
A formal denotation of complex softwares

Pascale LE GALL

Joint work with Marc Aiguier

IBISC FRE 2873 - Université d’Évry Val d’Essonne
Programme d’Epigenomique - Genopole

Evry France

23th March, 2007
IFIP Working Group 1.3

Pascale LE GALL A formal denotation of complex softwares

Context : the GENNETEC project 2006-2009

GENetic NETworks : Emergence and Complexity
(european STREP project FP6)

General objective :

“Develop scalable computational modelling and inference tools and
scalable simulation techniques for complex systems”

Our particular sub-objective (WP1) :

“Develop a theoretical framework for modelling complex systems and
for analysis of their emergent properties, inspired by the biological
case study”

Pascale LE GALL A formal denotation of complex softwares

Targeted application domain

Genetic Regulatory Network
(GRN)

• qualitative description with
the discrete asynchroneous
modelisation of R. Thomas

• Unkown parameters
=⇒ set of models

• Behaviours expressed as
temporal properties

Complex systems ?

GRN are systems open to their
environment :
they represent a biological
function under study which can
be embedded in a larger network

Example

Mucus production in P Aeruginosa

+2

+1

−1

+2

antisigma inhibites AlgU

AlgU activates the production of antisigma

antisigma
AlgU

mucus

Mucus production occurs when the
discrete value of AlgU is greater than
the threshold 2

(=⇒ diseased lung)

Pascale LE GALL A formal denotation of complex softwares

Other natural application domains in the field of
software engineering (SE)

Open complex systems are common in SE

• oriented-object design

(active objects with an execution model involving true
concurrency)

• service-oriented design (services are also called features)

Due to some conflicts (or interactions) between two features, the
integration of a new feature on an existing system can modify the
expected properties of the underlying system

Pascale LE GALL A formal denotation of complex softwares

What is complexity ? An informal starting point

Initial assumption

A complex system is more than the set of its components

• Systems depend on the way components interact, i.e. on the
connectors (glue) used to link subsystems together

• Adding a component can modify properties inherited from a
given underlying subsystem

Informal definition

A system is said to be complex when systems can inherit from its
components some properties which cannot be anticipated from the
knowlegde issued from the components.

Our aim

to propose a formal denotation of complex systems provided with a
characterisation of emerging properties

Pascale LE GALL A formal denotation of complex softwares

Which formal elements to consider ?

• institutions to abstractly and generically denote
• signatures (interfaces),
• formulas (properties),
• models (systems),
• and satisfaction (verification of properties by systems)

• a language of system specifications
• expressed in the institutional framework
• allowing us to manipulate properties associated to specifications

• an institution-independant denotation for connectors building
systems from subsystems

Pascale LE GALL A formal denotation of complex softwares

Plan

• Language of specifications in a institutional framework

• Definition of specification connectors, classified as
• modular for composite systems without emerging properties
• complex for composite systems with emerging properties

• Classification of emerging properties as
• non conformant properties
• or “true” emerging properties

Pascale LE GALL A formal denotation of complex softwares

An abstraction of specification formalisms

Definition

An institution I = (Sig, Sen, Mod , |=) consists of

• a category Sig of signatures,

• a functor Sen : Sig → Set giving for each signature Σ a set,
element of sentences,

• a contravariant functor Mod : Sigop → Cat giving for each
signature Σ a category of Σ-models

• a |Sig|-indexed family of satisfaction relations
|=Σ⊆ |Mod(Σ)| × Sen(Σ)

such that the satisfaction condition holds :
∀σ : Σ → Σ′, ∀M′ ∈ |Mod(Σ′)|, ∀ϕ ∈ Sen(Σ),

M′ |=Σ′ Sen(σ)(ϕ) ⇔ Mod(σ)(M′) |=Σ ϕ

Pascale LE GALL A formal denotation of complex softwares

Classical examples of institutions

Many variations combining propositional logic, first order logic, (typed
or not) equational logic, Horn Clause

Propositional Logic (PL)

Many-sorted First Order Logic with equality (FOL)

Horn Clause Logic (HCL)

Equational Logic (EQL)

Conditional equational logic (CEL)

Rewriting Logic (RWL)

Pascale LE GALL A formal denotation of complex softwares

Modal First Order Logic (MFOL)

• Signatures (Σ, A) are composed of a First Order Logic with
equality (FOL) signature Σ = (S, F , P) and of a set A of actions

• (Σ, A)-formulae are built over :
• FOL formulae over Σ
• and modalities in {�a|a ∈ A}

• A (Σ, A)-model (W , R), called a Kripke frame, consists of
• a family W = (W i)i∈I of FOL Σ-models s.t. W i

s = W j
s (i , j ∈ I, s ∈ S)

• and “accessibility” relations {Ra ⊆ I × I}a∈A.

• For a signature morphism σ : (Σ, A) → (Σ′, A′) and a
(Σ′, A′)-model (W ′, R′), Mod(σ)((W ′, R′)) is the (Σ, A)-model
(W , R) defined by W = Mod(σ)(W ′) and {Ra = R′

σ(a)}a∈A.

• (W , R) |=(Σ,A) ϕ, if for every i ∈ I, we have (W , R) |=i
Σ ϕ s.t.

• atoms, Boolean connectives and quantifiers are handled as in FOL,
• (W , R) |=i

Σ �aϕ when (W , R) |=j
Σ ϕ for every j ∈ I s.t. i Ra j .

Pascale LE GALL A formal denotation of complex softwares

Specifications in institutions

Specifications

A specification language SL over an institution
I = (Sig, Sen, Mod , |=) is a pair (Spec, •) where :

• Spec : Sigop → Set is a functor, and

• • = (•
Σ)Σ∈Sig is a Sig-indexed familly of mappings

•
Σ : Spec(Σ) → P(Sen(Σ))

Category of specifications

The category SPEC of specifications over I is s.t. :

• objects are objects of Spec(Σ) for every signature Σ ∈ Sig
• morphisms are every arrow σ from Sp to Sp′ s.t.

• σ : Sig(Sp) → Sig(Sp′) is a signature morphism
• and Sen(σ)(Sp•) ⊆ Sp′•.

Notation : Sig(Sp) = Σ ⇐⇒ Sp ∈ Spec(Σ).

Pascale LE GALL A formal denotation of complex softwares

Illustration (1) : specifications

Spec(Σ′)

Spec(Σ′)

Sen

Sp′

•

Σ

•

Σ′

Sp•

Σ

Sp′•

Σ′

σ

Sp

Spec

Spec

Σ

Σ′

Sen

Sen(Σ)

Sen(Σ′)

Pascale LE GALL A formal denotation of complex softwares

Illustration (2) : category of specifications

Spec(Σ′)

Spec(Σ′)

Sen

Sp′

•

Σ

•

Σ′

Sp•

Σ

σ

Sp

Spec

Spec

Σ

Σ′

Sen

Sen(Σ)

Sen(Σ′)
σ

Sen(σ)

Sp′•

Σ′

Sen(σ)(Sp•

Σ)

Pascale LE GALL A formal denotation of complex softwares

Models of specifications

Specifications Sp are already defined by their signatures Sig(Sp),
their properties Sp•

Sig(Sp). They are also defined by their models :

Specification models

Let Sp be a specification in Spec(Σ).

Mod(Sp) is the full subcategory of Mod(Sig(Sp)) whose objects,
called models of Sp, are Sig(Sp)-models M s.t. :

∀ϕ ∈ Sp•
Sig(Sp),M |=Sig(Sp) ϕ

Property

Let σ : Sp → Sp′ be a specification morphism.

Mod(σ) : Mod(Sig(Sp′)) → Mod(Sig(Sp)) can be restricted :

Mod(σ) : Mod(Sp′) → Mod(Sp)

Pascale LE GALL A formal denotation of complex softwares

Illustration (1) : models of a specifications

Spec(Σ′)

Spec(Σ′)

Sen

Sp′

•

Σ

•

Σ′

Sp•

Σ

Sp′•

Σ′

σ

Sp

Spec

Spec

Σ

Σ′

Sen

Sen(Σ)

Sen(Σ′)

Mod(Σ′)

Mod(Σ)

Mod(Sp)

ϕ′

Mod(Sp′) = {M ′ ∈ Mod(Σ′) | ∀ϕ′ ∈ Sp′•

Σ′ , M ′ |=Σ′ ϕ′}

Mod

Mod

M ′

Pascale LE GALL A formal denotation of complex softwares

Illustration (2) : models of a specifications

Spec(Σ′)

Spec(Σ′)

Sen

Sp′

•

Σ

•

Σ′

Sp•

Σ

σ

Sp

Spec

Spec

Σ

Σ′

Sen

Sen(Σ)

Sen(Σ′)

Mod(Σ′)

Mod(Σ)

Mod(Sp)

σ

Mod(Sp′)

Mod(σ)

Sen(σ)

Sp′•

Σ′

Sen(σ)(Sp•

Σ

Mod

Mod

Pascale LE GALL A formal denotation of complex softwares

Specifications as logical theories in an institution
I = (Sig, Sen, Mod , |=)

A Σ-theory is a set of Σ-sentences T s.t T = T • where :

• T • = {ϕ | ∀M ∈ Mod(T),M |=Σ ϕ}

• and Mod(T) = {M ∈ Mod(Σ) | ∀ϕ ∈ T ,M |=Σ ϕ}.

Spec : Sigop → Set associates

• to each Σ ∈ Sig the set of all T of Sen(Σ) s.t. T = T •,

• and to each σ : Σ → Σ′, the application matching to each T ′ of
Sen(Σ′) with the subset T = {ϕ | Sen(σ)(ϕ) ∈ T ′}.

Remark :

A Σ-theory T is often described by a finite set of axioms
Ax ⊆ Sen(Σ), s.t. Ax• = T
Specifications (Σ, Ax) then verify : (Σ, Ax)•Σ = Ax•.

Pascale LE GALL A formal denotation of complex softwares

Specifications as transition systems for MFOL

System transitions (Q, T) are defined by :

• Q is the set of states, and

• T ⊆ Q × A × Sen(Σ) × Q.

For σ : (Σ, A) → (Σ′, A′) and S′ = (Q′, T′) over (Σ′, A′),
Spec(σ)(S′) is S = (Q, T) over (Σ, A) s.t.

• Q = Q′

• T = {(q, a, ϕ, q′)|(q, σ(a), σ(ϕ), q′) ∈ T
′} is a set of transitions.

Mod(S) : Models of S = (Q, T) are (Σ, A)-model (W , R) where W is
a Q-indexed family of FOL Σ-models and R = {Ra ⊆ Q × Q}a∈A s.t. :

q Ra q′ ⇐⇒ ∃(q, a, ϕ, q′) ∈ T, W q |=Σ ϕ

S•
(Σ,A) = {ϕ ∈ Sen((Σ, A))|∀(W , R) ∈ Mod(S), (W , R) |= ϕ}.

Remark

Sometimes, an inital state q0 is identified among all states in Q.

Pascale LE GALL A formal denotation of complex softwares

Connectors for building systems from subsystems

Connectors defined by means of “colimit”

• Intuitively, a colimit captures all minimal information of objects
involved in the colimit construction

• Connectors in CommUnity [Fiadeiro and all] for describing
architectural description of software systems

• See [Ehresmann and Vanbremersh, Brown, Paton and Porter] for
modelisation of (biological) complex systems

diagram category

Let I and C be two categories.
Note ∆(I,C) the category of diagrams in C with shape I defined by

• objects are functors δ : I → C,

• morphisms are natural transformations between functors
δ, δ′ : I → C.

Pascale LE GALL A formal denotation of complex softwares

Illustration : diagram category

δ : I → C

Category C
Diagram I

δ′ : I → C

natural transformation between δ and δ′

Pascale LE GALL A formal denotation of complex softwares

Architectural connector

Let SL = (Spec, •) be a specification language over an institution I.
An architectural connector c : |∆(I,SPEC)| → |SPEC| is a partial
mapping s.t. for each δ ∈ ∆(I,SPEC) for which c(δ) is defined,

• Sig(c(δ)) is the signature, colimit of the diagram Sig ◦ δ.

• δ is equipped with a cocone p : Sig ◦ δ → (Sig(c(δ))

Pascale LE GALL A formal denotation of complex softwares

Illustration : architectural connector

Category SPEC

Sig(Sp1)

Sig(Sp2)

Sig(Sp3)

Sig(Sp4)

Sig(Sp5)

Sp3

Sp5

Sp2

Sp4

Sp1

c(δ)

Σ colimit of diagram Sig ◦ δ

c connector implies

Σ = Sig(c(δ))

Diagram I

δ : I → C

Sig : SPEC → Sig

Pascale LE GALL A formal denotation of complex softwares

Architectural connector : first examples for logical
theories

Enrichment

Consider a shape I composed of two nodes i and j and one arrow
a : i → j.
The connector Enrich is defined for any δ : I → SPEC where δ(i) is a
Σ-theory T and δ(j) a Σ′-theory T ′ s. t. Sen(δ(a))(T) ⊆ T ′.
We define Enrich(δ) = T ′ (with Σ′ as corresponding colimit
signature).

Union

Consider a shape I composed of three nodes i, j, and k and two
arrows a1 : i → j and a2 : i → k .

The connector Union is defined for any δ : I → SPEC where δ(i) is a
Σ0-theory T0, δ(j) a Σ1-theory T1 and δ(k) a Σ2-theory T2 and s. t.
Sen(δ(a1))(T0) ⊆ T1 and Sen(δ(a2))(T0) ⊆ T2.

It yields the Σ-theory T = (Sen(p1)(T1) ∪ Sen(p2)(T2))
• together with

the cocone p : Sig ◦ δ → Σ, pushout of Sig(δ(a1)) and Sig(δ(a2))
Pascale LE GALL A formal denotation of complex softwares

Architectural connector : synchroneous product of
transition systems

Two transition systems can be combined by synchronizing transitions
sharing actions.

Let I be a shape composed of three nodes i, j and k and two arrows
a1 : i → j and a2 : i → k .

With δ(j) = (Qj , Tj) and δ(k) = (Qk , Tk), Sync(δ) is the transition
system (Q, T) over (Σj + Σk , Aj ∪ Ak) s. t.

• Q = Qj × Qk

• if a ∈ Aj ∩ Ak , (qj , a, ϕj , q′
j) ∈ Tj and (qk , a, ϕk , q′

k) ∈ Tk then
((qj , qk), a, ϕj ∧ ϕk , (q′

j , q′
k)) ∈ T

• if a ∈ Aj \ Ak and (qj , a, ϕj , q′
j) ∈ Tj then for every qk ∈ Qk ,

((qj , qk), a, ϕj , (q′
j , qk)) ∈ T

• if a ∈ Ak \ Aj and (qk , a, ϕk , q′
k) ∈ Tk then for every qj ∈ Qj ,

((qj , qk), a, ϕk , (qj , q′
k)) ∈ T

Pascale LE GALL A formal denotation of complex softwares

Complex and modular connectors

A connector will be considered as complex when :

non-conformance properties the resulting system gives
more or less behaviors on a component with respect to
what is expressed in the component specification.

emerging properties any behavior bringing into play
many components cannot be deduced from a complete
knowledge of these components.

Otherwise, the connector will be said modular.

Pascale LE GALL A formal denotation of complex softwares

Complex and modular connectors

Let c : |∆I,SPEC| → |SPEC| be a connector.
Let δ be a diagram of ∆I,SPEC s. t. c(δ) is defined, p denoting the
corresponding colimit over signatures.
c is said modular for δ iff :

1 ∀i ∈ I, ∀ϕ ∈ Sen(Sig(δ(i))),

δ(i) |=Sig(δ(i)) ϕ ⇐⇒ c(δ) |=Sig(c(δ)) Sen(pi)(ϕ)

2 ∀ϕ ∈ c(δ)•Sig(c(δ)) \ (
⋃

i∈I

Sen(pi)(Sig(δ(i)))),

⋃

i∈I

Sen(pi)(δ(i))•Sig(δ(i)) |=Sig(c(δ)) ϕ

c is said complex for δ otherwise.

Pascale LE GALL A formal denotation of complex softwares

Feature oriented systems

Features are new capabilities incorporated in systems, possibly by
modifying existing behaviors of other features present in the system.

Feature interactions are typical examples of emerging properties

Feature specifications

A feature specification F is a triple (Sp, Inv , Sp′) where :

• Sp and Sp′ are specifications of SPEC

• Inv ⊆ Sen(Sig(Sp))

• σ : Sig(Sp) → Sig(Sp′)

• Sen(σ)(Inv) ⊆ Sen(σ)(Sp•) ∩ Sp′•.

Sp is called the required specification of F .
Elements in Inv are called invariants.
Sp′ represents properties specific to the feature under specification

Pascale LE GALL A formal denotation of complex softwares

Feature integration using the Integrate connector

Let I be a shape composed of three nodes i, j, and k and two arrows
a1 : i → j and a2 : i → k .
The connector Integrate is defined for δ : I → SPEC satisfying

• δ(i) = (Sp∅, ∅, Sp′
i), δ(j) = (Sp∅, ∅, Sp′

j) and
δ(k) = (Spk , Inv , Sp′

k) ,
• δ(a1) = (IdSp∅

, ρ′j : Sp′
i → Sp′

j) and
δ(a2) = (Sp∅ →֒ Spk , ρ′k : Sp′

i → Sp′
k), and

• Spk →֒ Sp′
j

and yields Integrate(δ) = (Sp∅, ∅, (Sp′
j \ Spk) + Sp′

k) together with the
cocone p : δ → Σ′

j + Σ′
k pushout of Sig(δ(a1)) and Sig(δ(a2)).

Remarks

1 Integrate is defined for δ where δ(j) is the system specification on
which the feature δ(k) is plugged on.

2 Specification inclusion and specification difference have to be
defined first

3 In previous works, we have exhibited non-conformant properties
and “true” emerging properties for such kinds of specifications

Pascale LE GALL A formal denotation of complex softwares

Ongoing research (1)

Which architectural connectors for Genetic Regulatory Networks ?

• to redefine qualitative description of GRN in a institutional
framework

• to identify adequate connectors to build systems from
subsystems corresponding to biological functions

• Our aim : to be able to propose to biologists (a family of)
connector(s) linking sub GRN to design a larger GRN, ensuring
that a global formula is satisfied by the whole system

(such a global formula should represent a biological knowledge
which is considered as reliable by experts)

Pascale LE GALL A formal denotation of complex softwares

Ongoing research (2)

Dealing with non-conformance and emerging properties through
refinement steps

Our aim : to study emerging properties at the right level of abstraction
and to give necessary or/and sufficient conditions for the preservation
of emerging properties with respect to

• vertical composition

• horizontal composition

Pascale LE GALL A formal denotation of complex softwares

