
An Object-Z based
Metamodel for Wright
Joint work with M. Maouche2, and M. Mosteghanemi1

Presented by M. Bettaz1

1MESRS/ESI Algeria
2Philadelphia University Jordan

1IFIP WG 1.3, UDINE-Italy, September 12, 2009

Motivation
• Wright:

• a component model designed for formal description of
software architecture.

• defined by an ADL (Architecture Description Language).
• Our interest in metamodeling of Wright is motivated by:

• The regain of interest in software architectural models
supporting connectors (S. Kell, Rethinking Software
Connectors, 2007),

• Wright is considered as a reference for formal architectural
models,

• Wright provides support for connectors,
• Many component systems are leaving ADL-based definitions

for metamodel based definitions (PALLADIO, PRISMA,
SOFA 2, etc.).

• Benefits:
• Semi-automated creation of the development supporting

tools,
• Semi-automated creation of runtime management tools.

2IFIP WG 1.3, UDINE-Italy, September 12,
2009

Using of Object-Z

• On one hand
• OMG has defined the MOF (Meta-Object Facilities)

as a standard,
• MOF 2.x may be seen as a subset of UML 2.x,
• To get more precise descriptions, an association of

MOF and OCL (Object Constraint Language) is used,
• OCL is based on first-order logic.

• On the other hand
• Transformation approaches from UML to Object-Z

exist,
• Object-Z is based on set and first-order logic.

• This precisely motivates our use of Object-Z.
3IFIP WG 1.3, UDINE-Italy, September 12, 2009

Objective

• Build an Object-Z metamodel for Wright.
• Show, through a simplified client-server

architecture example, how to derive a
Wright model.

IFIP WG 1.3, UDINE-Italy, September 12, 2009 4

The Approach

• Use of MOF - UML (without OCL) as an
intermediary notation (conformity with the standards,
reuse of results of works based on MOF).

• Transform UML metamodels into Object-Z notation to
get more formal metamodels, which may be rigorously
checked, and formally analysed (adapting of existing
transformation techniques).

5IFIP WG 1.3, UDINE-Italy, September 12,
2009

Wright

• The Architectural abstractions:
– components,
– connectors,
– configurations.

6IFIP WG 1.3, UDINE-Italy, September 12,
2009

A UML Metamodel of Wright Structural
Aspects

7IFIP WG 1.3, UDINE-Italy, September 12,
2009

A UML Metamodel of Wright Behavioral
Aspects

8

From [D. Bisztray, K. Ehrig, and R. Heckel, Case Study: UML to
CSP transformation, 2007] with slight modifications.

IFIP WG 1.3, UDINE-Italy, September 12,
2009

Transformation into Object-Z

• We use rules defined by Kim - Carrington,
and Amalio – Polack (with some
modifications).

• The UML definitions are based on
theUML 1.4 specification.

9IFIP WG 1.3, UDINE-Italy, September 12,
2009

Classes, attributes and
associations

10

UML Object-Z
UML class Objet-Z class schema
multi-valued attribute power-set
multiplicity constraint predicate
association class attribute, powerset or

simple set (according to the
multiplicity)

linking of objects from
different classes via roles

predicates using the built-in
self constant (holding the
implicit identity of the
object)

IFIP WG 1.3, UDINE-Italy, September 12, 2009

Classes, attributes and associations
Illustration

11IFIP WG 1.3, UDINE-Italy, September 12,
2009

Generalisation / Specialisations

12

UML Object-Z
inheritance Schema inclusion
subtyping ‘enforced’ by polymorphism

(Object-Z inheritance does
not imply subtyping).

IFIP WG 1.3, UDINE-Italy, September 12, 2009

Generalisation / Specialisations:
Illustration

13IFIP WG 1.3, UDINE-Italy, September 12,
2009

Association Classes

14

UML Object-Z
association-class a class with two attributes

(representing the ends of
the association)

Association multiplicity In relation with roles
Predicates to enforce the
semantics (eventuelly)

IFIP WG 1.3, UDINE-Italy, September 12,
2009

Association Classes:
Illustration

15IFIP WG 1.3, UDINE-Italy, September 12, 2009

Composition

16

UML Object-Z
component class,
composite class

according to the rules of
classes and associations

Containment relationships Via a ©, attached to the
types of attributes and
operations.

IFIP WG 1.3, UDINE-Italy, September 12, 2009

Composition:
Illustration

17IFIP WG 1.3, UDINE-Italy, September 12, 2009

Example: Deriving a Wright client-server
model.

• Client-server connector
• Client-server components
• Client-server configuration

IFIP WG 1.3, UDINE-Italy, September 12, 2009 18

1. Client-server connector

cs_con: instance of the class
WrightConnector

cs_con.roles = {c_role,
s_role}

cs_con.glue = cs_glue_desc

IFIP WG 1.3, UDINE-Italy, September 12, 2009 19

The client role
c_role: instance of the class

WrightRole

c_role.protocol =
crl_proc_cont

c_role.connect = cs_con
c_role.a-port =

att_cl_p_cs_con

IFIP WG 1.3, UDINE-Italy, September 12, 2009 20

The server role
s_role: instance of the class

WrightRole

 s_role.protocol =
srl_proc_cont

 s_role.connect = cs_con
 s_role.a-port=

att_sv_p_cs_cont

IFIP WG 1.3, UDINE-Italy, September 12, 2009 21

The client-server glue
cs_glue_desc : instance of the

class WrightConnDesc

 cs_glue_desc.spec =

cs_glue_proc_cont
 cs_glue_desc.connect =

cs_con

IFIP WG 1.3, UDINE-Italy, September 12, 2009 22

Roles and glue protocols

srl_proc_cont: protocol of the server role

events associated to server role : srl_proc_cont : {srl_request,
srl_reply}

process expression: srl_proc_id = srl_request → srl_reply →
srl_proc_id □ §

crl_proc_cont: protocol of the client role

events associated to client role: crl_proc_cont : {crl_request, crl_reply}

process expression : crl_proc_id = crl_request → crl_reply →
crl_proc_id §

IFIP WG 1.3, UDINE-Italy, September 12, 2009 23

cs_glue_proc_cont: protocol of the client-server glue

events associated to glue : cs_glue_proc_cont : {srl_request,
srl_reply, crl_request, crl_reply }

process expression:
 cs_glue_proc_id = crl_request → srl_request → cs_glue_proc_id
□

 srl_reply → crl_reply →
cs_glue_proc_id □ §

IFIP WG 1.3, UDINE-Italy, September 12,
2009 24

2. Client-server components:
2.1 The Client

client : instance of the class
WrigthComponent

 client.ports ={cl_p}
 client.specification = cl_desc

IFIP WG 1.3, UDINE-Italy, September 12,
2009 25

Client port
cl_p : instance of the class

WrithPort

 cl_p.protocol =
cl_p_proc_cont

 cl_p.comp = client
 cl_p.a-roles =

{att_cl_p_cs_con}

IFIP WG 1.3, UDINE-Italy, September
12, 2009 26

Client port protocol
cl_p_proc_cont: instance of the class WrightCSpContainer

associated events:
 cl_p_request, cl_p_reply
process identifier:
 cl_p_proc_id = cl_p_request → cl_p_reply → cl_p_proc_id

§

IFIP WG 1.3, UDINE-Italy, September
12, 2009 27

Client side Attachment

att_cl_p_cs_con: instance of the
class WrightAttachent

 att_cl_p_cs_con.a-role =
c_role

 att_cl_p_cs_con.a-port = cl_p

IFIP WG 1.3, UDINE-Italy, September
12, 2009 28

Client component description

cl_desc: instance of the class
WrightCompDesc

cl_desc.spec =
cl_comp_proc_cont

cl_desc.comp = client

IFIP WG 1.3, UDINE-Italy, September
12, 2009 29

Client component behavior

cl_comp_proc_cont : instance of the class WrigthCspContainer

 associated events: internalCompute, cl_p_request, cl_p_reply

 process identifier:
 cl_comp_proc_id = internalCompute → cl_p_request →

cl_p_reply →
 cl_comp_proc_id §

IFIP WG 1.3, UDINE-Italy, September 12,
2009 30

2. Client-server components:
 2.2 The Server

server : instance of class
WrigthComponent

 server.ports ={sv_p}
 server.specification = sv_desc

IFIP WG 1.3, UDINE-Italy, September 12,
2009 31

Server port
sv_p : instance of the class

WrithPort

 sv_p.protocol =
sv_p_proc_cont

 sv_p.comp = server
 sv_p.a-roles =

{att_sv_p_cs_con}

IFIP WG 1.3, UDINE-Italy, September 12, 2009 32

Server port protocol
sv_p_proc_cont: instance of the class WrightCSpContainer

 associated events:
 sv_p_request, sv_p_reply
 process identifier:
 sv_p_proc_id = sv_p_request → sv_p_reply → sv_p_proc_id
□ §

IFIP WG 1.3, UDINE-Italy, September 12, 2009 33

Server side Attachment

att_sv_p_cs_con: instance of the
class WrightAttachent

 att_sv_p_cs_con.a-role =
s_role

 att_sv_p_cs_con.a-port = sv_p

IFIP WG 1.3, UDINE-Italy, September 12, 2009 34

Server Component description

sv_desc: instance of the class
WrightCompDesc

sv_desc.spec =
sv_comp_proc_cont

sv_desc.comp = server

IFIP WG 1.3, UDINE-Italy, September 12, 2009 35

Server Component behavior

sv_comp_proc_cont : instance of the class WrigthCspContainer

 associated events: internalCompute, sv_p_request, sv_p_reply

 process identifier:
 sv_comp_proc_id = sv_p_request → InternalCompute →

sv_p_reply → sv_comp_proc_id □ §

IFIP WG 1.3, UDINE-Italy, September 12,
2009 36

Client-server configuration
cl_sv_conf : instance of the class

WrigthConfiguration
cl_sv_conf.components = {client,

server}
cl_sv_conf.connectors = {cs_con}
cl_sv_conf.attachements = {

att_cl_p_cs_con,
att_sv_p_cs_con}

IFIP WG 1.3, UDINE-Italy, September 12,
2009 37

Concluding remarks
• Checking the validity of the built metamodel.

– directly? How?
– Indirectly: through a mapping between our

metamodel and a ‘valid’ metamodel of Wright, built
for instance using UML or graph transformation?

• Checking the validity of a Wright model.
– Might be done by deriving (automatiquely) an

instance of our meta-model, and showing that the
derived instance satisfies the predicates specified in
our meta-model.

IFIP WG 1.3, UDINE-Italy, September 12,
2009 38

Some References
1. R. Allen, A Formal Approach to Software Architecture, PhD thesis, 1997
2. S-K. Kim and D. Carrington, A Formal Mapping between UML Models and Object-

Z Specifications, 2000
3. N. Amalio and F. Polack, Comparison of Formalisation Approaches of UML Class

Constructs in Z and Object-Z, 2002
4. D. Roe et al., Mapping UML Models incorporating OCL Constraints into Object-Z,

2003
5. J. Ivers et al., Documenting Component and Connector Views with UML 2.0, 2004
6. P. Hentynka, F. Plasil, The Power of MOF-based Mata-modeling of Components,

2005
7. M. Navarčík, Using UML with OCL as ADL, 2005
8. M. Bettaz, M. Maouche, Towards Mobile Z Schemas, 2005
9. S. Kell, Rethinking Software Connectors, 2007
10. D. Bisztray, K. Ehrig, and R. Heckel, Case Study: UML to CSP transformation,

2007
11. M. Bettaz, M. Maouche & R. Heckel, From Graph Transformation to Z Notation,

2008,

39IFIP WG 1.3, UDINE-Italy, September 12, 2009

