
Refinement-based Guidelines for Constructing

Algorithms

Dominique Méry
Université Henri Poincaré Nancy 1

Meeting at UDINE
IFIP WG 1.3

September 11-12, 2009

Summary

3 Adding guidelines and hints for developing algorithms

3 A framework for teaching programming methodology based on the fa-
mous pre/post specifications, together with the refinement.

3 Illustrating a methodology based on Event B and the refinement by de-
veloping algorithms: insertion sorting,Floyd’s algorithm, CYK algorithm,
. . .

3 Tools based on Event B supported by the RODIN platform

3 Current works: cryptologic algorithms, access control systems, distributed
algorithms, . . .

1

Papers

3 D. CANSELL, D. MÉRY. – -Proved-Patterns-Based Development for Structured
Programs.-. – In : Computer Science - Theory and Applications, Second In-
ternational, Symposium on Computer Science in Russia - CSR 2007 , Volker
Diekert, Mikhail V. Volkov, Andrei Voronkov (réd.), Lecture Notes in Computer
Science, 4649, Springer, pp. 104–114. – Ekaterinburg, Russia, 2007.

3 D. MÉRY. – -A simple refinement-based method for constructing algorithms-.
– SIGCSE Bull. 41, 2 (2009), pp. 51–59.

3 D. MÉRY. – -Refinement-based guidelines for algorithmic systems-. – Interna-
tional Journal of Software and Informatics (2009), p. 35 pages. – to appear.

2

Refinement

-

-X X’

Y Y’

I(X) I(X’)

J(X,Y) J(X’,Y’)

abstract ev(X,X’)

concrete ev(Y,Y’)

3

Using formal method by guidelines application

3 Defining a framework relating the world of algorithms and the world of
(Event B) models

3 Providing as much as possible mechanized steps

3 Making proofs as simple as possible

3 Helping to derive invariants from definitions

4

Proof-based development: Call as Event Guideline

CALL PREPOST PB

PROCEDURE M CM
?

call

-
call−as−event

?

REFINEMENT

-
SEES

?

EXTENDS

�
mapping

-
SEES

3 CALL is the call of the PROCEDURE

3 PREPOST is the machine containing the events stating the pre- and postconditions of CALL and PROCEDURE,
and M is the refinement machine of PREPOST, with events including control points defined in CM.

3 The call-as-event transformation produces a model PREPOST and a context PB from CALL.

3 The mapping transformation allows us to derive an algorithmic procedure that can be mechanized.

3 PROCEDURE is a node corresponding to a procedure derived from the refinement model M. CALL is an
instantiation of PROCEDURE using parameters x and y.

3 M is a refinement model of PREPOST, which is transformed into PROCEDURE by applying structuring
rules. It may contain events corresponding to calls of other procedures.

5

Formal development of sequential algorithms

procedure PROC(x; var y)
precondition P (x)
postcondition Q(x, y)

3 Using the design-by-contract approach

3 Progressive introduction of the methodology on non-trivial examples.

3 Introduction of concepts of programming (call-by-value,...) and of mod-
elling (constants, axioms, . . .)

3 Using diagrams to improve the communication with students through
definitions (dynamic programming)

3 Organizing the global interactions between modelling and proving.

6

Three problems to solve

3 Presenting the method: Computing binomial coefficients

3 Illustrating one classical example: Sorting by insertion

3 Using the dynamic programming: Floyd’s algorithm

7

Filling the Call as Event Guideline

CALL ?PREPOST ?PB

?PROCEDURE ?M ?CM
?

call

-
call−as−event

?

REFINEMENT

-
SEES

?

EXTENDS

�
mapping

-
SEES

8

Problem 1: Computing the binomial coefficients

bn(n,k,vcoef) BN1 BN0

bn BN2
?

call

-
call−as−event

?

REFINEMENT

-
SEES

�
mapping ����

�����
����*

SEES

3 The computation of binomial coefficients is based on Pascal’s triangle
and we define it as a partial function c.

3 Data n and k are defined in the context called BN0.

3 The call bn(n, k, vcoef) is translated as an event which is simply setting
vcoef to c(n 7→ k).

3 The refinement BN2 produces a collection of events analysing the dif-
ferent steps of the computations required for computing the value of
c(n 7→ k).

9

Comments on the application 1

3 Pascal’s triangle provides a graphical guide for writing d’s definition into
BN0.

3 We have introduced another graphical structure for supporting the case
analysis related to the values of n and k and the introduction of control
flow.

3 The world of mathematics is defining a value c(n 7→ k) and the world of
computing will derive a process using c and its definition for producing
the same value.

. . .

10

Comments on the application 1

3 The refinement i is guided by three cases for the call instances:

– Either k is 0,

– or k is n,

– or is neither 0, nor n.

3 Let us consider the difficult case: k 6= 0 and k 6= n:

∀k ∈ {1, . . . n− 1}.
(n

k

)
=

(n− 1

k − 1

)
+

(n− 1

k

)
(1)

– Using the same event for computing
(
n−1
k−1

)
and

(
n−1

k

)
.

– These events are translated into a recursive call by the mapping.

– the final computing event is computing the value of the sum of the
two values.

11

Comments on the application 1

3

INVARIANTS
inv1 : l ∈ LOC

inv3 : vtcoefx ∈ N
inv4 : vtcoefy ∈ N
inv5 : l ∈ {callx, cally, endcalling}⇒ k 6= 0 ∧ n 6= 0 ∧ k < n

inv6 : l = cally ⇒ vtcoefx = c(n− 1 7→ k − 1)

inv7 : l = endcalling ⇒ vtcoefy = c(n− 1 7→ k) ∧ vtcoefx = c(n− 1 7→
k − 1)

inv8 : l = end⇒ vcoef = c(n 7→ k)

3 The refinement produces 42 proof obligations and 2 were manual. The
other proof obligations are automatically discharged.

Note: The example is simple and the function c is easy to define. The in-
variant is built by analysing the expression of the computed value.

12

Problem 2: Sorting by insertion

insert-sort(m,t,st) IS1 IS0

insert-sort IS2
?

call

-
call−as−event

?

REFINEMENT

-
SEES

�
mapping ���

�����
�����

���*

SEES

3 The problem is to sort an array t between 1 and m, where dom(t) = 1..n

and m ≤ n.

3 The sorting can be done by sorting the array from 1 to m− 1 and then to
insert the value t(m) at the right position in 1..m.

3 The insertion event is considered as a call of procedure: the subproblem
is solved in the same way by applying the guideline.

13

c = start ∧m ∈ N ∧ t = st

c = start ∧m 6= 1 ∧ t = st c = start ∧m = 1 ∧ t = st

c = sortingcall ∧m 6= 1 ∧ t = st

c = insertioncall ∧m 6= 1∧

∃a.

(
st = a.t(m) ∧ sorted(a)
∧permutation(s(1..m− 1), a)

)

c = end ∧m 6= 1∧
permutation(t, st) ∧ sorted(st)

c = end ∧m = 1 ∧ sorted(st(1..m)

c = end
∧sorted(st(1..m))
∧permutation(s, r)

�
�

�
�

�
�

�
�

�
�

��
�����

�����

m6=1 sorting call

?

m=1

?

tosortingcall

?

sortingm=1

?

sortingcall

?

insertioncall

HH
HHHHH

HHHHH
HHj

m6=1

?

m=1

14

Comments on Problem 2

3 The diagram gives the different events of the refinement model IS2; it
contains an event called sortingcall, which is sorting the array t between
the value 1 to m− 1

3 the event insertioncall which is inserting the value t(m) at the right posi-
tion in the array sorted between 1 and m− 1.

3 This last event can not be translated into an algorithmic expression and
should be considered as defining a new problem which is the insertion
of a value in a sorted array.

3 We re-apply the guideline by starting a new development for solving the
insertion problem.

3 We use a diagram for illustrating the insertion of t(m) into the values of
st(1..m− 1).

15

Problem 3: Floyd’s algorithm

spath(l,a,b,g,D,FD) SPATH1 CSPATH1

spath SPATH2 CPATH2
?

call

-
call−as−event

?

REFINEMENT

-
SEES

?

EXTENDS

�
mapping

-
SEES

3 spath is built from events of SPATH2

3 FD states if the path exists

3 D contains the cost of the minimal path, if it exists

16

/∗ N = 1 . . n−1 ∗ /
void shortestpath (i n t l , i n t a , i n t b , i n t g [] [n] , i n t ∗D, i n t ∗FD)
{

i n t D1, D2, D3, FD1, FD2,FD3;

∗FD = 0; FD1=0;FD2=0;FD3=0;
i f (l ==0)

{
i f (g [a] [b] != NONE)
{ ∗FD = 1; ∗D = g[a] [b] ; }

}
else

{
shortestpath (l−1,a , b , g,&D1,&FD1) ;
i f (FD1 == 1) {

shortestpath (l−1,a , l , g,&D2,&FD2) ;
i f (FD2==1) {

shortestpath (l−1, l , b , g,&D3,&FD3) ;
i f (FD3==1) {
i f (D1 < D2+D3)

{∗D= D1; }
else

{∗D=D2+D3 ; } ;
∗FD = 1; }
else

{∗D=D1;∗FD=1;} }
else

{∗D=D1;∗FD=1;} }
else

{
i f (FD2 == 1 && FD3==1) {∗D=D2+D3; ∗FD=1;}

else
{∗FD= 0 ; } ; }

} }

17

Proof obligations

Model Total Auto Manual Reviewed Undischarged
CSPATH1 8 8 0 0 0
SPATH1 5 4 1 0 0
SPATH2 493 317 176 0 0
Global 506 329 177 0 0

3 Proof Obligations are related to d.

3 The prover provides an effective help for completing the invariant.

18

Technical Justifications: defining traces

3 Let M be an EVENT B machine and C a context seen by M .

3 Let y be the list of variables of M ,

3 Let E be the set of events of M,

3 let Init(y) be the predicate defining the initial values of y in M .

The temporal framework of M is defined by the TLA specification denoted Spec(M):

Init(y) ∧ 2[Next]y ∧WFy(Next), where Next ≡ ∃e ∈ E.BA(e)(y, y′).

19

Technical Justifications: liveness properties

Suppose that PB is a context and PREPOST is a machine corresponding to a
problem stating calls of a procedure. Suppose that the following diagram is vali-
dated:

CALL PREPOST PB-
call−as−event

-
SEES

We assume that the preconditions are defined by P , i.e., P1, . . . , Pn, and the post-
condition is defined by Q.
Then for any i in 1..n, PREPOST satisfies Pi(x, y) ; Q(x, y).

20

Technical Justifications: refinement diagrams

A refinement diagram for M, P , and Q over L and A is an acyclic labelled graph over A with labels
from G or E satisfying the following rules.

3 There is a unique input node P with at least one outgoing arrow.

3 There is a unique output node Q with no outgoing arrows.

3 If R is related to S by a unique arrow labelled e ∈ E, then

– It satisfies the property R ; S

– ∀c, x, c′, x′.R(c, x) ∧ I(M)(c, x) ∧BA(e)(c, x, c′, x′) ⇒ S(c′, x′)

– ∀c, x.R(c, x) ∧ I(M)(c, x) ⇒ ∃c′, x′.BA(e)(c, x, c′, x′)

– If R ≡ c = l1 ∧A(x) and S ≡ c = l2 ∧B(x), then l1 6= l2 and `(R)=l1, `(S)=l2.

3 If R is related to S1, . . . , Sp, then

– Each arrow R to Si is labelled by a guard gi ∈ G.

– For any i in 1..p the following conditions hold.(
R ∧ I(M) ∧ gi(x) ⇒ Si

∀j.j ∈ 1..p ∧ j 6= i ∧R ∧ I(M) ∧ gi(x) ⇒ ¬gj(x)

– R ∧ I(M) ⇒ ∃i ∈ 1..p.gi.

3 For each e ∈ E, there is only one instance of e in the diagram.

We use PRE(D) for P and POST (D) for Q.

21

Technical Justifications: a simple refinement
diagram

c = start ∧ P

c = start ∧ P1 . . . c = start ∧ Pn

c = end ∧Q

�����
�����

����

P1
HHHHH

HHHHH
HHHj

Pn

HHHH
HHHHH

HHHj

call1
�

�����
�������

calln

22

Technical Justifications: refinement diagram and
liveness

Let M be a machine and let D = (A, C, M, P, Q, G, E) be a refinement diagram for M .

1. If M satisfies P ; Q and Q ; R, it satisfies P ; R.

2. If M satisfies P ; Q and R ; Q, it satisfies (P ∨R) ; Q.

3. If I is invariant for M and if M satisfies P ∧ I ; Q, then M satisfies P ; Q.

4. If I is invariant for M and if M satisfies P ∧ I ⇒ Q, then M satisfies P ; Q.

5. Let M be a machine and let D = (A, C, M, P, Q, G, E) be a refinement diagram for M . If
P

e−→ Q is a link of D for the machine M , then M satisfies P ; Q.

6. Let M be a machine, and let D = (A, C, M, P, Q, G, E) be a refinement diagram for M . If P
and Q are two nodes of D such that there is a path in D from P to Q and any path from P can
be extended in a path containing Q, then M satisfies P ; Q.

Let M be a machine and let D = (A, C, M, P, Q, G, E) be a refinement diagram for M .
Then M satisfies (c = start ∧ PRE(D)) ; (c = end ∧ POST (D)).

23

Concluding Remarks and Futur Works

3 Automatic process for producing an algorithm from the EVENT B models.

3 Management of problems and subproblems

3 Systematic way to develop a sequential algorithm

3 Extending to concurrent/distributed algorithms

3 Plugin for the translation

3 Current works: cryptologic algorithms, access control systems, distributed al-
gorithms, . . .

3 Case studies: next slides

24

