
Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

On the Recognizability of Arrow and Graph
Languages

Christoph Blume Sander Bruggink Barbara König
Universität Duisburg-Essen, Germany

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Background

Applications of finite automata and regular (word) languages are
abundant in computer science.

What about regular/recognizable graph languages?

There exists an established notion of of recognizable graph
languages by Courcelle. Our contribution:

A categorical notion of recognizability (not just for graphs,
but for arbitrary categories). It coincides with Courcelle’s
notion if we work in Cospan(Graph).

A notion of recognizable graph language which works well
with (double-pushout) graph transformation.

A notion of graph automaton (= automaton functor).

Some preliminary experiments on an implementation of such
automata. Long-term goal: a graph automata tool suite.

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Background

Why are we interested?

Potential applications of recognizable graph languages in
verification:

Proving termination of graph transformation systems (GTSs).
Current termination checkers for string rewriting use regular
languages. We need a comparable notion for graphs.

Verifying invariants of GTSs.
We need a convenient method to describe properties of
graphs.

Regular model checking for GTSs.

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Plan

Preliminaries: category theory and graph transformation

Abstract notion of recognizability: recognizing languages of
arrows in a category

Recognizing graphs: we apply the abstract notion to the
category of cospans of graphs, in order to recognize graphs
with interfaces

Some thoughts on implementation

Comparison to Courcelle’s notion and to other related work

Conclusion and Future Work

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Cospans

A cospan is a pair of arrows with the same codomain:

J → G ← K

Cospan composition:

J G

M

M ′

H K
cL

cR

f

dL

g

dR
(PO)

Cospan category Cospan(C): the same objects as C,
(equivalence classes of) cospans as arrows, pairs of
C-identities as identities and cospan composition as
composition.

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Graph transformation

Hypergraph: G = 〈V ,E , att, lab〉, where
V is the set of nodes and E the set of edges;
att : E → V ∗ the attachment function; and
lab: E → Σ the labelling function.

Morphism from G to H:
structure preserving map from the nodes and edges of G to
the nodes and edges of H.

Graph transformation with cospans:
Rules are pairs ρ = 〈l , r〉 with cospans l : ∅ → L← K ,
r : ∅ → R ← K .
G ⇒ρ,m H if there is a cospan c : K → C ← ∅ and

[G ] = l ; c and [H] = r ; c

(where [Q] := ∅ → Q ← ∅).
This is equivalent to double-pushout graph rewriting!

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Recognizing arrows

Definition (Nondeterministic Automaton Functor)

Automaton functor: A : C→ Relfin.

Each object of C is mapped to a finite set of states.
Each set of states is equipped with a subset of start states
and a subset of end states.

Each arrow of C is mapped to a relation between states.

The automaton functor A accepts an arrow from c : I → J if
A(c) relates a start state of A(I ) to an end state of A(J).

An automaton functor is deterministic, if each set of start
states is a singleton, and each relation is a function.

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Recognizing arrows (2)

A B
f

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Recognizing arrows (2)

A B
f

s1

s2

s3 t1
t2

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Recognizing arrows (2)

A B
f

s1

s2

s3 t1
t2

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Abstract intuition

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Abstract intuition

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Abstract intuition

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Abstract intuition

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Abstract intuition

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Abstract intuition

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Example: Finite automata

Category C: a single object, arrows are all words from Σ∗ (where
Σ is a fixed alphabet)

Functor corresponds to the transition function of the automaton:
δ̂(z , vw) = δ̂(δ̂(z , v),w)

s1

s2

s3
a

a

a

b

b

b

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Determinization, closure, minimization

s1

s2

s3 t1
t2

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Determinization, closure, minimization

∅

s1
s3

s2

s1, s2, s3

s1, s3

s2, s3

s1, s2

∅

t1

t2

t1, t2

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Determinization, closure, minimization

∅

s1
s3

s2

s1, s2, s3

s1, s3

s2, s3

s1, s2

∅

t1

t2

t1, t2

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Determinization, closure, minimization

Theorem

For each automaton functor, there exists a deterministic
automaton functor which recognizes the same language.

Theorem

The class of recognizable languages is closed under complement,
union and intersection.

Theorem

For each automaton functor, there exists a unique minimal
automaton functor which recognizes the same language.

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Recognizability by congruences

Let an equivalence relation ≡R be given, defined only on arrows
with the same domain and codomain.

The relation ≡R is called locally finite, if for each pair of objects,
there are finitely many equivalence classes of arrows between them.

It is called a congruence if the following holds:

a ≡R a′ implies (a ; b) ≡R (a′ ; b) (for all b)

Theorem

A language LJ,K of arrows from J to K is recognizable iff LJ,K is
the union of some equivalence classes of a locally finite congruence.

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Recognizing graphs

Definition

Let [G ] := ∅ → G ← ∅.
A language L of graphs is recognizable whenever

L′ := {[G ] | G ∈ L}

is a recognizable language in Cospan(Graph).

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Example: k-colorability

The class of k-colorable graphs is recognizable.

GJ K

colorings
of G

colorings
of J

colorings
of K

relate colorings of
J to compatible
colorings of K

Example:

• •

•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Example: k-colorability

The class of k-colorable graphs is recognizable.

GJ K

colorings
of G

colorings
of J

colorings
of K

relate colorings of
J to compatible
colorings of K

Example:

• •

•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Example: k-colorability (2)

• •

• •

• •

• •

→ ←
• •

•

• •
•

• •
•

• •
•

•

•

•
•

•
•

•
•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Example: k-colorability (2)

→ ←
• •

• •

• •

• •

• •

• •

• •

→ ←
• •

•

• •
•

• •
•

• •
•

•

•

•
•

•
•

•
•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Example: k-colorability (2)

→ ←
• •

• •

• •

• •

• •

• •

• •

→ ←
• •

•

• •
•

• •
•

• •
•

•

•

•
•

•
•

•
•

→ ←
•

•

•
•

•
•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Example: k-colorability (2)

• •

•

• •
•

...

...

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Robustness result

Let CG = Cospan(Graph) and let CGdis be its subcategory
consisting of cospans with discrete interfaces only.

Theorem

Let a class LJ,K of graphs with discrete interfaces J,K be be called
discretely recognizable when LJ,K is recognizable in CGdis.

Then LJ,K is recognizable in CG if and only if it is discretely
recognizable.

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Implementation of automaton functors

Is it realistic to use automaton functors in practice?

Use only discrete interfaces (0 nodes, 1 node, 2 nodes, etc.)

Restrict the interface size, this means that only graphs up to a
certain pathwidth can be recognized (extension to treewidth)

Still: the size of state sets for the discrete interfaces usually grows
exponentially.
After all, k-colorability is an NP-complete problem. (Its complexity
is however linear if we restrict to graphs of bounded treewidth –
Courcelle’s theorem.)

Our plan: fight state space explosion with the favourite weapon of
model-checkers – represent automaton functors by binary decision
diagrams (BDDs). (Our recent results are very encouraging, but
there’s still a lot to do.)

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Courcelle’s algebra of graphs

Carrier set: Graphs with a number of external nodes (called
n-ary graphs).

Operations:
Redefinition. The external nodes are given new names.
Fusion. Given an equivalence relation on the external nodes,
fuse the nodes which are equivalent to each other.
Disjoint union.





•1

•
2

•
3

•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Courcelle’s algebra of graphs

Carrier set: Graphs with a number of external nodes (called
n-ary graphs).

Operations:
Redefinition. The external nodes are given new names.
Fusion. Given an equivalence relation on the external nodes,
fuse the nodes which are equivalent to each other.
Disjoint union.

redef





•1

•
2

•
3

•

,

(
1 (→ 3, 3 (→ 3

2 (→ 1, 4 (→ 1

)



=

•
2,4

• •
1,3

•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Courcelle’s algebra of graphs

Carrier set: Graphs with a number of external nodes (called
n-ary graphs).

Operations:
Redefinition. The external nodes are given new names.
Fusion. Given an equivalence relation on the external nodes,
fuse the nodes which are equivalent to each other.
Disjoint union.

fuse





•1

•
2

•
3

•

,

{
{1, 2}
{3}

}



=

•
1,2

•
3

•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Courcelle’s algebra of graphs

Carrier set: Graphs with a number of external nodes (called
n-ary graphs).

Operations:
Redefinition. The external nodes are given new names.
Fusion. Given an equivalence relation on the external nodes,
fuse the nodes which are equivalent to each other.
Disjoint union.





•1

•
2

•
3

•

⊕
•1

•
=

•1

•
2

•
3

•
•4

•

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Recognizability á la Courcelle

Definition

Let ≡C be an equivalence relation defined on graphs with the same
arity. It is locally finite if for each arity there are finitely many
equivalence classes, and it is called a congruence if it respects the
operations mentioned above.

A language L of n-ary graphs is Courcelle-recognizable if it is the
union of (finitely many) equivalence classes of a locally finite
congruence.

This notion of recognizability is equivalent to ours!

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Comparing cospans and Courcelle-graphs

Differences between cospans and Courcelle graphs:

1 Cospans can have arbitrary graphs as interfaces, Courcelle’s
interfaces consist only of nodes.

2 Cospans have two interfaces, Courcelle’s graphs only one.

Ad 2: we introduce a function bend(·) which “bends the interfaces
together”:

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Comparing cospans and Courcelle-graphs

Differences between cospans and Courcelle graphs:

1 Cospans can have arbitrary graphs as interfaces, Courcelle’s
interfaces consist only of nodes.

2 Cospans have two interfaces, Courcelle’s graphs only one.

Ad 1: solved by robustness result.
Ad 2: we introduce a function bend(·) which “bends the interfaces
together”:

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Comparing cospans and Courcelle-graphs

Differences between cospans and Courcelle graphs:

1 Cospans can have arbitrary graphs as interfaces, Courcelle’s
interfaces consist only of nodes.

2 Cospans have two interfaces, Courcelle’s graphs only one.

Ad 2: we introduce a function bend(·) which “bends the interfaces
together”:

J G K

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Comparing cospans and Courcelle-graphs

Differences between cospans and Courcelle graphs:

1 Cospans can have arbitrary graphs as interfaces, Courcelle’s
interfaces consist only of nodes.

2 Cospans have two interfaces, Courcelle’s graphs only one.

Ad 2: we introduce a function bend(·) which “bends the interfaces
together”:

J

G

K

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Comparing cospans and Courcelle-graphs

Differences between cospans and Courcelle graphs:

1 Cospans can have arbitrary graphs as interfaces, Courcelle’s
interfaces consist only of nodes.

2 Cospans have two interfaces, Courcelle’s graphs only one.

Ad 2: we introduce a function bend(·) which “bends the interfaces
together”:

J

G

K external nodes

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Comparing cospans and Courcelle-graphs

Differences between cospans and Courcelle graphs:

1 Cospans can have arbitrary graphs as interfaces, Courcelle’s
interfaces consist only of nodes.

2 Cospans have two interfaces, Courcelle’s graphs only one.

Ad 2: we introduce a function bend(·) which “bends the interfaces
together”:

J

G

K external nodes

(compare with compact-closed categories)

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Equivalence

Theorem

Let J be a discrete graph. A set of cospans of graphs L is the
(∅, J)-language of some automaton functor A if and only if
bend(L) is Courcelle-recognizable.

Proof.
(⇒): Simulate Courcelle’s operations by cospan compositions.
(⇐): Simulate cospan compositions by Courcelle’s operations.

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Cospans ⇒ Courcelle

redef σ =
•
•

•
•

•
•
•

J J K
σ

fuseθ =
•
•
•

•
•

•
•
•

J D J

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Courcelle ⇒ Cospans

G

n

H

n m

⊕ !

n n m

!

m

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Comparison to Related Work

Courcelle (90’s)
Our work is a different view on Courcelle’s notion of
recognizability.
Our notion is category-theory-based (as opposed to the
algebraic notion of Courcelle) and focusses more on automata.
Bozapalidis, Kalampakas: magmoids/graphoids (2006/2008)
Another way to define recognizability and a notion of graph
automata (weaker, but more efficient, than ours).
Griffing: Composition-representative subsets (2003)
Related approach that also uses functors (into a category with
finite homsets)
Arbib/Manes/Adámek/Trnková/Ehrig/. . . (70’s):
Regular Languages in a Category
Generalizes the state set (! object) and the transition
function (! arrow)

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Comparison to Related Work

Mezei/Wright/Eilenberg (60’s): An algebraic notion of
recognizability (algebra homomorphisms into multi-sorted
algebras with finite carrier sets)
Predecessor to Courcelle’s work

Habel/Kreowski/Lautemann (1993): A comparison of
compatible, finite and inductive graph properties

Context-free graph grammars (hyperedge replacement
grammars): there are recognizable languages which are not
context-free and vice versa ! no proper Chomsky hierarchy

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages



Background Preliminaries Recognizing arrows Recognizing graphs Implementation Conclusion

Further research

A coalgebraic view on automaton functors?

Pathwidth vs. Treewidth: Allow tree decompositions of graphs
! use monoidal categories and functors?

Implementation: we have a fairly naive prototype
implementation which explicitly represents state sets and
relations
! we currently switch to a BDD representation

Generalization to Adhesive Categories: Courcelle’s result that

Every MSOL-definable graph language is
recognizable

should work in that setting.
(MSOL = monadic second-order logic)

Verification: invariants (! Master thesis of Christoph
Blume), termination analysis, regular model-checking

Blume, Bruggink, König On the Recognizability of Arrow and Graph Languages


	Background
	Preliminaries
	Recognizing arrows
	Recognizing graphs
	Implementation
	Conclusion and Further Research

