Another Old Story: Compositional Property-oriented Semantics for Structured Specifications

Andrzej Tarlecki

Institute of Informatics, University of Warsaw and Institute of Computer Science, Polish Academy of Sciences Warsaw, Poland

Thanks to: Don Sannella, and others...

Working within an arbitrary institution

$$\mathbf{I} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$$

where
$$\sigma \colon \Sigma \to \Sigma'$$
 in Sign, $M' \in |\mathbf{Mod}(\Sigma')|, \varphi \in \mathbf{Sen}(\Sigma),$
 $M'|_{\sigma}$ stands for $\mathbf{Mod}(\sigma)(M')$, and $\sigma(\varphi)$ for $\mathbf{Sen}(\sigma)(\varphi)$.

With further notation/concepts, like:

- model class of a set of sentences: $Mod_{\Sigma}[\Phi]$
- theory of a model class: $Th_{\Sigma}[\mathcal{M}]$
- closure of a set of sentences: $Cl_{\Sigma}(\Phi) = Th_{\Sigma}[Mod_{\Sigma}[\Phi]]$
- semantic consequence $\Phi \models \varphi$: $\varphi \in Cl_{\Sigma}(\Phi)$

 $SP \in Spec$

Adopting the model-theoretic view of specifications

The meaning of any specification $SP \in Spec$ built over **I** is given by:

- its signature $Sig[SP] \in |\mathbf{Sign}|$, and
- a class of its models $Mod[SP] \subseteq |Mod(Sig[SP])|$.

This yields the usual notions:

- semantic equivalence: $SP_1 \equiv SP_2$,
- semantic consequence: $SP \models \varphi$,
- theory of a specification: $Th[SP] = \{\varphi \mid SP \models \varphi\}$, etc

$$\label{eq:standard structured specifications} \begin{aligned} & \textbf{Flat specifications} \\ \textbf{Flat specification:} \quad & \left< \Sigma, \Phi \right> \right> & - \text{ for } \Sigma \in |\textbf{Sign}| \text{ and } \Phi \subseteq \textbf{Sen}(\Sigma): \\ & Sig[\langle \Sigma, \Phi \rangle] = \Sigma \\ & Mod[\langle \Sigma, \Phi \rangle] = Mod[\Phi] \\ \textbf{Union:} \quad & \overline{SP_1 \cup SP_2} & - \text{ for } SP_1 \text{ and } SP_2 \text{ with } Sig[SP_1] = Sig[SP_2]: \\ & Sig[SP_1 \cup SP_2] = Sig[SP_1] \\ & Mod[SP_1 \cup SP_2] = Mod[SP_1] \cap Mod[SP_2] \\ \textbf{Translation:} \quad & \overline{\sigma(SP)} & - \text{ for any } SP \text{ and } \sigma: Sig[SP] \to \Sigma': \\ & Sig[\sigma(SP)] = \Sigma' \\ & Mod[\sigma(SP)] = \{M' \in |\textbf{Mod}(\Sigma')| \mid M'|_{\sigma} \in Mod[SP]\} \\ \textbf{Hiding:} \quad & \overline{SP'|_{\sigma}} & - \text{ for any } SP' \text{ and } \sigma: \Sigma \to Sig[SP']: \\ & Sig[SP'|_{\sigma}] = \Sigma \\ & Mod[SP'|_{\sigma}] = \{M'|_{\sigma} \mid M' \in Mod[SP']\} \end{aligned}$$

Proving semantic consequence

The standard compositional proof system

$$\begin{array}{ll} \varphi \in \Phi & SP_1 \vdash \varphi \\ \hline \langle \Sigma, \Phi \rangle \vdash \varphi & \overline{SP_1 \cup SP_2 \vdash \varphi} & SP_2 \vdash \varphi \\ \\ \hline \frac{SP \vdash \varphi}{\sigma(SP) \vdash \sigma(\varphi)} & \frac{SP' \vdash \sigma(\varphi)}{SP' \mid \sigma \vdash \varphi} \end{array} \end{array}$$

Plus a *structural rule*:

$$\frac{\text{for } i \in J, SP \vdash \varphi_i \quad \{\varphi_i\}_{i \in J} \models \varphi}{SP \vdash \varphi}$$

Andrzej Tarlecki: WG 1.3 meeting, Aussois 2011

Soundness & completeness

$$SP \vdash \varphi \implies SP \models \varphi$$

Fact: If the category of signatures has pushouts, the institution admits amalgamation and interpolation (and has implication and ...) then

$$SP \vdash \varphi \iff SP \models \varphi$$

In general: there is *no* sound and complete *compositional* proof system for semantic consequence for structured specifications because:

Claim: The best sound and compositional proof system one can have is given above.

Property-oriented semantics

 $\mathcal{T}\colon Spec \to Theories$

such that for $SP \in Spec$, if $Sig[SP] = \Sigma$ then $\mathcal{T}(SP) \subseteq \mathbf{Sen}(\Sigma)$ is a Σ -theory.

Functoriality not required!

Example: $Th: Spec \rightarrow Theories given by <math>Th(SP) = Th[SP]$.

Would be perfect, but is not compositional

The standard compositional property-oriented semantics

 $\mathcal{T}_0: Spec \to Theories$

The standard property-oriented semantics that assigns a Σ -theory $\mathcal{T}_0(SP)$ to any well-formed structured Σ -specification SP built from flat specifications using union, translation and hiding is given by:

$$\begin{aligned} \mathcal{T}_0(\langle \Sigma, \Phi \rangle) &= Cl_{\Sigma}(\Phi) \\ \mathcal{T}_0(SP \cup SP') &= Cl_{Sig[SP]}(\mathcal{T}_0(SP) \cup \mathcal{T}_0(SP')) \\ \mathcal{T}_0(\sigma(SP)) &= Cl_{\Sigma}(\sigma(\mathcal{T}_0(SP))) \\ \mathcal{T}_0(SP|_{\sigma}) &= \sigma^{-1}(\mathcal{T}_0(SP)) \end{aligned}$$

Getting there...

The standard compositional property-oriented semantics is determined by the compositional proof system as given above:

$$\varphi \in \mathcal{T}_0(SP)$$
 iff $SP \vdash \varphi$

for $\varphi \in \mathbf{Sen}(Sig[SP])$.

Claim: T_0 is the best sound and compositional property-oriented semantics for all specifications built from flat specifications using union, translation and hiding.

Specification-building operations

We work with specifications built by *specification-building operations*:

sbo: $Spec(\Sigma_1) \times \cdots \times Spec(\Sigma_n) \to Spec(\Sigma)$

where $Spec(\Sigma) = \{SP \in Spec \mid Sig[SP] = \Sigma\}.$

Specifications in Spec are built using a family of **sbo**'s

For instance:

- $_\cup_: Spec(\Sigma) \times Spec(\Sigma) \rightarrow Spec(\Sigma)$, for each $\Sigma \in |\mathbf{Sign}|$
- $\sigma(_): Spec(\Sigma) \to Spec(\Sigma')$, for each $\sigma: \Sigma \to \Sigma'$

•
$$|_{\sigma}: Spec(\Sigma') \to Spec(\Sigma)$$
, for each $\sigma: \Sigma \to \Sigma'$

• $\langle \Sigma, \Phi \rangle : \rightarrow Spec(\Sigma)$, for each $\Sigma \in |\mathbf{Sign}|, \Phi \subseteq \mathbf{Sen}(\Sigma)$

About property-oriented semantics $\mathcal{T}: Spec \rightarrow Theories$

- \mathcal{T} is compositional if $\mathcal{T}(\mathbf{sbo}(SP)) = \mathcal{T}(\mathbf{sbo}(SP'))$ when $\mathcal{T}(SP) = \mathcal{T}(SP')$.
- \mathcal{T} is monotone if $\mathcal{T}(\mathbf{sbo}(SP)) \subseteq \mathcal{T}(\mathbf{sbo}(SP'))$ when $\mathcal{T}(SP) \subseteq \mathcal{T}(SP')$.
- \mathcal{T} is sound if $\mathcal{T}(SP) \subseteq Th[SP]$.
- (sound) \mathcal{T} is complete if $\mathcal{T}(SP) = Th[SP]$.
- (sound) \mathcal{T} is one-step complete (for sbo) if $\mathcal{T}(\mathsf{sbo}(SP)) = Th[\mathsf{sbo}(SP)]$ when $Mod_{Sig[SP]}[\mathcal{T}(SP)] = Mod[SP]$.
- \mathcal{T} is non-absentminded if $\Phi \subseteq \mathcal{T}(\langle \Sigma, \Phi \rangle)$.
- \mathcal{T} is flat complete if $\mathcal{T}(\langle \Sigma, \Phi \rangle) = Cl_{\Sigma}(\Phi)$.

Some trivia

- Monotonicity implies compositionality, but not vice versa.
 - Compositionality admits rules with negative premises?
- Flat completeness and non-absentmindedness are equivalent for sound \mathcal{T} .
- One-step completeness for flat specifications, viewed as nullary specification-building operations, is the same as flat completeness.

Fact: The standard property-oriented semantics is good:

 \mathcal{T}_0 is monotone, sound, one-step complete, etc.

One-step completeness does not imply completeness

Key theorem

Fact: Let \mathcal{T}_s and \mathcal{T} be property-oriented semantics for specifications in Spec, including all flat specifications. Let \mathcal{T}_s be sound, monotone and one-step complete, and \mathcal{T} be sound, compositional and non-absentminded. Then \mathcal{T}_s is at least as strong as \mathcal{T} : for every $SP \in Spec$,

$$\mathcal{T}(SP) \subseteq \mathcal{T}_s(SP)$$

Consequently:

 T_0 is stronger than any sound, compositional and non-absentminded property-oriented semantics for structured specifications built from flat specifications using union, translation and hiding.

Instead of conclusions

Exercise: Check if the assumption that T is non-absentminded in the key theorem and its corollary is necessary.

Sketch of a counterexample

to be (checked and) adjusted to the standard case

Consider signatures Σ , Σ' with $\sigma: \Sigma \to \Sigma'$. Let $\mathbf{Sen}(\Sigma) = \{\alpha\}$, $\mathbf{Sen}(\Sigma') = \{\alpha, \beta\}$, with σ -translation preserving α , and let $\mathbf{Mod}(\Sigma) = \mathbf{Mod}(\Sigma') = \{M_1, M_2, M_3\}$, with the identity σ -reduct. Put $M_1 \models \alpha$, $M_2 \not\models \alpha$, $M_3 \models \alpha$, $M_1 \models \beta$, $M_2 \not\models \beta$, $M_3 \not\models \beta$. Suppose we have a Σ -specification $B^A D$ with $Mod[B^A D] = \{M_1\}$.

Let \mathcal{T} be such that it drops the axiom α in all flat specifications and $\mathcal{T}(B^A D) = \{\alpha\}$ and $\mathcal{T}(\sigma(B^A D)) = \{\alpha, \beta\}$. \mathcal{T} may be given by the structural rule plus:

$$\frac{\beta \in \Phi'}{\langle \Sigma', \Phi' \rangle \vdash \beta} \qquad \frac{B^A D \vdash \alpha}{B^A D \vdash \alpha} \qquad \frac{SP \vdash \alpha}{\sigma(SP) \vdash \beta}$$

Then \mathcal{T} is sound and compositional, but for $\sigma(B^A D)$ it is stronger than the expected sound, monotone and one-step complete property-oriented semantics \mathcal{T}_s , which yields $\mathcal{T}_s(B^A D) = \{\alpha\}$ and $\mathcal{T}_s(\sigma(B^A D)) = \{\alpha\}$.