CSP-Prover

Markus Roggenbach, Swansea (Wales)
cooperation with Yoshinao Isobe, AIST (Japan)

IFIP WG 1.3 meeting, March 2007

CSP-Prover

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover

e L. O'Rellly, Y. Isobe, M. Roggenbach: Integrating Theorem Proving
for Processes and Data, PPL'07.

e Y. Isobe, M. Roggenbach: A complete axiomatic semantics for the
CSP stable failures model, CONCUR'06.

e Y. Isobe, M. Roggenbach, S. Gruner: Extending CSP-Prover by
deadlock-analysis: Towards the verification of systolic arrays, FOSE'05.

e Y. Isobe, M. Roggenbach: A generic theorem prover of CSP
refinement, TACAS '05.

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover 3

Outline

CSP-Prover

A complete axiomatic semantics for the stable failures model

CSP-CASL-Prover

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover

The language CSP: One syntax . . .

Given an alphabet % (possibly infinite)

Basic processes

P.Q = n(z,...,z) | Skip | Stop | Div
a—P|ly—-Pl|z: X - P
POQ | P | if othen P else ()
PIX]Q | P\X|Prl)| P3s@Q

(Systems of) equations

n(x,...,x.) =P

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

The language CSP: One syntax . . .

. . various models

e.g.
e Traces model 7 — safety properties

e Failures divergence model N — livelock analysis
e Stable failures model F — deadlock analysis

e Stable revivals model R (2005) — responsiveness

Fairness: Models based on infinite traces

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover 7

CSP models are denotational

Domain with antisymmetric refinement order e.g.
the domain 7(A) of the traces model is the set of all non-
empty and prefix closed subsets of ¥*V: T, S < SCT.

Semantic clauses e.g.

traces(Skip) = {(),({(V)}
traces(a — P) = {)}u{{a) " s | s € traces(P)}

Fixed Point Theory Tarski & cpo or Banach & cms

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover

CSP-Prover (TACAS 05)

Refinement proofs ‘P C ()’ over different models

e Based on Isabelle-HOL (Complex)

e Generic architecture

o Currently implemented models: F (and 7)
e Deep encoding

o Different fixed-point theories (cms, cpo)

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover

Implemented Isabelle Theories

i Proot Infrasiruciure for F
L e 1yt e it i,
l instaniiated parl
- or aach modal
(: Domain F)- LEEP—E-Emat:’Iit:smrF)
r'l-hﬂﬂr"j' on CUWS A 'rThﬂnrjr on CPO k
Banach’s FP ithooram Tarsla’s FP ihooram ¥
Wsric FP induciion Standard FP induciion (CEP-Syniax)
Liiin%] ’l_'mnrm . LiHing 1thaoram y >._ reusabl s pari
Rasiriclion spaces
b, l ¥
(csllpmm Infrasiruciure {addifional lammas on nawrals, reals lisis, ssis,))
-

L

l=abslla/HOL-Complex

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover 10

An example proof

NolLoss = coin — item — NolLoss
1 cotn — Noloss
UnfairVM = button — coin — coin — item — UnfairVM
claim:

NoLoss Cr UnfairVM \ {button}

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover

11

Case studies

e Dining mathematicians (infinite state)
e EP2 dialogues (industrial application)

e Deadlock analysis of systolic algorithms
(parametrised problems)

o Verification of process algebraic laws
(Analysing CSP)

o Completeness proof of our axiomatic semantics
(Analysing CSP)

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover

12

Users

e Qinetic — industrial (& military?) applications
e TU Berlin (Timed CSP)

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-Prover

13

Alternative approaches

e Tej/Wolff: HOL-CSP (1997, 2003)
o Based on Isabelle/HOL

o Flat encoding
o New partial order on processes
e Schneider/Dutertre (1997, 2002)
o Based on PVS
o Traces-model only
o Tailored for security-protocols
e Badban/Fokkink/Groote/Pang/van de Pol: ‘uCRL’-Prover (2005)
o Based on PVS

o Axiomatic

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Alternative approaches

Our
choice
for book
of the

month

] ')’ (‘ - =t =a
i [e (1((\\HEH uc\\m:u

ey . ot (8 % “
1% Iy vgz = E
| 3¢ 4 || | & F

sy \ | !

; Algorlthms for
| VisiDesign

ﬂwion i B

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Alternative approaches

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic
semantics for the CSP stable
failures model

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model 17

Complete Axiomatic Semantics for CSP

Best known result:

Finitely non-deterministic CSP over a finite alphabet
(Roscoe 1998, improving Brookes 1983)

Here:

Relative completeness for CSP over an arbitrary alphabet;
oracles for set theory & natural numbers
(side conditions require theorems on sets and naturals)

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

18

Completeness w.r.t. which language?

CSP7p - (CSP for Theorem Proving) — fully abstract w.r.t. F

P = ...
lset X : A @ P(X) %% internal choice over A C P(Y)
lwatm - N @ P(n) %% internal choice over N C N
Pln %% depth restriction to n € N

CSP roscoe (as used for theoretical studies)
P = ...
| 1S %% internal choice over S C P

CSP;; (CSP for the model checker FDR)
2=
| P11 Q@ %% finite internal choice

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

19

Key insight: No need for process equations

Let X = P(X) have a solution S thanks to Tarski.
Then

S = UnenIP"(Div)]s

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model 19

Key insight: No need for process equations

Let X = P(X) have a solution S thanks to Tarski.
Then

S = Unen[P™(Div)]5
— UnEN[Pn(Di’Uﬂ]]:

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

19

Key insight: No need for process equations

Let X = P(X) have a solution S thanks to Tarski.
Then

S = Unen[P™(Div)]5
— UnEN[Pn(Di’Uﬂ]]:
M {P"(Dw) | ne N} r

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

19

Key insight: No need for process equations

Let X = P(X) have a solution S thanks to Tarski.
Then

S = UpenlP™(Div)]r
= UpeN[P"(Diwv)] £
= [N{P"(Div) | ne N}z
= [lhatn : N e P Div)}] £

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model 19

Key insight: No need for process equations

Let X = P(X) have a solution S thanks to Tarski.
Then

S = UpenlP™(Div)]r
= Upen[P"(Div)] £
= [M{P"(Div) | n e N}
= [lhatn : N e P Div)}] £

Theorem: All classical CSP operators are continuous over F.

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

20

Axiom system A (~ 80 cond. eq.)

1. Congruence axioms, e.g.
P=Q=P|n=0Q|n
2. Basic axioms, e.g.
Pln=Dw (P|ln)|m=PFP | mnn,m)
3. Distributivity axioms, e.g.
(PN Po)ln=(Pln)n(Pln)
4. Step laws, e.g.
Px:A—Px)]|(n+1)=22:A— (P(x) | n)
5. Skip & Diwv axioms, e.g.
Skip | (n+1)=Skip Div | n=Dw

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model 21

Changes compared to Roscoe’98

Language
1. Inclusion of the depth restriction operator P | n

2. Exclusion of recursion

Axioms
1. Two axioms needed to be corrected — see below

2. Added axioms for | and infinite internal choice

3. Three additional axioms on the process Div

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

22

Correction of two step laws by Roscoe
Pr Q:=(PnStop) O Q

Roscoe’s version
(P> P)[X](Q> Q)
= (PX] Q) ((P[X](Q>@)N((P>P)[X]Q))

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model 22

Correction of two step laws by Roscoe
Pr Q:=(PnStop) O Q

Roscoe’s version
(P> P)[X](Q> Q)
= (PX] Q) ((P[X](Q>@)N((P>P)[X]Q))

Correction
let P=("z: A— P'(z))> P’ Q=("2:B— Q'(z)) > Q"
PIX]Q@ = (Pz:(XNnANB)U(A

X)U(B—-X))—
if (x € X)then (P'(z) [X]| Q'(z))
else if (x € AN B)then ((P'(z) [X] @) M (P X] Q'(z)))
elseif (x € A)then (P'(z) | X | Q)else (P || X] Q'(x)))
> ((PTXQ)(P[X] Q"))

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Correction of two step laws by Roscoe 23

Bill Roscoe’s reaction

> my colleague Yoshinao Isobe (AIST, Japan) and | found
> counter examples to the step laws for . . .

You are right about them...

think that, implicitly, it demonstrates that, soon,
oresentations of similar models and axiom schemes will only
ne " complete” once they have been accompanied by similar
mechanised theorem proving.

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

24

Main Result

A~ is sound and complete, i.e.

AFP=Q < [Plr=[Q]r

Soundness: lots of work, however boring . . .

Completeness: based on normalisation

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

24

Main Result

A~ is sound and complete, i.e.

AFP=Q < [Plr=[Q]r

Soundness: lots of work, however boring . . .

Completeness: based on normalisation

Remark: P C () is equivalent to P =P ()

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model 25

Step 1: Sequentialising

‘remove hiding, renaming, parallel composition’

1. Definition of ‘full sequential form’ SeqProcs

2. Definition of a sequentializing function by induction on
the process structure, e.g.

P [X]|seq Skip =In : N e (P'(n) [X],

for P=1n:N e P'(n) € SeqProcs

seq Ok = (T2 : (A = X) — (P'(z) [X]|, Skip)) O @
for R= (?2z:A— P'(z)) O Q € SeqProcs,

Skip)

RX])

3. Theorem: Seq(P) ¢ SeqProcy and Ar+- P = Seq(P)

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model 26

Step 2: Normalisation

1. Adaption of Rosoe’s full normal form to infinite alphabets:
(?x: A—Plx) O Q)N(lse X Ao (?x: X — D))

UA C A,
AXoeA Xy X CA)=XecA,
P(z) is in full normal form,) € {Skip, Div}

Results:
o Does not capture all processes

o Theorem:
For all P, @ in normal from holds: |[P]r=[Q]r< P = Q.

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

A complete axiomatic semantics for the stable failures model

27

Normalization (continued)

2. Definition of processes in ‘extended full normal form’

XNormProcs :
lat TV NOP(n)

o all P(n) in full normal form,

o [P(n)]z=|[('nat n:N e P(n)) | n]r
3. Theorem: VP, () ¢ XNormProcy: P = Q) < [P]r=[Q]r
4. Define XNorm(P) =lya 1 : N o (Norm,,(Seq(P))).

5. Theorem:
XNorm(P) € XNormProcs, and Ar+ P = XNorm(P)

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Step 2: Normalisation

28

Gluing things together

Let [Plr=[(]r.

We know

e Ar- P= XNorm(P)

e Ar-)= XNorm(Q)

As A r is sound, we have

o [XNorm(P)lr =[Plr=[Qlr= [XNorm(Q)]r

As [XNorm(P)]r = [XNorm(Q)]r € XNormProcs -

XNorm(P)= XNorm(Q))

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Towards
Integrated Theorem Proving
for Processes and Data

with Liam O’Reilly

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-CASL-Prover

Software Architecture of CSP-CASL-Prover
Theorem Proving on CASL alone

))
Isabelle
Data riets Uz G - Refinement
- Data
Refinement | _ Theorem Holds /
Sp <= Sp’ Transiator Refinement Prover Doesn't Hold
Ps==P — [Sp] <= [Sp] L

T
X

Interactive
Theorem Proving

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-CASL-Prover

Software Architecture of CSP-CASL-Prover

Theorem Proving on CSP alone

CSP-Prover

Theory Files
)

Isabelle
Process / - Refinement

Refinement »| | Theorem Holds /
P<=P / Prover Doesn't Hold

~—o— o

T
X

Interactive
Theorem Proving

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-CASL-Prover

Software Architecture of CSP-CASL-Prover
Theorem Proving on CSP-CASL

<
CSP-CASL Prover
Ao Y
Hets + CSP-Prover
N Y N Y
Theory Files
))
Isabelle
A Translated
Process & Data . S zle:) Refinement
. rocess ata
| i Theorem L
Refinement > Translator Refinemant » orover > Holds /
= 1 1 V 1
(Sp.P) <= (Sp',P) ~ , (Sp1IPD <= (SPLIP') el Fele
_ J _ J
U T J
Interactive

Theorem Proving

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-CASL-Prover

33

Prototypical Structure of the Associated
Theory File

Hets Translation of CASL

Alphabet Construction

Integration Theorems

Data Theorems

Process Theorems

N\

To be automatically
generated by CSP-CASL

Application dependant

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

CSP-CASL-Prover

34

One of the 4 challenges: Subsorting

data sorts S<T
ops c:S;d: T
axiom c¢=d

process ¢ — SKIP || d — SKIP

is equivalent to (i.e. <= and >= hold)

data sorts S< T
ops c:S;d: T
axiom c¢=d

process ¢ — SKIP

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Summary & Future Work

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Summary & Future Work

36

Summary

o CSP-Prover works well
o Complete axiomatic semantics for F
o First steps towards CSP-CASL-Prover

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Summary & Future Work 37

Future Work

o CSP-Prover Version 4 (polished syntax & improved tactics)

e Integration of CSP-Prover with FDR

e Models currently ‘under construction’
o traces model 7

o stable revivals model R — MPhil of Gift Samuel

e Implementing CSP-CASL-Prover —
o MPhils of Andy Gimblett & Liam O'Reilly

e Testing
o PhD of Teme Kahsai

e Analysing Parallel Algorithms

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Summary & Future Work 38

My group in Swansea (at a visit in Gregygnog)

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

Summary & Future Work

CSP channels

A’: set of ‘basic’ communications
C': set of channel names; dom(c)C A’ x ... x A’ for ce C

Alphabet with channels:

A=A"U v {cx....2n | (11,...,2,) € dom(c)}

Sending communication a over c:

cla = c.a

Recelving value z over c:

ctx — P(x) =7y : {cx | xedom(c)} — P(ny(y))

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007

	Outline
	CSP-Prover
	The language CSP: One syntax …
	CSP models are denotational
	CSP-Prover (TACAS 05)
	Implemented Isabelle Theories
	An example proof
	Case studies
	Users
	Alternative approaches

	A complete axiomatic semantics for the stable failures model
	Complete Axiomatic Semantics for CSP
	Completeness w.r.t. which language?
	Key insight: No need for process equations
	Axiom system AF (80 cond. eq.)
	Changes compared to Roscoe'98
	Correction of two step laws by Roscoe
	Main Result
	Step 1: Sequentialising
	Step 2: Normalisation

	CSP-CASL-Prover
	Software Architecture of CSP-CASL-Prover
	Software Architecture of CSP-CASL-Prover
	Software Architecture of CSP-CASL-Prover
	Prototypical Structure of the Associated Theory File
	One of the 4 challenges: Subsorting
	Summary
	Future Work
	My group in Swansea (at a visit in Gregygnog)
	CSP channels

