | —E I 8

C(buyj> - [(productj><>details!) 9
O(pricel AOwd_details!)) g
S

———— =

Thursday, 6 January 2011

Interfaces

B A service interface consists of:

Sets |~ (of provides-points) and 1= (of requires-points)
For every provides-point r, a process <{M:},®:>
For every requires-point r:

O a process <{M},®:> that is delivery-enabled
O a channel <M., %> that is progress-enabled

ISELLER

buy
price :
fwd_details:_

[J(details!>>detailsj)
[(product!>product;)

| details

details !\ -
| produc

product |

[I(buyjo
O(price! Afwd_details!))

[J(productj><>details!)

L LOZSIOSSNY@SsadoRouIapely

Thursday, 6 January 2011

Orchestration

B An orchestration of a service interface consists of:

An ARN « that is progress-enabled and delivery-enabled

in relation to all its interaction points

A 1-1 correspondence between the interaction points of

the ARN and the interface points
such that all the properties of the provides-points
are entailed by the ARN that consists of the
composition of o with the requires-points and

ny@sadogoliapel

associated channels.

L LOgstoss

Thursday, 6 January 2011

Orchestration

ISELLER
t?uy:r details Tan | [(detailsI>Odetailsi) b details
fwd dztr;z: product ! & | C(product!>productj) | 5 | product
_ | el ap |

C(buyj>
O (price! AOfwd_details!))

[J(productj>>details!)

\

J

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Orchestration

ISELLER

:EZ :r details ey | [(detailsl>Cdetailsi) -c-;: details
fwd dztails: product ' & | Cl(product! >Cproductj) | g 1 Product
_ I] r

[J(buyj>
O(price! Adfwd_details!

[J(productj>>details!)

\

J

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Orchestration

ISELLER
buy i & . ¥ = —
SO details | ¢ [J(detailsl>>detailsj) b details
r |
fwd dztleﬁlz: : product ' & | Cl(product! >Cproductj) | g 1 Product
_ =X P ap |

L

C(buyjo ' [J(productj><>details!)
O (price! AOfwd_details!))

[(buyj><>(price! ACproduct!))
[(detailsi>Ofwd_details!) | | [J(productj>>details!) |

—
SELLER*]
Seller T Tdemisnddeaisy HE: detai z
ouy [ﬂl details o | [(detailsl>Cdetailsj) o | details =
rice | | product | &b | Cl(product!>Cproductj) | e 1 Product 2
Pree | PTIT g T :
| details, | :

Thursday, 6 January 2011

Orchestration

ISELLER
buy i & . ¥ = —
SO details | ¢ [J(detailsl>>detailsj) b details
r |
fwd dztleﬁlz: : product ' & | Cl(product! >Cproductj) | g 1 Product
_ =X P ap |

L

C(buyjo ' [J(productj><>details!)
O (price! AOfwd_details!))

i I S—

[(buyj><>(price! ACproduct!))
[(detailsi>Ofwd_details!) | | [J(productj>>details!) |

SELLER*]

Seller T Tdemisnddeaisy HE: detai z

ouy [ﬂl details o | [(detailsl>Cdetailsj) o | details =
rice | | product | &b | Cl(product!>Cproductj) | e 1 Product 2
Pree | PTIT g T :

| details, | :

Thursday, 6 January 2011

Match and compose

))
)
))

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Match and compose

))
)]
))

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Match and compose

Thursday, 6 January 2011

)
)]

D,

JUUL

)
)

Second theorem - compositionality

B The composition of the orchestrations of
compatible interfaces is an orchestration of the

composition of the interfaces.

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Second theorem - compositionality

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

Second theorem - compositionality

ISELLER
buy | &} R = — 1
el B details ! [(details!>detailsj) [ob ' details
|
wd dgtr;fs: | product | & | Ci(product!>product;) | 1 Product
| =1 _ T

C(buyj> [J(productj><>details!)

O(price! AOtwd_details!

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Second theorem - compositionality

ISUPPLIER
ISELLER
buy T s details Tan | Ll(details>Cdetailsi) e details voice "]
! I
fwd dgtr:ifsi i product | & | Cl(product!><product;) _4?}Pf0dUCT request’ !
i - [(productj><>details!) 4
D(bu)./p . I [)(requestj><invoice
O(price! AOtwd_details!
| —
Supplier)

invoice |
|
request |

i [(requestj>invoice!)

'

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Second theorem - compositionality

ISUPPLIER
ISELLER
buy T s details Tan | Ll(details>Cdetailsi) e details voice "]
! I
fwd dgtr:ifsi i product | & | Cl(product!><product;) _4?}Pf0dUCT request’ !
i - [(productj><>details!) 4
D(bu)./p . I [)(requestj><invoice
O(price! AOtwd_details!
| —
Supplier)

invoice |
|
request |

i [(requestj>invoice!)

'

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Second theorem - compositionality

IS ISUPPLIER
ELLER
buy 1 g is Tal Cldetailsl>Cdetailsi) b’ details o
fice| & details | : I invoice | = i
fwd dgtails' ! product ! & | CJ(product!>>productj) | =1 Product request |
I | | - R] !
C(buyj> [J(productj><>details!) i
O (pricelnfwd_details! L(requesti><invoice
—_—
Supplier

invoice |
|
request |

.

i [(requestj>invoice!)

SELLERWITHSUPPLIER
Seller] [Supplier)
buy 1 k _ , i~ product request i~ "
price | Llbuyi> < (pricelnproduct) :;: T Cl(requesti>invoice!)
fwd_details | [J(detailsji>fwd_details!) (1", details invoice _ _ |
)) J [(product! >requestj))

[J(invoice! > detalilsj)

Thursday, 6 January 2011

L LOZSIOSSNY@sadoRouiapely

Second theorem - compositionality

ISUPPLIER
ISELLER

" detits T | L Getals0detalsy) | b detais s
fwd dgtailsi product :_1 [(product!><product;) _4?1' product request'q:.
C(buyjo 1 [J(productj><>details!) o

[——

: |
O(pricela>twd_details!) l(requesti>Cinvoice!)

— —

buy | &4 |
price | & |
fwd_details:h _:

Cl(buyjo
O (price! AOfwd_details!))

—

-
o

o

SELLERWITHSUPPLIER 3

N)

Seller] [Supplier 2

buy] i . . i~ product request i =" @

orice | ' Cl(buyio (pricel Aproduct) :g: | [(requesti><invoice!) Z
fwd_details, | [J(detailsji>fwd_details!) (1", details invoice I_ _, °
1 J C(product!>Crequest;) S
[J(invoice!>>detailsj) -

Thursday, 6 January 2011

Second theorem - compositionality

buy I &)

price | & |

fwd_details| o1

(buyjo 1
O(price! Atwd_details!))

I

] [Supplier)
buy 1 i . i~ product request i~ °
price | Llbuyi> < (pricelnproduct) i;: E | CJ(request><invoice!)
fwd_details, | [J(detailsji>fwd_details!) (1", details invoice _ _ |

J C(product!>request;)
[(invoice! > detalilsj)

Thursday, 6 January 2011

L LOZSIOSSNY@sadoRouiapely

Conclusions and further work

®m ARNs

progress-enabled vs consistency

asynchronous model

O typically, only bounded buffers are required
O actually, typical business protocols (as in SRML) are finite

what is typically unbounded is the ARN (number of
processes and channels)

L LOZSIOSSNY@sadoRouiapely

Thursday, 6 January 2011

Conclusions and further work

® Dynamic aspects

we have developed a model of dynamic discovery and
binding (FACJ, ECSA)
it needs to be transposed to ARNs

and analysed for its theoretical properties

ny@sadooliapel

L LOgstoss

Thursday, 6 January 2011

