Nominal Automata

Mikolaj Bojanczyk', Bartek Klin ${ }^{12}$, Slawomir Lasota ${ }^{1}$ 'Warsaw University ${ }^{2}$ University of Cambridge

IFIPWGI.3,Aussois, 08/0I/II

λX. (nominal X)

Nominal Automata

Mikolaj Bojanczyk', Bartek Klin ${ }^{12}$, Slawomir Lasota ${ }^{1}$ 'Warsaw University ${ }^{2}$ University of Cambridge

Finite automata

An automaton:

- set Q of states
- alphabet A
- transition function $\delta: Q \times A \rightarrow Q$
- initial state $q_{0} \in Q$
- accepting states $Q_{a} \subseteq Q$

Finite automata

An automaton:

- set Q of states
- alphabet A
- transition function $\delta: Q \times A \rightarrow Q$
- initial state $q_{0} \in Q$
- accepting states $Q_{a} \subseteq Q$

$$
1
$$

$$
Q \times A \underset{\delta}{\longrightarrow} Q \underset{\alpha}{\longrightarrow} 2
$$

Finite automata

An automaton:

- set Q of states
- alphabet A

finite

- transition function $\delta: Q \times A \rightarrow Q$
- initial state $q_{0} \in Q$
- accepting states $Q_{a} \subseteq Q$

$$
1
$$

$$
Q \times A \underset{\delta}{\longrightarrow} Q \underset{\alpha}{\longrightarrow} 2
$$

Finite automata

An automaton:

- set Q of states
- alphabet $A \longleftrightarrow$ finite
- transition function $\delta: Q \times A \rightarrow Q$
- initial state $q_{0} \in Q$
- accepting states $Q_{a} \subseteq Q$

$$
1
$$

$$
Q \times A \underset{\delta}{\longrightarrow} Q \underset{\alpha}{\longrightarrow} 2
$$

Finite memory automata [FK]

$$
A=\mathbb{N}
$$

Idea: store numbers in configurations...

Finite memory automata [FK]

$$
A=\mathbb{N}
$$

Idea: store numbers in configurations... ... but only compare them for equality

Finite memory automata [FK]

$$
A=\mathbb{N}
$$

- finite set Q of states

Finite memory automata [FK]

$$
A=\mathbb{N}
$$

- finite set Q of states
- finite store R of registers

Finite memory automata [FK]

$$
A=\mathbb{N}
$$

- finite set Q of states
- finite store R of registers

$$
\text { configurations: } X=Q \times(A+1)^{R}
$$

Finite memory automata [FK]

$$
A=\mathbb{N}
$$

- finite set Q of states
- finite store R of registers

$$
\text { configurations: } X=Q \times(A+1)^{R}
$$

- transition function $\delta: X \times A \rightarrow X$
- only checks letters for equality
- new store \subseteq old store \cup \{letter just read $\}$

Finite memory automata [FK]

$$
A=\mathbb{N}
$$

- finite set Q of states
- finite store R of registers

$$
\text { configurations: } X=Q \times(A+1)^{R}
$$

- transition function $\delta: X \times A \rightarrow X$
- only checks letters for equality
- new store \subseteq old store \cup \{ letter just read $\}$
- initial state, accepting states

Example

"The first letter appears again"

$$
L=\left\{a_{1} a_{2} \ldots a_{n} \in \mathbb{N}^{*} \mid \exists k>1 . a_{1}=a_{k}\right\}
$$

Example

"The first letter appears again"

$$
L=\left\{a_{1} a_{2} \ldots a_{n} \in \mathbb{N}^{*} \mid \exists k>1 . a_{1}=a_{k}\right\}
$$

Example

"The first letter appears again"

$$
L=\left\{a_{1} a_{2} \ldots a_{n} \in \mathbb{N}^{*} \mid \exists k>1 . a_{1}=a_{k}\right\}
$$

Example

"The first letter appears again"

$$
L=\left\{a_{1} a_{2} \ldots a_{n} \in \mathbb{N}^{*} \mid \exists k>1 . a_{1}=a_{k}\right\}
$$

"The last letter appears before"

$$
L=\left\{a_{1} a_{2} \ldots a_{n} \in \mathbb{N}^{*} \mid \exists k<n . a_{k}=a_{n}\right\}
$$

Example

"The first letter appears again"

$$
L=\left\{a_{1} a_{2} \ldots a_{n} \in \mathbb{N}^{*} \mid \exists k>1 . a_{1}=a_{k}\right\}
$$

"The last letter appears before"

$$
L=\left\{a_{1} a_{2} \ldots a_{n} \in \mathbb{N}^{*} \mid \exists k<n . a_{k}=a_{n}\right\}
$$

not recognizable

Finite memory automata [FK]

- finite set Q of states
- finite store R of registers

$$
\text { configurations: } X=Q \times(A+1)^{R}
$$

- transition function $\delta: X \times A \rightarrow X$
- only checks letters for equality
- new store \subseteq old store \cup \{ letter just read $\}$
- initial state, accepting states

Finite memory automata [FK]

- finite set Q of states
- finite store R of registers

$$
\text { configurations: } X=Q \times(A+1)^{R}
$$

- transition function $\delta: X \times A \rightarrow X$
- only checks letters for equality
- new store \subseteq old store \cup \{ letter just read $\}$
- initial state, accepting states

Syntactic automata

Myhill-Nerode equivalence: $L \subseteq A^{*}$

$$
v \equiv_{L} w \Longleftrightarrow \forall u \in A^{*} .(v u \in L \Longleftrightarrow w u \in L)
$$

Syntactic automata

Myhill-Nerode equivalence: $L \subseteq A^{*}$

$$
v \equiv_{L} w \Longleftrightarrow \forall u \in A^{*} .(v u \in L \Longleftrightarrow w u \in L)
$$

Fact: $v \equiv_{L} w \Longrightarrow v u \equiv_{L} w u$

Syntactic automata

Myhill-Nerode equivalence: $\quad L \subseteq A^{*}$

$$
v \equiv_{L} w \Longleftrightarrow \forall u \in A^{*} .(v u \in L \Longleftrightarrow w u \in L)
$$

Fact: $v \equiv_{L} w \Longrightarrow v u \equiv_{L} w u$

$$
A^{*} / \equiv_{L} \times A \underset{\sigma^{-}}{\left.\right|^{\bullet}} A^{*} / \equiv_{L} \xrightarrow[\alpha]{\longrightarrow} 2
$$

Initial: $\quad[\epsilon]_{\equiv_{L}}$
Accepting: $\left\{[w]_{\equiv_{L}} \mid w \in L\right\}$

Syntactic automata

Myhill-Nerode equivalence: $\quad L \subseteq A^{*}$

$$
v \equiv_{L} w \Longleftrightarrow \forall u \in A^{*} .(v u \in L \Longleftrightarrow w u \in L)
$$

Fact: $v \equiv_{L} w \Longrightarrow v u \equiv_{L} w u$

Initial: $\quad[\epsilon]_{\equiv_{L}}$
Accepting: $\left\{[w]_{\equiv_{L}} \mid w \in L\right\}$

Minimization problems for F.M.A.

$$
L=\{a b c \mid a \neq b, c \in\{a, b\}\} \subseteq A^{3}
$$

Minimization problems for F.M.A.

$$
L=\{a b c \mid a \neq b, c \in\{a, b\}\} \subseteq A^{3}
$$

Minimization problems for F.M.A.

$$
L=\{a b c \mid a \neq b, c \in\{a, b\}\} \subseteq A^{3}
$$

$$
(*, *) \bullet \xrightarrow[a]{(a, *)} \bullet \xrightarrow[b \neq a]{a} \bullet \xrightarrow[c \in\{a, b\}]{c} \bullet(*, *)
$$

$$
\begin{aligned}
& (*, *) \xrightarrow{a b}(a, b) \\
& (*, *) \xrightarrow{b a}(b, a)
\end{aligned}
$$

Minimization problems for F.M.A.

$$
L=\{a b c \mid a \neq b, c \in\{a, b\}\} \subseteq A^{3}
$$

$$
(*, *) \xrightarrow{a b}(a, b)
$$

$$
(*, *) \xrightarrow{b a}(b, a)
$$

but $a b \equiv{ }_{L} b a$

Minimization problems for F.M.A.

$$
L=\{a b c \mid a \neq b, c \in\{a, b\}\} \subseteq A^{3}
$$

$$
(*, *) \xrightarrow{a b}(a, b)
$$

$$
(*, *) \xrightarrow{b a}(b, a)
$$

but $a b \equiv_{L} b a$

Worse: for any $G \leq \operatorname{Sym}(\{1,2, \ldots, n\})$,

$$
L=\left\{a_{1} \cdots a_{n} b_{1} \cdots b_{n} \mid \exists \pi \in G . \forall i=1 . . n . a_{i}=b_{\pi(i)}\right\}
$$

F.M.A. are equivariant

$$
\text { Fix } G=\operatorname{Sym}(A)
$$

Defn.: A G-set is:

- a set X
- an action ${ }_{-} \boldsymbol{-}^{:}: X \times G \rightarrow X \quad$ (+ axioms)

Defn.: Function $f: X \rightarrow Y$ is equivariant if

$$
f(x \cdot \pi)=f(x) \cdot \pi
$$

F.M.A. are equivariant

$$
\text { Fix } G=\operatorname{Sym}(A)
$$

Defn.: A G-set is:

- a set X
- an action ${ }_{-} \boldsymbol{-}^{:}: X \times G \rightarrow X \quad$ (+ axioms)

Defn.: Function $f: X \rightarrow Y$ is equivariant if

$$
f(x \cdot \pi)=f(x) \cdot \pi
$$

category G-Set

F.M.A. are equivariant

$$
\text { Fix } G=\operatorname{Sym}(A)
$$

Defn.: A G-set is:

- a set X
- an action ${ }_{-} ._{-}: X \times G \rightarrow X \quad$ (+ axioms)

Defn.: Function $f: X \rightarrow Y$ is equivariant if

$$
f(x \cdot \pi)=f(x) \cdot \pi
$$

category G-Set

Fact: In a F.M.A.:

- configurations form a G-set
- $\delta: X \times A \rightarrow X$ is equivariant

G-set automata

Idea: study diagrams

in G-Set.

G-set automata

Idea: study diagrams

$$
X \times A \underset{\delta}{\longrightarrow} X^{\imath} \xrightarrow[\alpha]{ } 2 \text { in } G \text {-Set. }
$$

G-set automata

Idea: study diagrams

$$
X \times A \underset{\delta}{\longrightarrow} X \underset{\alpha}{\longrightarrow} 2 \text { in } G \text {-Set. }
$$

Defn.:The orbit of $x \in X$:

$$
x \cdot G=\{x \cdot \pi \mid \pi \in G\}
$$

G-set automata

Idea: study diagrams

Defn.:The orbit of $x \in X$:

$$
x \cdot G=\{x \cdot \pi \mid \pi \in G\}
$$

In an F.M.A., $Q \cong \operatorname{orbits}(X)$

G-set automata

Idea: study diagrams

Defn.:The orbit of $x \in X$:

$$
x \cdot G=\{x \cdot \pi \mid \pi \in G\}
$$

In an F.M.A., $Q \cong \operatorname{orbits}(X)$
So we require X orbit-finite.

G-set automata

Idea: study diagrams

$$
\begin{array}{ll}
1 & \text { finite? }
\end{array}
$$

$$
X \times A \underset{\delta}{\longrightarrow} X \xrightarrow[\alpha]{\longrightarrow} 2 \text { in } G \text {-Set. }
$$

Defn.: The orbit of $x \in X$:

$$
x \cdot G=\{x \cdot \pi \mid \pi \in G\}
$$

In an F.M.A., $Q \cong \operatorname{orbits}(X)$
So we require X orbit-finite.

Can we model finiteness of the store?

Nominal sets [GP]

Defn.: $C \subseteq A$ supports $x \in X$ if

$$
\forall c \in C \cdot \pi(c)=c \quad \Longrightarrow \quad x \cdot \pi=x
$$

Nominal sets [GP]

Defn.: $C \subseteq A$ supports $x \in X$ if

$$
\forall c \in C . \pi(c)=c \quad \Longrightarrow \quad x \cdot \pi=x
$$

Nominal set: every element has a finite support.

Nominal sets [GP]

Defn.: $C \subseteq A$ supports $x \in X$ if

$$
\forall c \in C . \pi(c)=c \quad \Longrightarrow \quad x \cdot \pi=x
$$

Nominal set: every element has a finite support.
G-Nom: nominal sets and equivariant functions

Nominal sets [GP]

Defn.: $C \subseteq A$ supports $x \in X$ if

$$
\forall c \in C . \pi(c)=c \quad \Longrightarrow \quad x \cdot \pi=x
$$

Nominal set: every element has a finite support.
G-Nom: nominal sets and equivariant functions

Fact: In a nominal set, every x has the least support

Nominal sets [GP]

Defn.: $C \subseteq A$ supports $x \in X$ if

$$
\forall c \in C \cdot \pi(c)=c \quad \Longrightarrow \quad x \cdot \pi=x
$$

Nominal set: every element has a finite support.
G-Nom: nominal sets and equivariant functions

Fact: In a nominal set, every x has the least support

$$
\operatorname{supp}(x)=\{a \in A \mid\{b \in A \mid x \cdot(a b) \neq x\} \text { is infinite }\}
$$

Nominal automata

Nominal automata

- finite set Q of states

Nominal automata

- finite set Q of states
- for each state: finite set R_{q}, group $S_{q} \leq \operatorname{Sym}\left(R_{q}\right)$

Nominal automata

$$
X \times A \underset{\delta}{ } \stackrel{1}{\imath}_{\substack{\imath \\ X}} \quad \text { G-Nom }
$$

- finite set Q of states
- for each state: finite set R_{q}, group $S_{q} \leq \operatorname{Sym}\left(R_{q}\right)$
- transition: $\theta: \coprod_{q \in Q}\left(R_{q}+1\right) \rightarrow \coprod_{p \in Q}\left(\left(R_{q}+1\right)^{R_{p}}\right)$

Nominal automata

$$
X \times A \underset{\delta}{\longrightarrow} \stackrel{1}{\imath}_{\substack{\imath}}^{\alpha} 2 \text { G-Nom }
$$

- finite set Q of states
- for each state: finite set R_{q}, group $S_{q} \leq \operatorname{Sym}\left(R_{q}\right)$
- transition: $\theta: \coprod_{q \in Q}\left(R_{q}+1\right) \rightarrow \coprod_{p \in Q}\left(\left(R_{q}+1\right)^{R_{p}}\right)$
+ a condition involving S_{q}, S_{p}

Nominal automata

$$
X \times A \underset{\delta}{\longrightarrow} \stackrel{1}{\imath}_{\substack{\imath}}^{\alpha} 2 \text { G-Nom }
$$

- finite set Q of states
- for each state: finite set R_{q}, group $S_{q} \leq \operatorname{Sym}\left(R_{q}\right)$
- transition: $\theta: \coprod_{q \in Q}\left(R_{q}+1\right) \rightarrow \coprod_{p \in Q}\left(\left(R_{q}+1\right)^{R_{p}}\right)$ + a condition involving S_{q}, S_{p}
- initial, accepting states

Nominal automata

$$
X=\coprod_{q \in Q}\left(A^{R_{q}} \text { up to } S_{q}\right)
$$

- finite set Q of states
- for each state: finite set R_{q}, group $S_{q} \leq \operatorname{Sym}\left(R_{q}\right)$
- transition: $\theta: \coprod_{q \in Q}\left(R_{q}+1\right) \rightarrow \coprod_{p \in Q}\left(\left(R_{q}+1\right)^{R_{p}}\right)$ + a condition involving S_{q}, S_{p}
- initial, accepting states

Nominal automata

$$
X \times A \underset{\delta}{\stackrel{1}{\downarrow}} \underset{X}{\stackrel{\rightharpoonup}{\imath}} \text { 2 } G \text {-Nom }
$$

$$
\sqrt{\square} \begin{aligned}
& Q=\operatorname{orbits}(X) \\
& R_{q}=\operatorname{supp}(x) \quad S_{q}=G_{x} \quad(x \in q)
\end{aligned}
$$

- finite set Q of states
- for each state: finite set R_{q}, group $S_{q} \leq \operatorname{Sym}\left(R_{q}\right)$
- transition: $\theta: \coprod_{q \in Q}\left(R_{q}+1\right) \rightarrow \coprod_{p \in Q}\left(\left(R_{q}+1\right)^{R_{p}}\right)$ + a condition involving S_{q}, S_{p}
- initial, accepting states

Structured alphabets

Structured alphabets

Q:What if the alphabet is equipped with

- a total order,
- a partial order,
- a graph structure,
which we can check for?

Structured alphabets

Q:What if the alphabet is equipped with

- a total order,
- a partial order,
- a graph structure,
which we can check for?

A: Repeat the theory with some $G \leq \operatorname{Sym}(A)$
E.g. $G=$ monotone bijections of \mathbb{Q}

G-nominal sets

Defn.: $C \subseteq A$ supports $x \in X$ if
$\forall \pi \in G(\forall c \in C . \pi(c)=c$ $\Longrightarrow \quad x \cdot \pi=x)$

Nominal set: every element has a finite support.
G-Nom: G-nominal sets and equivariant functions

G-nominal sets

Defn.: $C \subseteq A$ supports $x \in X$ if
$\forall \pi \in G(\forall c \in C . \pi(c)=c$ $\Longrightarrow \quad x \cdot \pi=x)$

Nominal set: every element has a finite support.
G-Nom: G-nominal sets and equivariant functions

Caution: least supports might not exist.

Representing G-nominal sets

Automaton:

- orbit-finite G-set X

Representing G-nominal sets

Step I: every G-set is a sum of single-orbit ones.

Automaton:

- orbit-finite G-set X

Representing G-nominal sets

Step I: every G-set is a sum of single-orbit ones.

Automaton:

- finite set Q of states
- for each state: single-orbit nominal set X_{q}
- ...

Representing G-nominal sets

Step I: every G-set is a sum of single-orbit ones.
Step 2: for any single-orbit X,

$$
X \cong G / H^{r} \quad \text { for some } H \leq G
$$

Automaton:

- finite set Q of states
- for each state: single-orbit nominal set $\quad X_{q}$
- ...

Representing G-nominal sets

Step I: every G-set is a sum of single-orbit ones.
Step 2: for any single-orbit X,

$$
X \cong G / H^{r} \quad \text { for some } H \leq G
$$

Automaton:

- finite set Q of states
- for each state:
group $H_{q} \leq G$

Representing G-nominal sets

Step I: every G-set is a sum of single-orbit ones.
Step 2: for any single-orbit X,

$$
X \cong G / H^{r} \quad \text { for some } H \leq G
$$

Step 3: X nominal iff H open:
$G_{C}=\left\{\pi \in G \mid \pi_{C}=\mathrm{id}\right\} \leq H$ for some $C \subseteq \subseteq_{\text {fin }} A$

Automaton:

- finite set Q of states
- for each state:
group $H_{q} \leq G$

Representing G-nominal sets

Step I: every G-set is a sum of single-orbit ones.
Step 2: for any single-orbit X,

$$
X \cong G / H^{r} \quad \text { for some } H \leq G
$$

Step 3: X nominal iff H open:
$G_{C}=\left\{\pi \in G \mid \pi_{C}=\mathrm{id}\right\} \leq H$ for some $C \subseteq \subseteq_{\text {fin }} A$

Automaton:

- finite set Q of states
- for each state: open group $H_{q} \leq G$
- ...

Representing G-nominal sets

Step I: every G-set is a sum of single-orbit ones.
Step 2: for any single-orbit X,

$$
X \cong G / H^{r} \quad \text { for some } H \leq G
$$

Step 3: X nominal iff H open:
$G_{C}=\left\{\pi \in G \mid \pi_{C}=\mathrm{id}\right\} \leq H$ for some $C \subseteq \subseteq_{\text {fin }} A$
Step 4: ...
Automaton:

- finite set Q of states
- for each state: open group $H_{q} \leq G$
- ...

Fraïssé limits

Idea: - \mathbb{N} universally embeds finite sets

- \mathbb{Q} universally embeds finite total orders
- universal partial order? graph? etc.

Fraïssé limits

Idea: - \mathbb{N} universally embeds finite sets

- \mathbb{Q} universally embeds finite total orders
- universal partial order? graph? etc.

Fraïssé construction:

a class of finite rel. structures closed under

- isomorphisms
- substructures
- amalgamation
has a countable "limit" \mathcal{U} that embeds them.

Fraïssé limits

Idea: - \mathbb{N} universally embeds finite sets

- \mathbb{Q} universally embeds finite total orders
- universal partial order? graph? etc.

Fraïssé construction:

a class of finite rel. structures closed under

- isomorphisms
- substructures
- amalgamation
has a countable "limit" \mathcal{U} that embeds them.

$$
\text { We use } G=\operatorname{Aut}(\mathcal{U}) \leq \operatorname{Sym}(|\mathcal{U}|)
$$

Fraïssé automata

Fix a class \mathcal{K} of relational structures
(subject to conditions)

Fraïssé automata

Fix a class \mathcal{K} of relational structures

(subject to conditions)

Automaton:

- finite set Q of states
- for each state: fin. structure R_{q},

$$
\text { group } S_{q} \leq A u t\left(R_{q}\right)
$$

Fraïssé automata

Fix a class \mathcal{K} of relational structures

(subject to conditions)

Automaton:

- finite set Q of states
- for each state: fin. structure R_{q},

$$
\text { group } S_{q} \leq A u t\left(R_{q}\right)
$$

configurations: embeddings of R_{q} in \mathcal{U} up to S_{q}

Fraïssé automata

Fix a class \mathcal{K} of relational structures

(subject to conditions)

Automaton:

- finite set Q of states
- for each state: fin. structure R_{q},

$$
\text { group } S_{q} \leq A u t\left(R_{q}\right)
$$

configurations: embeddings of R_{q} in \mathcal{U} up to S_{q}

- transition function:
- initial, accepting states

More fun

More fun

In Fraïssé situations, we represent in a finite way:

- G-nominal sets
- subsets, products
- equivariant functions and relations
- ${ }^{\text {st }}$-order logic is decidable on orbit-finite sets

More fun

In Fraïssé situations, we represent in a finite way:

- G-nominal sets
- subsets, products
- equivariant functions and relations
- |st-order logic is decidable on orbit-finite sets

So we can represent:

- automata
- push-down automata
- Turing machines

More fun

In Fraïssé situations, we represent in a finite way:

- G-nominal sets
- subsets, products
- equivariant functions and relations
- ${ }^{\text {st }}$-order logic is decidable on orbit-finite sets

So we can represent:

- automata
- push-down automata
- Turing machines

