
Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

An interface theory for
service-oriented design

José Fiadeiro and Antónia Lopes

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Component model/description

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Component model/description
answers the question “what does the component do?”

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Component model/description
answers the question “what does the component do?”

does not constrain the environment

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Component model/description
answers the question “what does the component do?”

does not constrain the environment
examples: the body of a method (or a Pascal
procedure), an I/O automaton, a Mealy machine, …

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Component model/description
answers the question “what does the component do?”

does not constrain the environment
examples: the body of a method (or a Pascal
procedure), an I/O automaton, a Mealy machine, …

can be composed (subject to compatibility conditions)

Thursday, 6 January 2011

Component model/description
relational nets:

a process consists of a set I of input ports, a set O of output ports
and a satisfiable predicate on the set of ports
a channel is a pair of ports
the net is consistent in the sense that there is I/O valuation that
satisfies the process predicates and the identities induced by the
channels.

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Thursday, 6 January 2011

Component model/description
relational nets:

a process consists of a set I of input ports, a set O of output ports
and a satisfiable predicate on the set of ports
a channel is a pair of ports
the net is consistent in the sense that there is I/O valuation that
satisfies the process predicates and the identities induced by the
channels.

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Interface model/description

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Interface model/description
answers the question “how can the component be used?”

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Interface model/description
answers the question “how can the component be used?”

it constrains the environment by specifying the conditions
under which the component expects to be used

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Interface model/description
answers the question “how can the component be used?”

it constrains the environment by specifying the conditions
under which the component expects to be used
examples: parameter types, design by contract (assume/
guarantee conditions), interface automata, …

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Interfaces vs components

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Interfaces vs components
interfaces support top-down design (through refinement)
whereas components support bottom-up design (through
abstraction)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Interfaces vs components
interfaces support top-down design (through refinement)
whereas components support bottom-up design (through
abstraction)

they are related by a notion of implementation; interfaces
are normally required to be implementable

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Alfaro & Henzinger on CBD

Interfaces vs components
interfaces support top-down design (through refinement)
whereas components support bottom-up design (through
abstraction)

they are related by a notion of implementation; interfaces
are normally required to be implementable

ideally, implementation is compositional (which is the
purpose of component-based design)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different notions of composition:
CBD is integration-oriented — “the idea of component-
based development is to industrialise the software
development process by producing software
applications by assembling prefabricated software
components” (A. Elfatatry. Dealing with change: components versus
services. CACM, 50(8), 2007)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different notions of composition:
CBD is integration-oriented — “the idea of component-
based development is to industrialise the software
development process by producing software
applications by assembling prefabricated software
components” (A. Elfatatry. Dealing with change: components versus
services. CACM, 50(8), 2007)

Hence, interfaces for CBD must describe the means
through which software elements can be plugged
together to build a product.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different notions of composition:
CBD is integration-oriented — “the idea of component-
based development is to industrialise the software
development process by producing software
applications by assembling prefabricated software
components” (A. Elfatatry. Dealing with change: components versus
services. CACM, 50(8), 2007)

Hence, interfaces for CBD must describe the means
through which software elements can be plugged
together to build a product.

Interfaces such as
assume/guarantee fall into this

category: they specify the
combinations of input values that

components implementing an interface
must accept (assumptions) and the

combinations of output values that the
environment can expect from

them (guarantees).

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different notions of composition:
CBD is integration-oriented — “the idea of component-
based development is to industrialise the software
development process by producing software
applications by assembling prefabricated software
components” (A. Elfatatry. Dealing with change: components versus
services. CACM, 50(8), 2007)

Hence, interfaces for CBD must describe the means
through which software elements can be plugged
together to build a product.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different notions of composition:
SOC is interaction-oriented — services respond to the
necessity for separating “need from the need- fulfilment
mechanism” [Elfatatry] and address the ability of
software elements to engage with other parties to
pursue a given business goal.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different notions of composition:
SOC is interaction-oriented — services respond to the
necessity for separating “need from the need- fulfilment
mechanism” [Elfatatry] and address the ability of
software elements to engage with other parties to
pursue a given business goal.

For example, we can
design a seller that may need to

use an external supplier if the local
stock is low (the need); the discovery and

selection of, and binding to, a specific
supplier (the need-fulfilment mechanism) are

not part of the design of the seller but
performed, at run time, by the

underlying middleware
(SOA)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different notions of composition:
SOC is interaction-oriented — services respond to the
necessity for separating “need from the need- fulfilment
mechanism” [Elfatatry] and address the ability of
software elements to engage with other parties to
pursue a given business goal.

Hence, service interfaces must describe the properties
that are provided (so that services can be discovered) as
well as those that may be required from external
services (so that the middleware can select a proper
provider).

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different notions of composition:
SOC is interaction-oriented — services respond to the
necessity for separating “need from the need- fulfilment
mechanism” [Elfatatry] and address the ability of
software elements to engage with other parties to
pursue a given business goal.

Hence, service interfaces must describe the properties
that are provided (so that services can be discovered) as
well as those that may be required from external
services (so that the middleware can select a proper
provider).

The latter are not assumptions on the
environment as in CBD — in a sense, a

service creates the environment that it needs
to deliver what it promises.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different computational models:
CBD is I/O-oriented — typical component algebras are
synchronous: the client knows and invokes the server
with input values and waits for the return.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different computational models:
CBD is I/O-oriented — typical component algebras are
synchronous: the client knows and invokes the server
with input values and waits for the return.

SOC is intrinsically asynchronous and conversational.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different computational models:
CBD is I/O-oriented — typical component algebras are
synchronous: the client knows and invokes the server
with input values and waits for the return.

SOC is intrinsically asynchronous and conversational.
However, most existing models for choreography are indeed
synchronous…

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

how is SOC different from CBD?

two different computational models:
CBD is I/O-oriented — typical component algebras are
synchronous: the client knows and invokes the server
with input values and waits for the return.

SOC is intrinsically asynchronous and conversational.
However, most existing models for choreography are indeed
synchronous…
Our approach is orchestration-oriented: we propose to model
the workflow through which a service is orchestrated as being
executed by a network of processes that interact asynchronously
and offer interaction-points to which clients and external services
(executed by their own networks) can bind.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

our research questions

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

our research questions

What is a suitable notion of interface for such
asynchronous networks of processes that deliver a
service?

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

our research questions

What is a suitable notion of interface for such
asynchronous networks of processes that deliver a
service?

What is an asynchronous network of processes?

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

our research questions

What is a suitable notion of interface for such
asynchronous networks of processes that deliver a
service?

What is an asynchronous network of processes?

What notion of interface composition is suitable
for the loose coupling of the business processes
that orchestrate the interfaces?

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

asynchronous relational nets (ARNs)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

asynchronous relational nets (ARNs)

Highlights

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

asynchronous relational nets (ARNs)

Highlights
Services are delivered by networks of processes/
components — as in SCA (the Service Component
Architecture)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

asynchronous relational nets (ARNs)

Highlights
Services are delivered by networks of processes/
components — as in SCA (the Service Component
Architecture)

Processes interact by exchanging messages

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

asynchronous relational nets (ARNs)

Highlights
Services are delivered by networks of processes/
components — as in SCA (the Service Component
Architecture)

Processes interact by exchanging messages

Messages are transmitted through channels

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

asynchronous relational nets (ARNs)

Highlights
Services are delivered by networks of processes/
components — as in SCA (the Service Component
Architecture)

Processes interact by exchanging messages

Messages are transmitted through channels
Temporal logic is used for describing processes and
channels — actions consist of message delivery (m¡),
processing (m?), discarding (m¿) or sending (m!)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

processes

Seller

product
details

buy
price

fwd_details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)
...

Ports
(collections of messages)

+ means incoming
– means outgoing

A process consists of
A finite set of mutually-disjoint ports

A consistent set of LTL formulas

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

channels

A channel consists of
A set of messages

A consistent set of LTL formulas over delivery and
sending of messages

— e.g., ▢(m! ⊃ ◇m¡)

(the channel is reliable – it delivers the message
once it is published)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

ARNs

Thursday, 6 January 2011

⃞(request¡⊃◇invoice!)
...

request

invoice

SELLERWITHSUPPLIER

⃞(product!⊃◇request¡)

SupplierSeller

product

details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)
...

buy
price

fwd_details

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

ARNs

An ARN is a simple graph where
Nodes are labelled with processes

Edges are labelled with connections (wires+attachments)

Thursday, 6 January 2011

⃞(request¡⊃◇invoice!)
...

request

invoice

SELLERWITHSUPPLIER

⃞(product!⊃◇request¡)

SupplierSeller

product

details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)
...

buy
price

fwd_details

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

ARNs

An ARN is a simple graph where
Nodes are labelled with processes

Edges are labelled with connections (wires+attachments)

ARNs can be composed by interconnecting
interaction-points (via channels)

An interaction point: a port
that is not connected

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

consistency?

Relational nets (de Alfaro & Henzinger) are
required to be jointly consistent – inputs and
outputs match, i.e. the processes can communicate

What about ARNs?
The set of infinite traces of an ARN α that are projected
to models of all processes and channels is

Consistency means Λα ≠ Ø

the context of loose coupling that is of interest for SOC, channels (wires) may have a

behaviour of their own that one may wish to describe or, in the context of interfaces,

specify. Therefore, for generality, we take channels as first-class entities that are respon-

sible for delivering messages.

Channels connect processes through ports that assign opposite polarities to mes-

sages. Formally, the connections are established through what we call attachments:

Definition 7 (Connection) Let M1 and M2 be ports and �M,Φ� a channel. A connec-
tion between M1 and M2 via �M,Φ� consists of a pair of bijections µi:M→Mi such
that µ−1

i (M+
i) = µ−1

j (M−
j), {i, j}={1, 2}. Each bijection µi is called the attachment

of �M, Φ� to Mi. We denote the connection by �M1
µ1←−M µ2−→M2, Φ�.

Proposition 8 Every connection �M1
µ1←− M µ2−→ M2, Φ� defines an injection �µ1, µ2�

from AM to AM1∪AM2 as follows: for every m∈M and {i, j}={1, 2}, if µi(m)∈M−
i

then �µ1, µ2�(m!) = µi(m)! and �µ1, µ2�(m¡) = µj(m)¡.

Definition 9 (Asynchronous relational net) An asynchronous relational net (ARN) α
consists of:

– A simple finite graph �P,C� where P is a set of nodes and C is a set of edges. Note
that each edge is an unordered pair {p, q} of nodes.

– A labelling function that assigns a process to every node and a connection to every
edge such that:
• If p:�γ,Φ� and q:�γ�, Φ�� then {p, q} is labelled with a connection of the form
�Mp

µp←−M µq−→Mq, Φ��� where Mp∈γ and Mq∈γ�.
• For every {p, q}:�Mp

µp←−M µq−→Mq, Φ� and {p, q�}:�M �
p

µ�
p←−M � µ�

q�
−→M �

q� , Φ��, if
q �= q� then Mp �= M �

p.

We also define the following sets:

– Ap = p.(
�

M∈γp
AM) is the language associated with p,

– Aα =
�

p∈P Ap is the language associated with α,
– Ac = �p. ◦µp, q. ◦µq�(AM) is the language associated with γc:�Mp

µp←−M µq−→Mq�.
– Φα is the union of the following sets of formulas

• For every p:�γ,Φ�, the prefix-translation Φp of Φ by (p.).
• For every c:�Mp

µp←−M µq−→Mq, Φ�, the translation Φc=�p. ◦ µp, q. ◦ µq�(Φ)
– Λα = {λ∈2Aα

ω: ∀p∈P (λ|Ap∈ΛΦp) ∧ ∀c∈C(λ|Ac∈ΛΦc)}
The set of infinite traces that are projected to models of all processes and channels.

– Πα = {π∈2Aα
∗: ∀p∈P (π|Ap∈ΠΦp) ∧ ∀c∈C(π|Ac∈ΠΦc)}

The set of finite traces that are projected to prefixes of models of all processes and
channels.

We often refer to the ARN through the quadruple �P,C, γ,Φ� where γ returns the

set of ports of the processes that label the nodes and the pair of attachments of the con-

nections that label the edges, and Φ returns the corresponding descriptions. The fact that

the graph is simple — undirected, without self-loops or multiple edges — means that all

interactions between two given processes are supported by a single channel and that no

6

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

progress-enabled ARNs

We consider instead finite behaviours
The set of finite traces that are projected to prefixes of
models of all processes and channels is

An ARN α is progress enabled iff its processes are
always able to make progress while interacting through
the channels

the context of loose coupling that is of interest for SOC, channels (wires) may have a

behaviour of their own that one may wish to describe or, in the context of interfaces,

specify. Therefore, for generality, we take channels as first-class entities that are respon-

sible for delivering messages.

Channels connect processes through ports that assign opposite polarities to mes-

sages. Formally, the connections are established through what we call attachments:

Definition 7 (Connection) Let M1 and M2 be ports and �M,Φ� a channel. A connec-
tion between M1 and M2 via �M,Φ� consists of a pair of bijections µi:M→Mi such
that µ−1

i (M+
i) = µ−1

j (M−
j), {i, j}={1, 2}. Each bijection µi is called the attachment

of �M, Φ� to Mi. We denote the connection by �M1
µ1←−M µ2−→M2, Φ�.

Proposition 8 Every connection �M1
µ1←− M µ2−→ M2, Φ� defines an injection �µ1, µ2�

from AM to AM1∪AM2 as follows: for every m∈M and {i, j}={1, 2}, if µi(m)∈M−
i

then �µ1, µ2�(m!) = µi(m)! and �µ1, µ2�(m¡) = µj(m)¡.

Definition 9 (Asynchronous relational net) An asynchronous relational net (ARN) α
consists of:

– A simple finite graph �P,C� where P is a set of nodes and C is a set of edges. Note
that each edge is an unordered pair {p, q} of nodes.

– A labelling function that assigns a process to every node and a connection to every
edge such that:
• If p:�γ,Φ� and q:�γ�, Φ�� then {p, q} is labelled with a connection of the form
�Mp

µp←−M µq−→Mq, Φ��� where Mp∈γ and Mq∈γ�.
• For every {p, q}:�Mp

µp←−M µq−→Mq, Φ� and {p, q�}:�M �
p

µ�
p←−M � µ�

q�
−→M �

q� , Φ��, if
q �= q� then Mp �= M �

p.

We also define the following sets:

– Ap = p.(
�

M∈γp
AM) is the language associated with p,

– Aα =
�

p∈P Ap is the language associated with α,
– Ac = �p. ◦µp, q. ◦µq�(AM) is the language associated with γc:�Mp

µp←−M µq−→Mq�.
– Φα is the union of the following sets of formulas

• For every p:�γ,Φ�, the prefix-translation Φp of Φ by (p.).
• For every c:�Mp

µp←−M µq−→Mq, Φ�, the translation Φc=�p. ◦ µp, q. ◦ µq�(Φ)
– Λα = {λ∈2Aα

ω: ∀p∈P (λ|Ap∈ΛΦp) ∧ ∀c∈C(λ|Ac∈ΛΦc)}
The set of infinite traces that are projected to models of all processes and channels.

– Πα = {π∈2Aα
∗: ∀p∈P (π|Ap∈ΠΦp) ∧ ∀c∈C(π|Ac∈ΠΦc)}

The set of finite traces that are projected to prefixes of models of all processes and
channels.

We often refer to the ARN through the quadruple �P,C, γ,Φ� where γ returns the

set of ports of the processes that label the nodes and the pair of attachments of the con-

nections that label the edges, and Φ returns the corresponding descriptions. The fact that

the graph is simple — undirected, without self-loops or multiple edges — means that all

interactions between two given processes are supported by a single channel and that no

6

⃞(request¡⊃◇invoice!)
...

request

invoice

SELLERWITHSUPPLIER

⃞(product!⊃◇request¡)

SupplierSeller

product

details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)
...

buy
price

fwd_details

Fig. 2. An example of an ARN with two processes connected through a channel.

Definition 10 (Progress-enabled ARN) We say that an ARN α is progress-enabled iff
∀π∈Πα∃A⊆Aα(π·A)∈Πα.

It is not difficult to see that any ARN α with a single process, such as Seller, is

progress-enabled. This is because the process is isolated. In general, not every port of

every process is necessarily connected to a port of another process. Such ports pro-

vide the points through which the ARN can interact with other ARNs. For example,

SELLERWITHSUPPLIER has a single interaction point, which in Fig. 2 is represented

by projecting the corresponding port to the external box.

Definition 11 (Interaction-point) An interaction-point of an ARN α = �P,C, γ,Φ� is
a pair �p, M� such that p∈P , M∈γp and there is no edge {p, q}∈C labelled with a
connection that involves M . We denote by Iα the collection of interaction-points of α.

Interaction-points are used in the notion of composition that we define for ARNs,

which also subsumes the notion of interconnect of [7]:

Proposition and Definition 12 (Composition of ARNs) Let α1 = �P1, C1, γ1, Φ1� and
α2 = �P2, C2, γ2, Φ2� be ARNs such that P1 and P2 are disjoint, and a family wi =
�M i

1
µi

1←− M µi
2−→ M i

2, Ψ
i� (i = 1 . . . n) of connections for interaction-points �pi

1, M
i
1� of

α1 and �pi
2, M

i
2� of α2 such that pi

1 �= pj
1 if i �= j and pi

2 �= pj
2 if i �= j. The composition

α1

�i=1...n

�pi
1,Mi

1�,wi,�pi
2,Mi

2�
α2

is the ARN defined as follows:

– Its graph is �P1 ∪ P2, C1 ∪ C2 ∪
�

i=1...n{pi
1, p

i
2}�

– Its labelling function coincides with that of α1 and α2 on the corresponding sub-
graphs, and assigns to the new edges {pi

1, p
i
2} the label wi.

Proof. We need to prove that the composition does define an ARN. This is because we
are adding to the sum of the graphs edges between interaction-points that do not share
interaction-points, the resulting graph is simple. It is easy to check that the labels are
well defined.

8

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

the first tricky question…

(When) is the composition of two progress-enabled
ARNs progress enabled?

This needs to be understood in terms of a computational
and communication model in which it is clear what
dependencies exist between the different parties.

We take it to be the responsibility of processes to publish
and process messages, and of channels to deliver them.
This requires that processes are able to buffer incoming
messages and that channels are able to buffer published
messages, thus making them ‘co-operative’.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

co-operative processes

An ARN α is delivery-enabled in relation to an
interaction point <p,M> iff

For every (π.A)∈∏α and B ⊆ D<p,M>={p.m¡: m∈M},
(π.B∪(A\D<p,M>) ∈∏α

That is, any prefix can be extended with any set of
messages delivered at that interaction-point.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

co-operative channels

A channel h=<M,Φ> is publication-enabled iff
For every (π.A)∈∏Φ and B ⊆ Eh={p.m!: m∈M},
(π.B∪(A\Eh) ∈∏Φ

That is, any prefix can be extended by the publication of
a set of messages, i.e. the channel should not prevent
processes from publishing messages.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

First theorem

Let α be a composition of α1 and α2 by
interconnecting interaction points <p1,M1> and
<p2,M2> via a channel h.
Then, α is progress-enabled if:
α1 and α2 are progress-enabled
α1 and α2 are delivery-enabled in relation to <p1,M1>
and <p2,M2>, respectively

h is publication-enabled

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Interfaces

A service interface consists of:
Sets I→ (of provides-points) and I← (of requires-points)

For every provides-point r, a process <{Mr},Φr>

For every requires-point r:
a process <{Mr},Φr> that is delivery-enabled
a channel <Mr,Ψr> that is progress-enabled

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Interfaces

A service interface consists of:
Sets I→ (of provides-points) and I← (of requires-points)

For every provides-point r, a process <{Mr},Φr>

For every requires-point r:
a process <{Mr},Φr> that is delivery-enabled
a channel <Mr,Ψr> that is progress-enabled

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Interfaces
A service interface consists of:

Sets I→ (of provides-points) and I← (of requires-points)
For every provides-point r, a process <{Mr},Φr>
For every requires-point r:

a process <{Mr},Φr> that is delivery-enabled
a channel <Mr,Ψr> that is progress-enabled

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Orchestration

An orchestration of a service interface consists of:

An ARN α that is progress-enabled and delivery-enabled
in relation to all its interaction points
A 1–1 correspondence between the interaction points of
the ARN and the interface points

such that all the properties of the provides-points
are entailed by the ARN that consists of the
composition of α with the requires-points and
associated channels.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Orchestration

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

...

Seller

product
details

buy
price

fwd_details

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Orchestration

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

...

Seller

product
details

buy
price

fwd_details

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Orchestration

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

...

Seller

product
details

buy
price

fwd_details

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

⃞(product¡⊃◇details!)

SELLER*

Seller

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

buy
price

fwd_details

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)product
details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Orchestration

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

...

Seller

product
details

buy
price

fwd_details

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

⃞(product¡⊃◇details!)

SELLER*

Seller

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

buy
price

fwd_details

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)product
details

⊥

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Match and compose

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Match and compose

⊥

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Match and compose

⊥

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Second theorem – compositionality

The composition of the orchestrations of
compatible interfaces is an orchestration of the
composition of the interfaces.

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Second theorem – compositionality

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Second theorem – compositionality

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

...

Seller

product
details

buy
price

fwd_details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Second theorem – compositionality

⃞(request¡⊃◇invoice!)

ISUPPLIER

request
invoice

⃞(request¡⊃◇invoice!)
...

Supplier

request
invoice

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

...

Seller

product
details

buy
price

fwd_details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Second theorem – compositionality

⊥

⃞(request¡⊃◇invoice!)

ISUPPLIER

request
invoice

⃞(request¡⊃◇invoice!)
...

Supplier

request
invoice

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

...

Seller

product
details

buy
price

fwd_details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Second theorem – compositionality

⊥
⃞(request¡⊃◇invoice!)

...

request

invoice

SELLERWITHSUPPLIER

⃞(product!⊃◇request¡)

SupplierSeller

product

details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)
...

buy
price

fwd_details

⃞(invoice!⊃◇details¡)

⃞(request¡⊃◇invoice!)

ISUPPLIER

request
invoice

⃞(request¡⊃◇invoice!)
...

Supplier

request
invoice

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)

...

Seller

product
details

buy
price

fwd_details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Second theorem – compositionality

⊥
⃞(request¡⊃◇invoice!)

...

request

invoice

SELLERWITHSUPPLIER

⃞(product!⊃◇request¡)

SupplierSeller

product

details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)
...

buy
price

fwd_details

⃞(invoice!⊃◇details¡)

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details

⃞(request¡⊃◇invoice!)

ISUPPLIER

request
invoice

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details
⃞(product¡⊃◇details!)

product
details⃞(details!⊃◇details¡)

⃞(product!⊃◇product¡)

ISELLER

product
details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Second theorem – compositionality

⃞(request¡⊃◇invoice!)
...

request

invoice

SELLERWITHSUPPLIER

⃞(product!⊃◇request¡)

SupplierSeller

product

details

⃞(buy¡⊃◇(price!!◇product!))

⃞(details¡⊃◇fwd_details!)
...

buy
price

fwd_details

⃞(invoice!⊃◇details¡)

⃞(buy¡⊃
 ◇(price!!◇fwd_details!))

buy
price

fwd_details

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Conclusions and further work

ARNs
progress-enabled vs consistency

asynchronous model
typically, only bounded buffers are required
actually, typical business protocols (as in SRML) are finite

what is typically unbounded is the ARN (number of
processes and channels)

Thursday, 6 January 2011

Fiad
eiro

&
Lo
p
es@

A
u
sso

is2
0
1
1

Conclusions and further work

Dynamic aspects
we have developed a model of dynamic discovery and
binding (FACJ, ECSA)

it needs to be transposed to ARNs
and analysed for its theoretical properties

Thursday, 6 January 2011

