
Algebraic simulations

Narciso Martí-Oliet
(joint work with José Meseguer and Miguel Palomino)

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

narciso@sip.ucm.es

IFIP WG 1.3
Braga, Portugal
March 23, 2007

Introduction

I The Maude system includes a model checker to prove
temporal properties of systems.

I In many cases it is necessary to abstract a system in order to
obtain another system with a small enough number of
states.

I In other cases we have to provide more concrete details in
the specification of a system, for example when refining or
implementing a specification.

I In general we need to have concepts and methods
justifying that a system simulates another.

Goals

I Generalize the notion of simulation between computational
systems as much as possible.

I Provide general representability results of simulations in
rewriting logic, an executable framework with good
properties for representing concurrent systems.

I Simulations are essential for compositional reasoning.
I Simulations reflect interesting classes of temporal logic

properties.
I The more general the notion, the wider its applicability.
I Representability in rewriting logic is motivated by ease of

specification, because it is a flexible framework, and
executability.

Representing computational systems

I The behavior of state-based systems is represented by
means of transition systems A = (A,→A), where

I A is a set of states, and
I →A ⊆ A × A is a binary relation called the transition

relation.

I To reason about system properties it is necessary to say
which atomic propositions hold in a state.
A Kripke structure is a triple A = (A,→A, LA), where

I (A,→A) is a transition system such that →A is a total
relation, and

I LA : A → P(AP) is a labelling function associating each
state with the set of atomic properties in AP that it satisfies.

Relating Systems

A simulation H : A −→ B should:

I Reflect interesting properties: if something is true in B it
must also hold in A.

1. It provides a way of showing that implementation A
satisfies specification B.

2. It allows to study properties of specification A in a simpler
system, or abstraction, B.

I Be compositional.

Basic simulations

I Given two transition systems A = (A,→A) and
B = (B,→B), a simulation of transition systems H : A −→ B
is a binary relation H ⊆ A × B such that if a →A a′ and aHb
then there exists b′ ∈ B with b →B b′ and a′Hb′.

a −→A a′

H H
b −→B b′

I Given two Kripke structures A = (A,→A, LA) and
B = (B,→B, LB) over the same set AP of atomic
propositions, an AP-simulation H : A −→ B of A by B is a
simulation H : (A,→A) −→ (B,→B) of transition systems
such that if aHb then LB(b) = LA(a).

Reflection of properties

I An AP-simulation H : A −→ B reflects the satisfaction of a
formula ϕ ∈ CTL∗(AP) when either

I ϕ is a state formula and then B, b |= ϕ and aHb imply
A, a |= ϕ; or

I ϕ is a path formula and then B, ρ |= ϕ and πHρ imply
A, π |= ϕ.

Theorem (reflection theorem)

AP-simulations reflect the satisfaction of all formulas in the logic
ACTL∗(AP).

Generalizing simulations

I By slightly restricting the logic, the definition can be
generalized.

I If negations are not allowed it is enough to require:

aHb implies LB(b) ⊆ LA(a)

(Notice that negations can always be pushed to the atoms
and be replaced by additional propositions.)

I The requirement that transitions can be mimicked is too
strong when we try to relate systems of different
granularity. If the Next operator is forbidden, transitions
need be mimicked only up to stuttering.

• //

�
� • //

�
� • // • //

�
� • // · · ·

• //

y
y

y
y • //

E
E

E
E

• //

E
E

E
E

R R R R R R R • //

E
E

E
E

y
y

y
y • // · · ·

Stuttering simulations

I Let A = (A,→A) and B = (B,→B) be transition systems
and H ⊆ A × B a relation. Given a path π in A and a path ρ
in B, we say that ρ H-matches π if there are strictly
increasing functions α, β : N −→ N with α(0) = β(0) = 0
such that, for all i, j, k ∈ N, if α(i) ≤ j < α(i + 1) and
β(i) ≤ k < β(i + 1), then π(j)Hρ(k).

I Example: the beginning of two matching paths, with
broken lines meaning related elements, and where
α(0) = β(0) = 0, α(1) = 2, β(1) = 3, α(2) = 5, β(2) = 4, etc.

π • //

�

� • //

�

� • // • //

�

� • // · · ·

ρ • //

z
z

z
z • //

D
D

D
D

• //

D
D

D
D

R R R R R R R • //

D
D

D
D

z
z

z
z • // · · ·

Stuttering simulations

I Given two transition systems A and B, a stuttering
simulation of transition systems H : A −→ B is a binary
relation H ⊆ A × B such that if aHb then for each path π in
A beginning in a there exists a path ρ in B beginning in b
which H-matches π.

I Given two Kripke structures A = (A,→A, LA) and
B = (B,→B, LB) over AP, a stuttering AP-simulation
H : A −→ B is a stuttering simulation of transition systems
H : (A,→A) −→ (B,→B) such that if aHb then
LB(b) ⊆ LA(a).

Well-founded simulations

I Let A = (A,→A) and B = (B,→B) be transition systems. A
relation H ⊆ A × B is a well-founded simulation of transition
systems from A to B if there exist functions µ : A× B −→ W
and µ′ : A × A × B −→ N, with (W, <) a well-founded
order, such that if aHb and a →A a′, then either

I there exists b′ such that b →B b′ and a′Hb′, or
I a′Hb and µ(a′, b) < µ(a, b), or
I there exists b′ such that b →B b′, aHb′, and

µ′(a, a′, b′) < µ′(a, a′, b).

I Notice that when H is a function only the first two
conditions are applicable, and in such case the function µ′

can be dispensed with.

Well-founded simulations

I Given two Kripke structures A = (A,→A, LA) and
B = (B,→B, LB) over AP, a relation H ⊆ A × B is a
well-founded AP-simulation if H is a well-founded
simulation of transition systems and in addition aHb
implies LB(b) ⊆ LA(a).

Theorem (Manolios)

Let A = (A,→A, LA) and B = (B,→B, LB) be two Kripke structures
over AP and H ⊆ A × B. Then, H is a well-founded AP-simulation if
and only if it is a stuttering AP-simulation.

Reflection of properties

I A stuttering AP-simulation H : A −→ B reflects the
satisfaction of a formula ϕ ∈ CTL∗(AP) when either

I ϕ is a state formula and then B, b |= ϕ and aHb imply
A, a |= ϕ; or

I ϕ is a path formula and then B, ρ |= ϕ and ρ H-matches π
imply A, π |= ϕ.

Theorem (reflection theorem)

Stuttering AP-simulations reflect the satisfaction of all formulas in
the logic ACTL∗\{¬, X}(AP) (i.e., formulas not containing negation
or next operators).

Shifting our ground

I A third generalization consists in relating systems over
different sets of atomic propositions: shifting our ground.

I Given a Kripke structure A over a set AP and another B
over a set AP’, a simulation (α, H) : (AP,A) −→ (AP’,B)
consists of:

I a function α : AP −→ State\¬(AP′), and
I an AP-simulation H : A −→ B|α

where B|α = (B,→B, LB|α), the “restriction” of B to AP’, is
such that LB|α = {p ∈ AP | B, b |= α(p)}.

I After considering all these generalizations, appropriate
sets of properties are still reflected.

A categorical hierarchy

I All these different notions of simulation give rise to
increasingly more general categories:

I For transition systems: STSys.
I For the basic simulations: KSimAP.
I For stuttering simulations: KSSimAP.
I For the most general ones: KSSim. This category can

alternatively be obtained with the Grothendieck
construction through all the different KSSimAP.

I There are corresponding subcategories for simulation
maps, bisimulations, etc.

Ingredients of rewriting logic

I Types and subtypes.
I Typed operators providing syntax: signature Σ.
I Syntax allows the construction of both static data and

states: term algebra TΣ.
I Equations E define functions over static data as well as

properties of states.
I Rewrite rules R define transitions between states.
I Deduction in the logic corresponds to computation with

those transitions.
I The Maude language is an implementation of rewriting

logic, allowing the execution of specifications satisfying
some admissibility requirements.

Kripke structure defined by a rewrite system
R = (Σ, E, R)

I States are the terms TΣ/E,k in the equational theory (Σ, E)
with a distinguished type k.

I Transitions are defined from the rules in R: a transition
consists in applying a rewrite rule to a unique subterm of
the source state.

I The transition system asociated to R and k is denoted by
T (R)k.

I We add state predicates Π defined by means of equations
D in an equational theory (Σ′, E ∪ D) conservatively
extending (Σ, E).

I The corresponding Kripke structure is denoted by
K(R, k)Π.

Simulations in rewriting logic

We consider four increasingly more general ways of defining
simulations in rewriting logic:

I Equational abstractions: just add new equations, say E′, to
the specification of the system of interest (Σ, E, R) to get a
quotient (Σ, E ∪ E′, R).

I Instead of theory inclusions (Σ, E) ⊆ (Σ′, E′), use arbitrary
theory interpretations H : (Σ, E) −→ (Σ′, E′).

I Simulation maps as equationally defined functions in an
extension of the disjoint union of the rewrite theories that
specify the systems.

I Simulations given by rewrite relations, in the same
extension.

Simulations in rewriting logic: Previous papers

I J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational
abstractions. In F. Baader, editor, Automated Deduction -
CADE-19, LNCS 2741, pages 2–16. Springer, 2003.

I J. Meseguer, M. Palomino, and N. Martí-Oliet. Equational
abstractions. Extended version. Submitted.
http://maude.sip.ucm.es/~miguelpt , 2007.

I N. Martí-Oliet, J. Meseguer, and M. Palomino. Theoroidal maps
as algebraic simulations. In J. L. Fiadeiro et al., editors, Recent
Trends in Algebraic Development Techniques, WADT 2004, LNCS
3423, pages 126–143. Springer, 2005.

I M. Palomino, J. Meseguer, and N. Martí-Oliet. A categorical
approach to Kripke structures and simulations. In J. L. Fiadeiro
et al., editors, Algebra and Coalgebra in Computer Science, CALCO
2005, LNCS 3629, pages 313–330. Springer, 2005.

http://maude.sip.ucm.es/~miguelpt

Simulation maps as equationally defined functions

We define a category SRWTh:
I Objects are pairs (R, k), with R a rewrite theory and k a

distinguished type in R.
I A morphism (R1, k1) −→ (R2, k2) in SRWTh, called an

algebraic stuttering map of transition systems, is a stuttering
map h : T (R1)k1 −→ T (R2)k2 such that there exists a
theory extension (Ω, G) containing the equational parts of
R1 and R2 in which h can be equationally defined through
an operator h : k′1 −→ k′2 (where the primes indicate the
corresponding names for the disjoint copies of the kinds).

Simulation maps as equationally defined functions

We define a functor T : SRWTh −→ STSys as follows:
I for objects (R, k),

T (R, k) = T (R)k

I for morphisms h : (R1, k1) −→ (R2, k2),

T (h) = h

Theorem

The functor T : SRWTh −→ STSys is surjective on objects, full,
and faithful, with the obvious restriction for non-stuttering maps.

Simulation maps as equationally defined functions

Objects in SRWTh|= are given by triples (R, (Σ′, E ∪ D), J)
where:

1. R = (Σ, E, R) is a rewrite theory specifying the transition
system.

2. (Σ, E) ⊆ (Σ′, E ∪ D) is a protecting theory extension,
containing and protecting also the theory BOOL of
Booleans, that defines the atomic propositions satisfied by
the states. We define Π ⊆ Σ′ as the subsignature of
operators of coarity Prop.

3. J : BOOL|= −→ (Σ′, E ∪ D) is a membership equational
theory morphism that selects the distinguished type of
states J(State), and such that: (i) it is the identity when
restricted to BOOL, (ii) J(Prop) = Prop, and (iii)
J(_ |= _ : State Prop → Bool) = _ |= _ : J(State) Prop → Bool.

Simulation maps as equationally defined functions

A morphism (R1, (Σ
′
1, E1 ∪ D1), J1) −→ (R2, (Σ

′
2, E2 ∪ D2), J2) in

SRWTh|=, called an algebraic stuttering map, is a pair (α, h) such
that:

1. (α, h) : K(R1, J1(State))Π1 −→ K(R2, J2(State))Π2 is a
stuttering map of Kripke structures.

2. There exists a theory extension (Ω, G) containing and
protecting disjoint copies of (Σ′

1, E1 ∪ D1) and (Σ′
2, E2 ∪ D2)

in which α and h can be equationally defined through
operators α : Prop1 −→ StateForm2 and
h : J1(State)1 −→ J2(State)2 in Ω; the subscripts 1, 2 indicate
the corresponding names for the disjoint copies of the
kinds, and StateForm2 is a new kind for representing state
formulas over Prop2.

Simulation maps as equationally defined functions

The construction that associates a Kripke structure to a rewrite
theory is a functor. We define K : SRWTh|= −→ KSMap as:

I for objects (R, (Σ′, E ∪ D), J),

K(R, (Σ′, E ∪ D), J) = K(R, J(State))Π

I for morphisms
(α, h) : (R1, (Σ

′
1, E1 ∪ D1), J1) −→ (R2, (Σ

′
2, E2 ∪ D2), J2),

K(α, h) = (α, h)

Theorem (representability)

The functor K : SRWTh|= −→ KSMap is surjective on objects, full,
and faithful, with the obvious restrictions for non-stuttering maps.

Example: A simple functional language

I We consider a simple functional language Fpl.
I Syntactic categories:

op ∈ Op bop ∈ BOp
x ∈ Var bx ∈ BVar
e ∈ Exp be ∈ BExp
n ∈ Num

I Grammar (signature in the algebraic representation):

op ::= + | − | ∗
bop ::= And | Or

e ::= n | x | e′ op e′′ | If be Then e′ Else e′′ | let x = e′ in e′′

be ::= bx | T | F | be′ bop be′′ | Not be′ | Equal(e, e′)

An operational semantics for Fpl

I A state in the operational semantics is a pair 〈ρ, e〉, where ρ
is an environment assigning values to variables and e is an
Fpl expression.

I A final state is a pair 〈ρ, v〉, where v is a value, i.e., either a
number n or a boolean constant T or F.

I The operational semantics defines a step in the evaluation
of an expression

〈ρ, e〉 →A 〈ρ′, e′〉

I These steps are repeated until the final value of a given
expression is obtained.

An operational semantics for Fpl
(some rules)

Var 〈ρ, x〉 →A 〈ρ, ρ(x)〉

Op 〈ρ, v op v′〉 →A 〈ρ, Ap(op, v, v′)〉

〈ρ, e〉 →A 〈ρ′, e′′〉
〈ρ, e op e′〉 →A 〈ρ′, e′′ op e′〉

〈ρ, e′〉 →A 〈ρ′, e′′〉
〈ρ, e op e′〉 →A 〈ρ′, e op e′′〉

If
〈ρ, be〉 →B 〈ρ′, be′〉

〈ρ, If be Then e Else e′〉 →A 〈ρ′, If be′ Then e Else e′〉

〈ρ, If T Then e Else e′〉 →A 〈ρ, e〉 〈ρ, If F Then e Else e′〉 →A 〈ρ, e′〉

Loc
〈ρ, e〉 →A 〈ρ′, e′′〉

〈ρ, let x = e in e′〉 →A 〈ρ′, let x = e′′ in e′〉

〈ρ, let x = v in e′〉 →A 〈ρ, e′[v/x]〉

An operational semantics for Fpl
(the same rules in Maude)

rl [Var] : < rho, x > => < rho, rho(x) > .
rl [Op] : < rho, v op v’ > => < rho, Ap(op,v,v’) > .
crl [Op] : < rho, e op e’ > => < rho’, e’’ op e’ >

if < rho, e > => < rho’, e’’ > .
crl [Op] : < rho, e op e’ > => < rho’, e op e’’ >

if < rho, e’ > => < rho’, e’’ > .
crl [If] : < rho, If be Then e Else e’ > =>

< rho’, If be’ Then e Else e’ >
if < rho, be > => < rho’, be’ > .

rl [If] : < rho, If T Then e Else e’ > => < rho, e > .
rl [If] : < rho, If F Then e Else e’ > => < rho, e’ > .
crl [Loc] : < rho, let x = e in e’ > =>

< rho’, let x = e’’ in e’ >
if < rho, e > => < rho’, e’’ > .

rl [Loc] : < rho, let x = v in e’ > => < rho, e’[v / x] > .

A stack machine for Fpl

I We define another operational semantics for the functional
language Fpl, based on an abstract stack machine.

I A state of the stack machine is a triple

< ST, rho, e >

where
I ST is a stack of values,
I rho is an environment assigning values to variables, and
I e is an expression.

I An initial state is a triple < empty, rho, e >

I A final state is a triple < v, rho, empty >

Analysis rules for the stack machine

rl [Opm1] : < ST, rho, e op e’ . C > =>
< ST, rho, e . e’ . op . C > .

rl [Opm1] : < ST, rho, be op be’ . C > =>
< ST, rho, be . be’ . bop . C > .

rl [Ifm1] : < ST, rho, If be Then e Else e’ . C > =>
< ST, rho, be . if(e, e’) . C > .

rl [Locm1] : < ST, rho, let x = e in e’ . C > =>
< ST, rho, e . < x, e’ > . C > .

rl [Notm1] : < ST, rho, Not be . C > =>
< ST, rho, be . not . C > .

rl [Eqm1] : < ST, rho, Equal(e, e’) . C > =>
< ST, rho, e . e’ . equal . C > .

Application rules for the stack machine
(only some of them)

rl [Opm2] : < v’ . v . ST, rho, op . C > =>
< Ap(op,v,v’) . ST, rho, C > .

crl [Varm] : < ST, rho, x . C > => < v . ST, rho, C >
if v := lookup(rho,x) .

rl [Valm] : < ST, rho, v . C > => < v . ST, rho, C > .
rl [Notm2] : < T . ST, rho, not . C > => < F . ST, rho, C > .
rl [Notm2] : < F . ST, rho, not . C > => < T . ST, rho, C > .
crl [Eqm2] : < v . v’ . ST, rho, equal . C > =>

< T . ST, rho, C > if v = v’ .
crl [Eqm2] : < v . v’ . ST, rho, equal . C > =>

< F . ST, rho, C > if v =/= v’ .
rl [Ifm2] : < T . ST, rho, if(e, e’) . C > =>

< ST, rho, e . C > .
rl [Locm2] : < v . ST, rho, < x, e > . C > =>

< ST, (x,v) . rho, e . pop . C > .
rl [Pop] : < ST, (x,v) . rho, pop . C > => < ST, rho, C > .

Relating both semantics for Fpl

I We want to show that the stack machine implements
correctly the previous operational semantics.

I This is a particular example of the general idea of relating
an abstract system with a more concrete one.

I In both semantics that we have seen for the functional
language Fpl, the evaluation of a given expression requires
the computation of several steps or transitions.

I It seems appropriate to study the relationship between the
stepwise computation of both semantics.

Relating both semantics for Fpl

I We have two transition systems, namely, S = (S,→S) and
C = (C,→C), for the stack machine and the first operational
semantics, respectively.

I In order to show that the stack machine correctly
implements the first operational semantics, we will prove
first that there exists a stuttering simulation of transition
systems h : S −→ C.

I Intuitively, the state < empty, rho, e > in S, where
empty denotes the empty stack of values, should be
related with the state < rho, e > in C.

An example of related states

< empty, empty, 2 + 3 > →S < empty, empty, 2 . 3 . + >
→S < 2, empty, 3 . + >
→S < 3 . 2, empty, + >
→S < 5, empty, empty >

I All the states from the first to the fourth carry the same
information, although in different positions (due to the
analysis rules). Therefore, it seems appropriate to relate all
of them with the same state < empty, 2 + 3 > .

I However, in the fifth state the information has changed
(due to an application rule). Now it seems appropriate to
relate this state with < empty, 5 > .

Definition of the relation h

I We define h : S −→ C as follows:

h(a) = < rho, e >

if a can be obtained from < empty, rho, e > with zero
or more applications of the analysis rules for the stack
machine together with Valm and Locm2.

I Notice that h is a function, precisely because not all rules
are applicable in this definition.

I Moreover, h is partial; indeed, it is only defined for
reachable states, which form a complete substructure of S
where h is total.

Equational definition of the relation h

eq [Base] : h(< empty, rho, e>) = < rho, e > .
eq [Opm1] : h(< ST, rho, e . e’ . op . C >) =

h(< ST, rho, e op e’ . C >) .
eq [Opm1] : h(< ST, rho, be . be’ . bop . C >) =

h(< ST, rho, be bop be’ . C >) .
eq [Ifm1] : h(< ST, rho, be . if(e, e’) . C >) =

h(< ST, rho, If be Then e Else e’ . C >) .
eq [Locm1] : h(< ST, rho, e. <x, e’> . C >) =

h(< ST, rho, let x = e in e’ . C >) .
eq [Notm1] : h(< ST, rho, be . not. C >) =

h(< ST, rho, Not be . C >) .
eq [Eqm1] : h(< ST, rho, e . e’ . equal . C >) =

h(< ST, rho, Equal(e, e’) . C >) .
eq [Locm2] : h(< ST, (x, v) . rho, e . pop . C >) =

h(< v . ST, rho, < x, e > . C >) .
ceq [Valm] : h(< v . ST, rho, C >) = h(< ST, rho, v . C >)

if not(enabled(C)) .
ceq [Valm] : h(< bv . ST, rho, C >) = h(< ST, rho, bv . C >)

if not(enabled(C)) .

Characterization of the relation h

Lemma

If h(< ST, rho, e . C >) = < rho, e’ > , then there exists
a position p in e′ such that e′|p = e and, if e is not a value it will be
a subexpression that can be reduced with the rules of the first
operational semantics producing e′ in the next step.

Proof.

We orient the equations defining h and proceed by induction
over the number of steps used to reach < rho, e’ > .

The function h is a stuttering simulation

Theorem

The partial function h : S −→ C defines a stuttering simulation of
transition systems.

Proof.

We use the characterization in Manolios’s theorem.
Since h is a partial function, it is enough to define a function
µ : S × C −→ N. Specifically, µ(a, c) is the length of the longest
path beginning in a and using only analysis rules.
Assume that a →S a′ and that h(a) = c.
If a′ is obtained applying an analysis rule, then h(a′) = c and
µ(a′, c) < µ(a, c).
Otherwise, we must find an element c′ such that c →C c′ and
h(a′) = c′. For this, we distinguish cases according to the
applied rule.

The simulation h is not a bisimulation

I Notice that h is not a bisimulation, i.e., h−1 is not a
simulation.

I In the first operational semantics, for a given expression of
the form e op e’ , we can choose whether to evaluate e
before e’ or the other way around, while the stack
machine always evaluates first e.

I For example, the transition
< empty, (1 + 2) + (3 + 4) > →C
< empty, (1 + 2) + 7 >
cannot be simulated by the stack machine.

Simulation of Kripke structures

I The simulation h can be extended to Kripke structures.
I We consider as set AP of atomic propositions the set of all

possible values.
I We extend the transition systems S and C with the

labelling functions:
LS(< empty, rho, v >) = {v}
LS(< v, rho, empty >) = {v}
LC(< rho,v >) = {v}
otherwise, both LS(a) and LC(c) are empty.

I Applying the reflection theorem, for all expressions e and
environments rho , we have

C, < rho, e > |= AFv =⇒ S, < empty, rho, e > |= AFv

I That is, S correctly implements C.

Simulations as rewrite relations

I The construction of the category SRWTh|= of algebraic
stuttering maps is quite general . . .

I . . . but it restricts us to work with functions.
I To avoid this drawback, we define another category

SRelRWTh|=

whose objects are those of SRWTh|=:

(R, (Σ′, E ∪ D), J)

Simulations as rewrite relations

A morphism (R1, (Σ
′
1, E1 ∪ D1), J1) −→ (R2, (Σ

′
2, E2 ∪ D2), J2) in

the category SRelRWTh|=, called an algebraic stuttering
simulation, is a pair (α, H) such that:

1. (α, H) is a stuttering simulation of Kripke structures
(α, H) : K(R1, J1(State))Π1 −→ K(R2, J2(State))Π2 .

2. There exists a rewrite theory extension R3 containing and
protecting disjoint copies of (Σ′

1, E1 ∪ D1, R1) and
(Σ′

2, E2 ∪ D2, R2) in which α can be equationally defined
through an operator α : Prop1 −→ StateForm2, and H is
defined by rewrite rules involving an operator
H : J1(State)1 J2(State)2 −→ Bool such that xHy iff
R3 ` H(x, y) −→ true. Here the subscripts 1, 2 indicate the
corresponding names for the disjoint copies of the kinds,
and StateForm2 is a new kind for representing state
formulas over Prop2.

Simulations as rewrite relations

The functor K is extended in the obvious way to the new
categories:

I for objects (R, (Σ′, E ∪ D), J),

K(R, (Σ′, E ∪ D), J) = K(R, J(State))Π

I for morphisms
(α, h) : (R1, (Σ

′
1, E1 ∪ D1), J1) −→ (R2, (Σ

′
2, E2 ∪ D2), J2),

K(α, h) = (α, h)

Theorem (representability)

With the above definitions, K : SRelRWTh|= −→ KSSim is
surjective on objects, full, and faithful.

A Communication Protocol Example

If a communication mechanism does not provide reliable,
in-order delivery of messages, it may be necessary to generate
this service using the given unreliable basis. Both the sender
and the receiver keep a counter for synchronization purposes;
the sender releases a message together with such number and
does not send another message until it receives an
acknowledgment by the receiver.

mod PROTOCOL is
protecting NAT . protecting QID .
sorts Object Msg Config . subsort Object Msg < Config .
op null : -> Config .
op __ : Config Config -> Config [assoc comm id: null] .
sorts Elem List Contents .
subsort Elem < Contents List .
op empty : -> Contents .
ops a b c : -> Elem .
op nil : -> List .
op _:_ : List List -> List [assoc id: nil] .

A Communication Protocol Example

op to:_(_,_) : Qid Elem Nat -> Msg .
op to:_ack_ : Qid Nat -> Msg .

op <_: SND | rec:_, sendq:_ , sendbuff:_, sendcnt:_ > :
Qid Qid List Contents Nat -> Object .

--- rec is the receiver, sendq is the outgoing queue,
--- sendbuff is either empty or the current data,
--- sendcnt is the sender sequence number

op <_: RCV | sender:_, recq:_, reccnt:_ > :
Qid Qid List Nat -> Object .

--- sender is the sender, recq is the incoming queue,
--- and reccnt is the receiver sequence number

vars S R : Qid . vars M N : Nat .
var E : Elem . var L : List . var C : Contents .

A Communication Protocol Example

--- rules for the sender

rl [produce-a] :
< S : SND | rec: R, sendq: L, sendbuff: empty, sendcnt: N >
=> < S : SND | rec: R, sendq: L : a, sendbuff: a,

sendcnt: N + 1 > .
rl [produce-b] :
< S : SND | rec: R, sendq: L, sendbuff: empty, sendcnt: N >
=> < S : SND | rec: R, sendq: L : b, sendbuff: b,

sendcnt: N + 1 > .
rl [produce-c] :
< S : SND | rec: R, sendq: L, sendbuff: empty, sendcnt: N >
=> < S : SND | rec: R, sendq: L : c, sendbuff: c,

sendcnt: N + 1 > .
rl [send] :
< S : SND | rec: R, sendq: L, sendbuff: E, sendcnt: N >
=> < S : SND | rec: R, sendq: L, sendbuff: E,

sendcnt: N > (to: R (E,N)) .

A Communication Protocol Example

rl [rec-ack] : (to: S ack M)
< S : SND | rec: R, sendq: L, sendbuff: C, sendcnt: N >
=> < S : SND | rec: R, sendq: L,

sendbuff: (if N == M then empty else C fi),
sendcnt: N > .

--- rule for the receiver

rl [receive] : (to: R (E,N))
< R : RCV | sender: S, recq: L, reccnt: M >
=> (if N == M + 1 then

< R : RCV | sender: S, recq: L : E, reccnt: M + 1 >
else
< R : RCV | sender: S, recq: L, reccnt: M >
fi)

(to: S ack N) .

A Communication Protocol Example

mod PROTOCOL-FAULTY is
including PROTOCOL .
op <_: DSTR | sender:_, rec:_, cnt:_, cnt’:_, rate:_ > :

Qid Qid Qid Nat Nat Nat -> Object .

var M : Msg . vars K N N’ : Nat .
var E : Elem . vars S R D : Qid .

rl [destroy1] : (to: R (E,N))
< D : DTR | sender: S, rec: R, cnt: N, cnt’: s(N’), rate: K >
=> < D : DTR | sender: S, rec: R, cnt: N, cnt’: N’, rate: K > .
rl [destroy2] : (to: R ack N)
< D : DTR | sender: S, rec: R, cnt: N, cnt’: s(N’), rate: K >
=> < D : DTR | sender: S, rec: R, cnt: N, cnt’: N’, rate: K > .
rl [limited-injury] :
< D : DTR | sender: S, rec: R, cnt: N, cnt’: 0, rate: K >
=> < D : DTR | sender: S, rec: R, cnt: s(N), cnt’: K, rate: K > .

A Communication Protocol Example

I To check if messages are delivered in the correct order, we
define a state predicate prefix(S,R) that holds for a
sender S and receiver Rwhenever the queue associated to
R is a prefix of that associated to S.

I This is done, both for PROTOCOLand PROTOCOL-FAULTY,
by means of the following operator and equation:

op prefix : Qid Qid -> Prop .
var CO : Config .

eq < S : SND | rec: R, sendq: L1 : L2, sendbuff: C,
sendcnt: N >

< R : RCV | sender: S, recq: L1, reccnt: M >
CO |= prefix(S, R)

= true .

A Communication Protocol Example

I The initial state

eq init = < ’A : SND | rec: ’B, sendq: nil,
sendbuff: empty, sendcnt: 0 >

< ’B : RCV | sender: ’A, recq: nil, reccnt: 0 > .

should satisfy the formula AG prefix (’A , ’B).
I We define a stuttering simulation

H : K(PROTOCOL-FAULTY, Config)Π −→ K(PROTOCOL, Config)Π

where Π only contains the state predicate prefix .
I Given configurations (states) a and b respectively in

PROTOCOL-FAULTYand PROTOCOL, aHb iff:
I b is obtained from a by removing all objects of class DTR, or
I there exists a′ such that a′Hb and a can be obtained from a′

by the rules that belong only to PROTOCOL-FAULTY.

A Communication Protocol Example

I We can define H as a rewrite relation in an admissible
rewrite theory extending PROTOCOLand
PROTOCOL-FAULTY.

I Kinds of states have been renamed as Config1 and
Config2 .

I removeD and messages are auxiliary functions that,
given a configuration, remove all objects of class DTRand
return all messages in it, respectively.

I We have new operators
op H : Config1 Config2 -> Bool .

op undo-d1 : Qid Elem Nat -> Msg .
op undo-d2 : Qid Nat -> Msg .
op undo-injury : -> Msg .

A Communication Protocol Example

rl [destroy1-inv] : undo-d1(R,E,N)
< D : DTR | sender: S, rec: R, cnt: N, cnt’: N’ >
=> < D : DTR | sender: S, rec: R, cnt: N, cnt’: s(N’) >

(to: R (E,N)) .
rl [destroy2-inv] : undo-d2(R,N)
< D : DTR | sender: S, rec: R, cnt: N, cnt’: N’ >
=> < D : DTR | sender: S, rec: R, cnt: N, cnt’: s(N’) >

(to: R ack N) .
rl [limited-injury-inv] : undo-injury
< D : DTR | sender: S, rec: R, cnt: s(N), cnt’: K, rate: K >
=> < D : DTR | sender: S, rec: R, cnt: N, cnt’: 0 > .
crl H(C, C’) => true if removeD(C) = C’ .
crl H(C, C’) => true if M (to: R (E,N)) := messages(C’) /\

(to: R (E,N)) in messages(C) = false /\
C undo-d1(R,E,N) => C’’ /\ H(C’’, C’) => true .

crl H(C, C’) => true if M (to: R ack N) := messages(C’) /\
(to: R ack N) in messages(C) = false /\
C undo-d2(R,E) => C’’ /\ H(C’’, C’) => true .

crl H(C, C’) => true if C undo-injury => C’’ /\
H(C’’, C’) => true .

A Communication Protocol Example

Theorem

H : K(PROTOCOL-FAULTY, Config)Π −→
K(PROTOCOL, Config)Π is an algebraic stuttering simulation.

Proof.

H preserves the atomic propositions, because the value of the
sender’s and the receiver’s queues, sendq and recq , are not
changed. Let R1 be the set of rules in PROTOCOLand let R2 be
those added in PROTOCOL-FAULTY, and define µ(a, b) to be the
length of the longest rewrite sequence starting at a using rules
in R2. This is well-defined because R2 is terminating.
If aHb and a →1

R1
a′ then, since the DTRclass plays no role in R1,

it is b →1
R1

b′ with a′Hb′. And if a →1
R2

a′, by definition of H it is
a′Hb and µ(a′, b) < µ(a, b). Because of rule send there are no
deadlocks in the system and hence these two alternatives cover
all possibilities. Therefore, H is a stuttering Π-simulation.

A Communication Protocol Example

I By the Reflection Theorem, the existence of H shows that if
AG prefix (’A , ’B) holds in PROTOCOLthen it must also
hold in PROTOCOL-FAULTY. . .

I . . . but we have not proved yet that the property holds in
PROTOCOL.

I The paper on equational abstractions defines a finite
abstraction

G : K(PROTOCOL, Config)Π −→ K(ABS-PROTOCOL, Config)Π

for the case of two processes.
I Then, the fact that messages are delivered in order is

model checked in ABS-PROTOCOL.
I By composing G with H this also proves that the same

property is true in PROTOCOL-FAULTY.

Recursive simulations

I All the previous definitions and constructions can be
specialized to being recursive.

I A transition system B = (B,→B) is called recursive if B is a
recursive set and there is a recursive function
next : B −→ Pfin(B) (where Pfin(B) is the recursive set of
finite subsets of B) such that a →B b iff b ∈ next(a).

I A Kripke structure B = (B,→B, LB) is called recursive if
(B,→B) is a recursive transition system, AP is a recursive
set, and the function L̂B : B × AP −→ Bool mapping a pair
(a, p) to true if p ∈ LB(a) and to false otherwise, is
recursive.

Recursive simulations

I Let R = (Σ, E∪A, R) be a finitary rewrite theory. We call R
recursive if:

1. there exists a matching algorithm modulo the equational
axioms A;

2. the equational theory (Σ, E ∪ A) is (ground) Church-Rosser
and terminating modulo A; and

3. the rules R are (ground) coherent relative to the equations E
modulo A.

I If R is recursive, so are T (R)k and K(R, k)Π.
I Every recursive transition systems and Kripke structure

can be specified with a recursive rewrite theory.

Recursive simulations

These definitions give rise to corresponding categories:
I RecSRWTh|= ⊆ SRWTh|=

I objects as in SRWTh|=, but with R recursive
I morphisms as in SRWTh|= but with h defined by

Church-Rosser and terminating equations

I RecKSMap ⊆ KSMap
I objects recursive Kripke structures
I morphisms (α, h) with α and h recursive

The representability results remain the same:

Theorem

K : RecSRWTh|= −→ RecKSMap is surjective on objects up to
isomorphism, full, and faithful.

Recursive simulations

Analogously for simulations as rewrite relations.

Theorem

K : SRelRWTh|= −→ KSSim is surjective on objects, full, and
faithful, and K : RecSRelRWTh|= −→ RecKSSim is surjective on
objects up to isomorphism, full, and faithful. Graphically:

RecSRelRWTh|=

K
��

� � // SRelRWTh|=

K
��

RecKSSim � � // KSSim

This is the most general representability result possible for
stuttering simulations. It shows that we can represent both
Kripke structures and stuttering simulations in rewriting logic.

Summary

I We have presented a quite general notion of stuttering
simulation that relaxes the requirements on preservation of
state predicates both in not requiring identical
preservation and in allowing formulas to be translated.

I We have also proved general representability results
showing that both Kripke structures and their simulations
can be fruitfully represented in rewriting logic.

I Different ways of representing these notions in rewriting
logic, ranging from equational abstractions to algebraic
stuttering simulations.

