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Outline

CSP-Prover

A complete axiomatic semantics for the stable failures model

CSP-CASL-Prover
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The language CSP: One syntax . . .

Given an alphabet Σ (possibly infinite)

Basic processes

P ,Q ::= n(z1, . . . , zk ) | Skip | Stop | Div
| a → P | y → P | ?x : X → P
| P 2 Q | P u Q | if ϕ then P else Q
| P |[X ]|Q | P \ X | P [[r ]] | P o

9 Q

(Systems of) equations

n(x1, . . . ,xk ) = P
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. . . various models

e.g.

• Traces model T – safety properties

• Failures divergence model N – livelock analysis

• Stable failures model F – deadlock analysis

• Stable revivals model R (2005) – responsiveness

Fairness: Models based on infinite traces
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CSP models are denotational

Domain with antisymmetric refinement order e.g.

the domain T (A) of the traces model is the set of all non-

empty and prefix closed subsets of Σ∗X; T vT S ⇔ S ⊆ T .

Semantic clauses e.g.

traces(Skip) = {〈〉, 〈X〉}
traces(a → P ) = {〈〉} ∪ {〈a〉a s | s ∈ traces(P )}

Fixed Point Theory Tarski & cpo or Banach & cms
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CSP-Prover (TACAS 05)

Refinement proofs ‘P v Q ’ over different models

• Based on Isabelle-HOL (Complex)

• Generic architecture

• Currently implemented models: F (and T )

• Deep encoding

• Different fixed-point theories (cms, cpo)
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Implemented Isabelle Theories
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An example proof

NoLoss = coin → item → NoLoss
u coin → NoLoss

UnfairVM = button → coin → coin → item → UnfairVM

claim:

NoLoss vF UnfairVM \ {button}
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Case studies

• Dining mathematicians (infinite state)

• EP2 dialogues (industrial application)

• Deadlock analysis of systolic algorithms

(parametrised problems)

• Verification of process algebraic laws

(Analysing CSP)

• Completeness proof of our axiomatic semantics

(Analysing CSP)
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Users

• Qinetic – industrial (& military?) applications

• TU Berlin (Timed CSP)
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Alternative approaches

• Tej/Wolff: HOL-CSP (1997, 2003)

◦ Based on Isabelle/HOL

◦ Flat encoding

◦ New partial order on processes

• Schneider/Dutertre (1997, 2002)

◦ Based on PVS

◦ Traces-model only

◦ Tailored for security-protocols

• Badban/Fokkink/Groote/Pang/van de Pol: ‘µCRL’-Prover (2005)

◦ Based on PVS

◦ Axiomatic
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A complete axiomatic
semantics for the CSP stable

failures model
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Complete Axiomatic Semantics for CSP

Best known result:

Finitely non-deterministic CSP over a finite alphabet

(Roscoe 1998, improving Brookes 1983)

Here:

Relative completeness for CSP over an arbitrary alphabet;

oracles for set theory & natural numbers

(side conditions require theorems on sets and naturals)
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Completeness w.r.t. which language?

CSPTP : (CSP for Theorem Proving) – fully abstract w.r.t. F
P ::= . . .

| !set X : ∆ • P(X ) %% internal choice over ∆ ⊆ P(Σ)

| !nat n : N • P(n) %% internal choice over N ⊆ N
| P ↓ n %% depth restriction to n ∈ N

CSPRoscoe (as used for theoretical studies)

P ::= . . .

| uS %% internal choice over S ⊆ P

CSPM (CSP for the model checker FDR)

P ::= . . .

| P u Q %% finite internal choice
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Key insight: No need for process equations

Let X = P (X ) have a solution S thanks to Tarski.

Then

S = tn∈N[[Pn(Div )]]F
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Key insight: No need for process equations

Let X = P (X ) have a solution S thanks to Tarski.

Then
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Key insight: No need for process equations

Let X = P (X ) have a solution S thanks to Tarski.

Then

S = tn∈N[[Pn(Div )]]F
= ∪n∈N[[Pn(Div )]]F
= [[u {Pn(Div ) | n ∈ N}]]F

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007



A complete axiomatic semantics for the stable failures model 19

Key insight: No need for process equations

Let X = P (X ) have a solution S thanks to Tarski.

Then

S = tn∈N[[Pn(Div )]]F
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Key insight: No need for process equations

Let X = P (X ) have a solution S thanks to Tarski.

Then

S = tn∈N[[Pn(Div )]]F
= ∪n∈N[[Pn(Div )]]F
= [[u {Pn(Div ) | n ∈ N}]]F
= [[!nat n : N •Pn(Div )}]]F

Theorem: All classical CSP operators are continuous over F.
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Axiom system AF (∼ 80 cond. eq.)

1. Congruence axioms, e.g.

P = Q ⇒ P ↓ n = Q ↓ n
2. Basic axioms, e.g.

P ↓ n = Div (P ↓ n) ↓ m = P ↓ min(n ,m)

3. Distributivity axioms, e.g.

(P1 u P2) ↓ n = (P1 ↓ n) u (P2 ↓ n)

4. Step laws, e.g.

(? x : A → P (x )) ↓ (n + 1) = ?x : A → (P (x ) ↓ n)

5. Skip & Div axioms, e.g.

Skip ↓ (n + 1) = Skip Div ↓ n = Div
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Changes compared to Roscoe’98

Language

1. Inclusion of the depth restriction operator P ↓ n
2. Exclusion of recursion

Axioms

1. Two axioms needed to be corrected – see below

2. Added axioms for ↓ and infinite internal choice

3. Three additional axioms on the process Div
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Correction of two step laws by Roscoe

P . Q := (P u Stop) 2 Q
Roscoe’s version

(P . P ′) |[ X ]| (Q . Q ′)

= (P |[ X ]|Q) . ((P ′ |[ X ]| (Q . Q ′)) u ((P . P ′) |[ X ]|Q ′))

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007
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Correction of two step laws by Roscoe

P . Q := (P u Stop) 2 Q
Roscoe’s version

(P . P ′) |[ X ]| (Q . Q ′)

= (P |[ X ]|Q) . ((P ′ |[ X ]| (Q . Q ′)) u ((P . P ′) |[ X ]|Q ′))

Correction

Let P = (?x : A → P ′(x )) . P ′′, Q = (?x : B → Q ′(x )) . Q ′′

P |[ X ]|Q = (?x : ((X ∩A ∩ B) ∪ (A−X ) ∪ (B −X )) →
if (x ∈ X ) then (P ′(x ) |[ X ]|Q ′(x ))

else if (x ∈ A ∩ B) then ((P ′(x ) |[ X ]|Q) u (P |[ X ]|Q ′(x )))

else if (x ∈ A) then (P ′(x ) |[ X ]|Q) else (P |[ X ]|Q ′(x )))

. ((P ′′ |[ X ]|Q) u (P |[ X ]|Q ′′))

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007



Correction of two step laws by Roscoe 23

Bill Roscoe’s reaction

> my colleague Yoshinao Isobe (AIST, Japan) and I found

> counter examples to the step laws for . . .

You are right about them...

I think that, implicitly, it demonstrates that, soon,

presentations of similar models and axiom schemes will only

be ”complete” once they have been accompanied by similar

mechanised theorem proving.
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Main Result

AF is sound and complete, i.e.

A ` P = Q ⇔ [[P ]]F = [[Q ]]F

Soundness: lots of work, however boring . . .

Completeness: based on normalisation

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007
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Main Result

AF is sound and complete, i.e.

A ` P = Q ⇔ [[P ]]F = [[Q ]]F

Soundness: lots of work, however boring . . .

Completeness: based on normalisation

Remark: P v Q is equivalent to P = P u Q
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Step 1: Sequentialising

‘remove hiding, renaming, parallel composition’

1. Definition of ‘full sequential form’ SeqProcΣ

2. Definition of a sequentializing function by induction on
the process structure, e.g.

P |[ X ]|seq Skip =! n : N • (P ′(n) |[ X ]|seq Skip)

for P = ! n : N • P ′(n) ∈ SeqProcΣ

R |[ X ]|seq Skip = (? x : (A−X ) → (P ′(x ) |[ X ]|seq Skip)) 2 Q
for R = (? x : A → P ′(x )) 2 Q ∈ SeqProcΣ

3. Theorem: Seq (P ) ∈ SeqProcΣ and AF ` P = Seq (P )
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Step 2: Normalisation

1. Adaption of Rosoe’s full normal form to infinite alphabets:

((?x : A → P (x )) 2 Q ) u (!set X : ∆ • (?x : X → Div ))

∪∆ ⊆ A,

(∃X0 ∈ ∆.X0 ⊆ X ⊆ A) ⇒ X ∈ ∆,

P (x ) is in full normal form, Q ∈ {Skip,Div}

Results:
◦ Does not capture all processes

◦ Theorem:

For all P ,Q in normal from holds: [[P ]]F = [[Q ]]F ⇔ P = Q .
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Normalization (continued)

2. Definition of processes in ‘extended full normal form’

XNormProcΣ :

!nat n : N •P (n)

◦ all P(n) in full normal form,

◦ [[P(n)]]F = [[(!nat n : N • P(n)) ↓ n ]]F

3. Theorem: ∀P ,Q ∈ XNormProcΣ : P = Q ⇔ [[P ]]F = [[Q ]]F

4. Define XNorm(P ) =!nat n : N • (Norm(n)(Seq (P ))).

5. Theorem:

XNorm(P ) ∈ XNormProcΣ and AF ` P = XNorm(P )
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Gluing things together

Let [[P ]]F = [[Q ]]F .

We know

• AF ` P = XNorm(P )

• AF ` Q = XNorm(Q )

As AF is sound, we have

• [[XNorm(P )]]F = [[P ]]F = [[Q ]]F = [[XNorm(Q )]]F

As [[XNorm(P )]]F = [[XNorm(Q )]]F ∈ XNormProcΣ :

XNorm(P ) = XNorm(Q )
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Towards
Integrated Theorem Proving

for Processes and Data

with Liam O’Reilly
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Software Architecture of CSP-CASL-Prover

Theorem Proving on CASL alone

Hets
-

Translator

Isabelle
-

Theorem
Prover

Refinement
Holds / 

Doesn’t Hold

Translated
Data

Refinement
[Sp] <= [Sp’]

Interactive 
Theorem Proving

Data
Refinement
Sp <= Sp’
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Software Architecture of CSP-CASL-Prover

Theorem Proving on CSP alone

Theory Files
+Isabelle
-

Theorem
Prover

CSP-Prover

Refinement
Holds / 

Doesn’t Hold

Interactive 
Theorem Proving

Process
Refinement

P <= P’
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Software Architecture of CSP-CASL-Prover

Theorem Proving on CSP-CASL
CSP-CASL Prover

Hets
-

Translator

Hets +

Theory Files
+Isabelle
-

Theorem
Prover

CSP-Prover

Refinement
Holds / 

Doesn’t Hold

Translated
Process & Data

Refinement
([Sp],[P]) <= ([Sp’],[P’])

Interactive 
Theorem Proving

Process & Data
Refinement

(Sp,P) <= (Sp’,P’)
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Prototypical Structure of the Associated
Theory File

Hets Translation of CASL

Alphabet Construction

Integration Theorems

Data Theorems

Process Theorems

To be automatically
generated by CSP-CASL

Application dependant
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One of the 4 challenges: Subsorting

data sorts S < T
ops c : S ; d : T
axiom c = d

process c → SKIP || d → SKIP

is equivalent to (i.e. <= and >= hold)

data sorts S < T
ops c : S ; d : T
axiom c = d

process c → SKIP
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Summary

• CSP-Prover works well

• Complete axiomatic semantics for F

• First steps towards CSP-CASL-Prover
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Future Work

• CSP-Prover Version 4 (polished syntax & improved tactics)

• Integration of CSP-Prover with FDR

• Models currently ‘under construction’
◦ traces model T
◦ stable revivals model R – MPhil of Gift Samuel

• Implementing CSP-CASL-Prover –
◦ MPhils of Andy Gimblett & Liam O’Reilly

• Testing
◦ PhD of Teme Kahsai

• Analysing Parallel Algorithms
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My group in Swansea (at a visit in Gregygnog)
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CSP channels

A′: set of ‘basic’ communications

C : set of channel names; dom(c) ⊆ A′ × . . .×A′ for c ∈ C
Alphabet with channels:

A := A′ ∪ ⋃
c∈C

{c.x1. . . . .xn | (x1, . . . ,xn) ∈ dom(c)}

Sending communication a over c:

c!a := c.a

Receiving value x over c:

c?x → P (x ) := ?y : {c.x | x ∈ dom(c)} → P (π2(y))

M.Roggenbach: CSP-Prover, IFIP WG 1.3 meeting, March 2007
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