
The Java Memory Model:
Operationally, Axiomatically, Denotationally

Alexander Knapp
Universität Augsburg

Joint work with Pietro Cenciarelli, Eleonora Sibilio
Università di Roma “La Sapienza”

“Old” Java Memory Model: Actions
I Regulating information exchange between thread-local

“working” and shared “main” memory

0

2

1

2

2

1

Write

Read

Main
memory

o.x

o.y

o.y

o

o

Assign

Thread’s
working memory

Use

o.y

o.x

Load

Store

Unlock

Lock

o.x

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 2/28

“Old” Java Memory Model: Constraints
“Java Language Specification” (J. Gosling, B. Joy, G. Steele 1996,
2000)

I “A Store action by thread θ on variable l must intervene
between an Assign action by θ of l and a subsequent Load
action by θ of l. Less formally, a thread is not permitted to lose
its most recent assign.”

a : (Assign, θ, l) ≤ l : (Load, θ, l)⊃
a : (Assign, θ, l) ≤ s : (Store, θ, l) ≤ l : (Load, θ, l)

I “The actions on the master copy of any given variable on
behalf of a thread are performed by the main memory in
exactly the order that the thread requested.”

s : (Store, θ, l) ≤ l : (Load, θ, l)⊃ writeof (s) ≤ readof (l)

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 3/28

Drawbacks of the “Old” Java Memory Model (1)

Breaking standard compiler optimsations (J.-W. Maessen, Arvind,
X. Shen 2000)

/ Disallowed when p and q reference the same location:

int i = p.x;
int j = q.x;
int k = p.x;

6→
int i = p.x;
int j = q.x;
int k = i;

int i = p.x;
int j = q.x;
int k = p.x;

p.x = 1;
p.x = 2;

Possible solution: Relaxation of action ordering constraints

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 4/28

Drawbacks of the “Old” Java Memory Model (2)
Breaking standard concurrency idioms (W. Pugh 1999sqq.)

/ “Double-checked locking”
class Foo {

private Helper helper = null;

public Helper getHelper() {
if (helper == null) {

synchronized (this) {
if (helper == null) // another thread

helper = new Helper(); // may see helper
} // uninitialised

}
return helper;

}
}

Possible solution: Special actions for constructors and final fields

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 5/28

Alternative Java Memory Models

I Omitting buffered Store and Load actions

Cache

Buffer

Thread

Cache

Buffer

Thread

Assign

Store

Write

Load

Read

Use

Shared Memory

I Relaxing unsynchronised Read actions
I Pugh’s approach (J. Manson, W. Pugh 1999sqq.)
I Commit–Reconcile–Fence models (J.-W. Maessen, Arvind,

X. Shen 2000)
I Uniform memory model (Y. Yang, G. Gopalakrishnan,

G. Lindstrom 2002)

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 6/28

Overview

I “New” Java memory model
I Axioms for the Java memory model

I Configuration structures
I Configuration theories
I Application to Java

I Operational semantics
I Towards denotational semantics

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 7/28

“New” Java Memory Model: Overview (1)
JSR-133; J. Manson, W. Pugh, S. V. Adve 2005; “Java Language
Specification” (J. Gosling, B. Joy, G. Steele, G. Bracha 2005)

I Causality-based model partially captured by happens-before
consistency

Happens-before: program and synchronisation order

x == y == 0
r1 = x; r2 = y;
y = 1; x = 1;

r1 == r2 == 1 possible

A Read r of a variable v is allowed to observe a Write w to v if
I r does not happen-before w; and
I there is no Write w′ such that w happens-before w′ and w′

happens-before r.

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 8/28

“New” Java Memory Model: Overview (2)
I Commitment-based verification scheme for preventing

“out-of-thin-air” results

x == y == 0
r1 = x; r2 = y;
if (r1 != 0) if (r2 != 0)
y = 1; x = 1;
only r1 == r2 == 0 possible

Verification of an execution

E = (P, A, ≤po︸︷︷︸
prog. ord.

, ≤so︸︷︷︸
sync. ord.

, W︸︷︷︸
write seen

, V︸︷︷︸
value written

, ≤sw︸︷︷︸
sync. with

, ≤hb︸︷︷︸
happens-before

)

by committing actions (Ci)i∈I ⊆ A through executions

Ei = (P, Ai,≤po,i,≤so,i, Wi, Vi,≤sw,i,≤hb,i)

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 9/28

“New” Java Memory Model: Example
x == y == 0

r1 = x; r2 = y;
y = 1; x = 1;

r1 == r2 == 1 possible

0 0

0 0

0 0r1 = xr1 = x r2 = y

x = 1

y = 1y = 1 x = 1

r1 = x

x = 1

r2 = y r1 = x r2 = y

y = 1y = 1 x = 1

r2 = y

E0 E1

EE2

committed

write seen

read
happens-

before

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 10/28

Problems of the “New” Java Memory Model
I Independent statements cannot necessarily be exchanged

I in contrast to claim by J. Manson, W. Pugh, S. V. Adve
(POPL’05)

x == y == z == 0
r1 = x; r3 = z;
r2 = y; if (r3 == 1) {
if (r1 == 1 && r2 == 1) x = 1; // order
z = 1; y = 1; // matters

}
else
y = 1;
x = 1;

}

I Integration into operational semantics
I Guessing of final execution
I Connection between actions and program

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 11/28

Configuration Structures

Configuration structure (E,C) with C ⊆ ℘E, C 6= ∅
I Events E in a concurrent system
I Configuration C ∈ C partial, concurrent computation
I Subconfigurations C (C) = {D ∈ C | D ⊆ C}

satisfying for each C ∈ C

I Coincidence-freedom: a 6= b ∈ C ⊃ ∃D ∈ C (C) . a ∈ D ⇐⇒ b /∈ D
I ensures partial order of events in a configuration

a ≤C b ⇐⇒ ∀D ∈ C (C) . b ∈ D⊃ a ∈ D
I Finiteness: a ∈ C ⊃ ∃D ∈ C (C) . a ∈ D ∧ |D| < ∞

I ensures finite causes
I Monotonicity: ∀D ∈ C (C) . a ≤D b⊃ a ≤C b

I ensures preservation of event order over extensions

(introduced by G. Plotkin, R. van Glabbeek 1995)

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 12/28

Stable Configuration Structures
I In stable configuration structures, causality can be faithfully

represented by partial orders.

Configuration structure (E,C) stable
I Connectedness: ∀∅ 6= C ∈ C .∃a ∈ C . C \ {a} ∈ C

I implies coincidence freeness
I Closed under non-empty bounded unions and intersections

I A, B ∈ C bounded, if A, B ∈ C (C) for some C ∈ C

But: Too strong a requirement

Unlock′LockUnlock Lock′ not stable

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 13/28

Configuration Theories

I Logic for configuration structures
I Sequents of the form

ρ : C1, . . . , Cm ⇒ D1, . . . , Dn (Ci, Dj partial orders, ρij : Ci ⊂⇀ Dj)

Ci premises (conjunctive), Dj conclusions (disjunctive)
I Interpretation: Partial orders Ci are combined and extended by

ρ into partial orders Dj

(introduced by P. Cenciarelli 2002)

But restrict interpretation to computations
I Computation of C ∈ C : maximal stable sub-configuration

structure D ⊆ C (C) with C ∈ D

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 14/28

Configuration Theories: Satisfaction

(E,C) |= ρ : Γ ⇒ ∆

I if Γ can be interpreted in a computation (of) C ∈ C

I then there is a computation (of) D ∈ C with C ∈ C (D) such that
a ∆k can be consistently interpreted in D

Γi ⊂
ρik → ∆k

C

γi

↓

∩

⊂ → D

d

↓

∩

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 15/28

Application to Java: Axioms (1)

I Ordering

⇒ ,a b
a

b

b

a

if a � b

where a affects b if
I (W, θ, x) � (θ, x)
I (θ, x) � (U, θ)
I (L, θ) � (θ, x)
I (L, θ) � (U, θ)
I (θ, m) � (L, ζ, m)

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 16/28

Application to Java: Axioms (2)

I Reading from “shared memory”
I Values read from synchronised threads are most recent

⇒. . .

.

(R, θ, x, v)

(W, ζ1, x, w1) (W, ζk, x, wk)

(W, χ1,1, x, v) (W, χ1,n1 , x, v) (W, χk,1, x, v) (W, χk,nk , x, v)
* * * *

* * (R, θ, x, v)

(W, ξ, x, v)!

if v 6= wi for all 1 ≤ i ≤ k

I Locking and unlocking

⇒(U, θ, m)n
(U, θ, m)n

(L, θ, m)n

(L, θ, m)

(L, ζ, m)n

(L, θ, m)

(U, ζ, m)n
⇒ if θ 6= ζ

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 17/28

Integration with Operational Semantics

I Integration of Java configurations into operational semantics
I Prescient extension of Java configuration
I Validate guess by executing program and confirming events

I Java configurations represent mainly happens-before
I Relaxation of ordering on different variables in a thread
I Dependency of Read on Write added

I But: Not enough to capture causality

x == y == 0
r1 = x; r2 = y;
if (r1 != 0) if (r2 != 0)
y = 1; x = 1;
only r1 == r2 == 0 possible

I Additionally record dependencies of Write on Read
I Confirm dependencies when validating a configuration

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 18/28

Tagged Java Configurations

I Dependencies set of Read events
I Tagged Java configuration (C, t)

I Java configuration C
I tagging t : {e | e : (W) ∈ C} → B t(e) = tt ⇔ “prescient”

I Extending a tagged Java configuration η ⊕ A
I conservative extension of order and tagging
I if A = (W), new event tagged as “prescient”

I Confirming a Write η ↓δ (W)
I prescient e : (W) ∈ η with all previous Writes non-prescient
I with d ≤ e for all d ∈ δ
I make e non-prescient

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 19/28

A Simple Java Fragment

D-Term ::= D-Stm | D-Expr
D-Stm ::= Stm Dep

D-Expr ::= Expr Dep
Stm ::= ; | Var = D-Expr ; | D-Stm Stm

| if(D-Expr) D-Stm else D-Stm
| synchronized(Mon) D-Stm
| synchronized (Mon) D-Stm

Expr ::= Val | Lit | Var | Expr BOp Expr

I x = 1; becomes (x = (1)∅ ;)∅

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 20/28

Operational Semantics

[var] (θ, (x)δ), η → (θ, (v)δ,(Read,θ,x,v)), η ⊕ (Read, θ, x, v)

[assign2] (θ, (x = (v)δ0 ;)δ), η → (θ, (;)δ), η ↓δ,δ0 (Write, θ, x, v)

[if4]
(s1)δ,δ1 , η → (s′1)δ,δ′1

, η′ (s2)δ,δ2 , η → (s′2)δ,δ′2
, η′

(if ((v)δ0) (s1)δ1 else (s2)δ2)δ, η →
(if ((v)δ0) (s′1)δ′1

else (s′2)δ′2
)δ, η

′

[syn1] (θ,synchronized (m) p), η →
(θ, synchronized (m) p), η ⊕ (Lock, θ, m)

[syn3] (θ, synchronized (m) (;)δ0), η → (θ,;), η ⊕ (Unlock, θ, m)

[pre] T, η → T, η ⊕ (W)

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 21/28

Operational Semantics: Example (1)

x == y == 0
r1 = x; r2 = y;
y = 1; x = 1;

r1 == r2 == 1 possible

I Configuration to be confirmed

(R, θ1,x, 1)
?

(W, θ1,r1, 1)

(W, θ1,y, 1)

*
(R, θ2,y, 1)

?
(W, θ2,r2, 1)

(W, θ2,x, 1)

Y

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 22/28

Operational Semantics: Example (2)
x == y == 0

r1 = x; r2 = y;
if (r1 == 1) if (r2 == 1)
y = 1; x = 1;

else
x = 1;

r1 == r2 == 1 possible

I Configuration to be confirmed

(R, θ1,x, 1)
?

(W, θ1,r1, 1)
?

(R, θ1,r1, 1)
?

(W, θ1,y, 1)

�

(R, θ2,y, 1)
?

(W, θ2,r2, 1)
?

(R, θ2,r2, 1)

(W, θ2,x, 1)

I

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 23/28

Operational Semantics: Correctness

I From computation ~γ = (T0, η0) → · · · → (Tn, ηn) construct
well-formed execution

exec(~γ) = (T, |ηn|, po(~γ), so(~γ), W(~γ), V(~γ), sw(~γ), hb(~γ))

I Construct validating sequence (X(~γ)i, C(~γ)i)0≤i≤n by inductively
committing minimal events of ηi \ C(~γ)i

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 24/28

Operational Semantics: Incompleteness (1)
I In order to handle

x == y == z == 0
r1 = x; r3 = z;
r2 = y; if (r3 == 1) {
if (r1 == 1 && r2 == 1) x = 1;
z = 1; y = 1;

}
else
y = 1;
x = 1;

}

I use

(s1)δ,δ1 , η →+ (s′1)δ,δ′1
, η′ (s2)δ,δ2 , η →+ (s′2)δ,δ′2

, η′

(if ((v)δ0) (s1)δ1 else (s2)δ2)δ, η →
(if ((v)δ0) (s′1)δ′1

else (s′2)δ′2
)δ, η

′

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 25/28

Operational Semantics: Incompleteness (2)

I What about

x == y == 0
r3 = x; r2 = y;
if (r3 == 0) x = r2;
x = 42;

r1 = x;
y = r1;
r1 == r2 == r3 == 42 possible

I “A compiler could determine that the only values ever assigned to x

are 0 and 42. From that, the compiler could deduce that, at the point
where we execute r1 = x, either we had just performed a write of 42
to x, or we had just read x and seen the value 42. In either case, it
would be legal for a read of x to see the value 42.” (J. Manson,
W. Pugh, S. V. Adve 2005)

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 26/28

Towards a Denotational Semantics

I Configuration structure JTK for program T
I for each operational computation configurations C of events

I events generated by [var], [pre], [syn1], [syn3]
I downwards closure

I JTK satisfies Java axioms

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 27/28

Conclusions and Future Work

I Integration of “new” Java memory model with operational
semantics

I Axioms for memory based on configuration theories
I Dependencies for causality

I How to capture global static analyses?
I Transactional Java?

A. Knapp: The Java Memory Model — Operationally, Axiomatically, Denotationally 28/28

