
The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Model-Level vs Theory-Level Semantics

Till Mossakowski 1 Florian Rabe 2 Mihai Codescu 1

1DFKI GmbH Bremen and University of Bremen

2Jacobs University Bremen

12.09.2009, Udine, IFIP WG 1.3 Meeting

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Introduction

Two different semantics for structured specifications:

model-level semantics: the semantics of a specification SP is
a signature Sig(SP) and a class of models Mod(SP) over
Sig(SP)

theory-level semantics: the semantics of a specification is a
signature Sig(SP) and a set of sentences Th(SP) over
Sig(SP)

Both semantics are easily reconciled if there is no hiding (and also
no freeness), because in this case:

Mod(SP) = Mod(Th(SP))

However, in presence of hiding, this equation does not hold!
(examples: later)

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Some history

model-level semantics
ASL (Sannella, Wirsing 1983)
specification in an arbitrary institution (Sannella, Tarlecki
1988)
algebraic specification languages (CASL, 1990’s ff)

theory-level semantics
Clear (Goguen, Burstall 1980)
structured theories, conservative extensions and interpolation
(Maibaum, Dimitrakos, Veloso 1980’s ff.)
hidden information modules over inclusive institutions
(Goguen, Roşu 2004)
MathML, OpenMath, OMDoc (Kohlhase et al. 2000’s)
ontologies and description logics (Wolter, Lutz 2000’s)

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Motivation of the talk

Report on recent developments of heterogeneous tool set
(which relies on model-level semantics)

Report on recent developments of OMDoc/MMT
(which relies on theory-level semantics)

Discuss the pros and cons

Can both semantics be reconciled?

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Logics currently supported by Hets

CASL many-sorted first-order logic, partial functions,
subsorting, datatypes (induction)

CoCASL coalgebraic specification of reactive systems
ModalCASL first-order modal logic

HasCASL higher order logic, polymorphism, type classes
Haskell pure functional programming language

CspCASL combination of CASL with the process algebra CSP
OWL DL description logic (DL) fragment

of Web Ontology Language (OWL)
Maude rewriting logic with preorder algebra semantics

VSE a dynamic logic with Pascal-like programs
RelScheme Relational schemes

Propositional classical propositional logic
SoftFOL softly typed first-order logic (⇒ TPTP)
Isabelle Isabelle’s higher-order logic

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Sound Integration of Heterogeneity

logics are formalized as institutions (Goguen, Burstall 1984)

logic translations are formalized as institution (co)morphisms
(Goguen, Rosu 2002)

logic translations embed or encode logical structure in a way
that truth is preserved

Grothendieck logic = flat combination of the logics in a logic
graph (Diaconescu 2002)

Hets provides an object-oriented interface for plugging in
institutions and (co)morphisms

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Σ → Σ’

Sen Σ

σ

Sen Σ’

Mod Σ Mod Σ’

Sen σ

Mod σ

|=Σ |=Σ’

Signatures

Sentences

Satisfaction

Models

Institutions

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

(Σ,Ι) → (Σ’,J)

SenI Σ

(σ,µ)

SenIΦµ(Σ’)

ModI Σ ModIΦµ(Σ’)

SenI σ

ModI σ

|=Σ |=Σ’

Signatures

Sentences

Satisfaction

Models

The Grothendieck Institution
σ:Σ→Φµ(Σ′)
µ:J→I

SenJ Σ’
αµ

Σ′

ModJ Σ’
βµ

Σ′

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Syntax of Structured Specifications

SP ::= BASIC-SPEC basic specification
| SP then SP extension
| SP and SP union
| SP with SYMBOL-MAP renaming
| SP hide SYMBOLS hiding
| SPEC-NAME [PARAM*] reference to named spec

LIBRARY-ITEM ::=
spec SPEC-NAME [PARAM*] = SP end name a spec

| view VIEW-NAME : SP to SP = SYMBOL-MAP end
refinement between specifications

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Syntax of Structured Specifications

SP ::= BASIC-SPEC
| SP then SP
| SP and SP
| SP with SYMBOL-MAP
| SP hide SYMBOLS
| SPEC-NAME [PARAM*]

LIBRARY-ITEM ::=
spec SPEC-NAME [PARAM*] = SP end

| view VIEW-NAME : SP to SP = SYMBOL-MAP end

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Syntax of Heterogeneous Specifications

SP ::= BASIC-SPEC | logic LOGIC-NAME : {SP}
| SP then SP
| SP and SP
| SP with SYMBOL-MAP | SP with logic COMORPHISM
| SP hide SYMBOLS | SP hide logic MORPHISM
| SPEC-NAME [PARAM*]

LIBRARY-ITEM ::=
spec SPEC-NAME [PARAM*] = SP end

| view VIEW-NAME : SP to SP = SYMBOL-MAP end
| view VIEW-NAME : SP to SP = SYMBOL-MAP, COMORPHISM
| logic LOGIC-NAME

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Structured specifications
over an arbitrary institution

SP ::= 〈Σ, Γ〉 | SP ∪ SP | σ(SP) | σ−1(SP)

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

. . . and their semantics

Sig(〈Σ, Γ〉) = Σ
Mod(〈Σ, Γ〉) = {M ∈ Mod(Σ)|M |= Γ}

Sig(SP1 ∪ SP2) = Sig(SP1) = Sig(SP2)
Mod(SP1 ∪ SP2) = Mod(SP1) ∩Mod(SP2)

Sig(σ : Σ1−→Σ2(SP)) = Σ2

Mod(σ(SP)) = {M ∈ Mod(Σ2) | M|σ ∈ Mod(SP)}

Sig((σ : Σ1−→Σ2)−1(SP)) = Σ1

Mod((σ : Σ1−→Σ2)−1(SP)) = {M|σ | M ∈ Mod(SP)}

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Heterogeneous Development Graphs

Heterogeneous structured specifications are mapped into
heterogeneous development graphs:

nodes correspond to individual specification modules

definition links correspond to imports of modules

theorem links express proof obligations

Development graphs

are a tool for management and reuse of proofs

have already proved to scale to industrial applications
(cf. verification support environment VSE)

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Development graphs S = 〈N ,L〉

Nodes in N : (ΣN , ΓN) with

ΣN signature,

ΓN ⊆ Sen(ΣN) set of local axioms.

Links in L:

global M
σ !! N , where σ : ΣM → ΣN ,

local M
σ !! N where σ : ΣM → ΣN , or

hiding M
σ

h
!! N where σ : ΣN → ΣM

going against the direction of the link.

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Semantics of development graphs

ModS(N) consists of those ΣN -models n for which

1 n satisfies the local axioms ΓN ,

2 for each K
σ !! N ∈ S, n|σ is a K -model,

3 for each K
σ !! N ∈ S,

n|σ satisfies the local axioms ΓK ,

4 for each K
σ

h
!! N ∈ S,

n has a σ-expansion k (i.e. k|σ = n) that is a K -model.

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Theorem links

Theorem links come, like definition links, in different versions:

global theorem links M
σ !!!!!!!! N , where σ : ΣM−→ΣN ,

local theorem links M
σ !!!!!!!! N , where σ : ΣM−→ΣN

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Semantics of theorem links

S |= M
σ !!!!!!!! N iff for all n ∈ ModS(N),

n|σ ∈ ModS(M).

S |= M
σ !!!!!!!! N iff for all n ∈ ModS(N), n|σ |= ΓM .

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Proof Calculus

Theorem

The proof calculus for heterogeneous development graphs is
sound and complete
relative to an oracle checking conservative extensions.

decompose global theorem links semi-automatically into local
ones

choose specific provers for local proof goals

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Reachability of nodes

Global reachability

M σ !! !! N is defined inductively and holds iff

either M = N and σ = id , or

M
σ′ !! K ∈ S, and K σ′′ !! !! N, with σ = σ′′ ◦ σ′.

Local reachability

M !! σ !! !! N iff M σ !! !! N or there is a node K with

M
σ′ !! K ∈ S and K σ′′ !! !! N, such that σ = σ′′ ◦ σ′.

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Flattenable Nodes in a Development Graph

A node N in a development graph is called flattenable if for any
node M with incoming hiding definition links, N is not reachable
from M.
The theory of a flattenable node N is defined as

Th(N) = ΓN ∪
⋃

K
σ !! !! N

σ(Th(K))
⋃

K !! σ !! !! N

σ(ΓK)

and captures the node N completely.
For non-flattenable nodes, we compute normal forms.

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Normal Forms

The normal form of a non-flattenable node (in our example Field)
is computed by unfolding its subgraph to be able to distinguish
between instances of the same node imported via different paths to
another node

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Normal Forms

The normal form of a non-flattenable node (in our example Field)
is computed by unfolding its subgraph to be able to distinguish
between instances of the same node imported via different paths to
another node and then computing the colimit of the resulting
diagram.

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Normal forms

Theorem

Let σ : N → nf (N) the inclusion morphism from a node N to its
normal form. Under weak amalgamability assumptions,
Mod(N) = Mod(nf (N))|σ.

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Weakly amalgamable pushouts

For a heterogeneous diagram of the shape

(L1,Σ1) (L,Σ)
(c1,φ1)""

(c2,φ2) !! (L2,Σ2)

we look for a logic where we can compute a weakly amalgamable
cocone.

L′

L1

e1

##

u1 $$ u2%% L2

e2

&&

L

c1

&&"""""""" c2

##########
d

''

Conditions:

the logic L′ has weakly
amalgamable pushouts;

the comorphisms are weakly
amalgamable;

the square is weakly
amalgamable

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

Weakly amalgamable pushouts

For a heterogeneous diagram of the shape

(L1,Σ1) (L,Σ)
(c1,φ1)""

(c2,φ2) !! (L2,Σ2)

we look for a logic where we can compute a weakly amalgamable
cocone.

L′

L1

e1

##

u1 $$ u2%% L2

e2

&&

L

c1

&&"""""""" c2

##########
d

''

Conditions:

the logic L′ has weakly
amalgamable pushouts;

the comorphisms are weakly
amalgamable;

the square is weakly
amalgamable

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

An Ontology Example

logic OWL
spec FoodOntology =

Class: Human
SubClassOf: eats some Food

Class: Plant
SubClassOf: grows in some Area

Class: Vegetarian
SubClassOf: Healthy

Class: FoodAndPlant
EquivalentTo: Food and Plant

Class: FoodAndPlant
SubClassOf: Vegetarian

Class: PlantEater
EquivalentTo: Human and eats only Plant

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

An Ontology Example

logic OWL
spec FoodOntology =

Class: Human
SubClassOf: eats some Food

Class: Plant
SubClassOf: grows in some Area

Class: Vegetarian
SubClassOf: Healthy %%(Wolter and Lutz)

Class: FoodAndPlant
EquivalentTo: Food and Plant

Class: FoodAndPlant
SubClassOf: Vegetarian

Class: PlantEater
EquivalentTo: Human and eats only Plant

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

An Ontology Example

spec FoodOntologyHide =
FoodOntology hide Food

spec FoodOntologyGoal =
FoodOntologyHide

then %implies
Class: PlantEater
SubClassOf: eats some Vegetarian

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

First-order Specification of Real Numbers

(Roggenbach, Schröder, Mossakowski - WADT 1999)
axiomatization of the weak theory of real numbers.

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

A Heterogeneous Refinement

Consider a specification SortSpec of sorting written in Casl and a
sorting program SortProg given in the institution of programming
languages PLNG. To express in Hets that SortProg is an
implementation of SortSpec

logicCASL : SortSpec ! logicPLNG : SortProg

we use a heterogeneous view

view correctness : SortSpec to {SortProg hide toCASL}

which translates to

β(ModPLNG(SortProg)) ⊆ ModCasl(SortSpec)

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

A Heterogeneous Refinement

We can encode the semi-morphism toCASL = (Φ, β) as a span of

comorphisms PLNG toCASL−"" Casl ◦ Φ toCASL+
!! CASL:

SignPLNG id"" SignPLNG Φ !! SignCasl

SenPLNG incl"" ∅ incl!! SenCasl ◦ Φ

ModPLNG β !! ModCasl ◦ Φop id"" ModCasl ◦ Φop

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

A Heterogeneous Refinement

We find a weakly amalgamable square for the span

PLNG toCASL−"" Casl ◦ Φ toCASL+
!! Casl by coding both

PLNG and Casl to higher order logic:

HOL

PLNG

PLNG2HOL
((

id $$ θ%% Casl

CASL2HOL
))

Casl ◦ Φ
toCASL−

))$$$$$$$$$$ toCASL+

((%%%%%%%%%%

''
Notice that we are not commited
to higher order logic but we
could use instead any other logic
with the same properties (e.g.
rewriting logic).

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

A Heterogeneous Refinement

We obtain thus a weakly amalgamable square

(Casl ◦ Φ,Σp)
(toCASL−,id)

**&&&&&&&&&&&&
(toCASL+,id)

++''''''''''''

(PLNG,ΣP)

(PLNG2HOL,id) ,,((((((((((((
(Casl,ΣS)

(CASL2HOL,θΣS
)--))))))))))))

(HOL,PLNG2HOL(ΣP))

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

The Heterogeneous Tool Set (Hets)
Structured and Heterogeneous Specifications

Heterogeneous Development Graphs
Benchmark Examples

A Heterogeneous Refinement

The problem gets reformulated in HOL as

ModHOL(PLNG2HOL(SortProg)) ⊆ ModHOL(θ(CASL2HOL(SortSpec)))

which comes to proving in HOL that

PLNG2HOL(SortProg) , θ(CASL2HOL(SortSpec))

Till Mossakowski, Florian Rabe, Mihai Codescu Model-Level vs Theory-Level Semantics

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Background MMT

! Developed with Michael Kohlhase in knowledge management
group at Jacobs University Bremen

! Arose from efforts to consolidate
! proof theoretical and model theoretical approaches to logic
! logical and knowledge management approaches to mathematics

! Designed as web-scalable representation language of logical
knowledge

! Forms kernel of currently developed OMDoc 2 language
(Open Mathematical DOCuments)

1

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Hets vs. MMT: Differences in spirit

! Focus
! Hets: specifying and proving
! MMT: focus on representation and web-scalability

! Ontological assumptions
! Hets: institutions
! MMT: foundation-independent

! Semantics
! Hets: model level
! MMT: theory level

2

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

MMT focus

! Interface between formal systems and web services
! services should be implemented generically

by people who do not know formal systems!
! services can be implemented generically
! standard compliance: XML, URI, OpenMath/MathML,

OMDoc

! Modularity-aware interface between different formal systems
! systems differ strongly in their ontological foundations
! yet structuring mechanisms very similar: specification

languages, type theories, programming languages

3

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Foundation-independence

! Variety of foundations: set theories, type theories

! Variety of logical frameworks: model theory, proof theory

! MMT approach: foundations and logical frameworks
represented as theories

! Possible by weak definition of theory
! MMT theories are lists of symbol declarations
! symbols may have types or definitions
! no type system

! Still strong enough to define structured theory development

4

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Model- vs. Theory-based Semantics

! Theory-based: semantics of structured theory is flat theory
! constructive elimination of structuring concepts

only way to be foundation-independent
! works well except for hiding

! Model-based: semantics of structured theory is model class
! requires model theoretic semantics of base language

difficult for type theories
! elegant framework using institutions

but some people do not (want to) use them
! elegant treatment of hiding

5

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

MMT Syntax Overview

! Theory level: theory graphs
! Symbol level

! declarations of symbols in theories
! maps of symbols in theory morphisms

! Object level: generic application and binding
! MMT defines structural well-formedness
! MMT parametric in external definition of well-typedness

6

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Meta-Theories

! Meta-relation between theories

! Theory lf represents Edinburgh logical framework

! Theory zfc represents set theory

! Theory fol represents first-order logic, view v its semantics

lf

fol zfc

monoidring integers

meta meta

metameta meta

v

v1

7

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Semantics of Flat Theories
Semantics induced by commitment to semantics of a meta-theory
Examples:

! Typing/entailment for LF induces typing/entailment for other
nodes done: implemented MMT plugin for LF

! Model theory for LF induces model theory for other nodes
done: institution for LF

! Ignore LF, give semantics for FOL and HOL separately
done by Hets

Goal

! give meta-theory LFIns
(and semantics for it)

! use it to formalize
institutions within MMT

! integrate that into Hets

lf

fol hol

monoidring

meta meta

metameta

8

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Semantics of Flat Theories
Semantics induced by commitment to semantics of a meta-theory
Examples:

! Typing/entailment for LF induces typing/entailment for other
nodes done: implemented MMT plugin for LF

! Model theory for LF induces model theory for other nodes
done: institution for LF

! Ignore LF, give semantics for FOL and HOL separately
done by Hets

Goal

! give meta-theory LFIns
(and semantics for it)

! use it to formalize
institutions within MMT

! integrate that into Hets

lf

fol hol

monoidring

meta meta

metameta

9

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Structured Theories

! Theory graph of theories and theory morphisms
! Three kinds of theory morphisms

! inclusions (special case: meta-theories)
! structures instantiate theories (also called: definitional link,

import)
import of theory S into theory T induces theory morphism
S → T

! views translate between existing theories (also called:
postulated link, theorem link)

10

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Theory Graph Example

monoid
comp, unit

cgroup
mon, inv

ring
add
mult

integers
0,+,−

v2{
mon/comp #→ +
mon/unit #→ 0

}
or mon #→ v1

inv #→ −

cgroup?mon

ring?add

ring?mult
v1
comp #→ +
unit #→ 0

v2

structure

view

11

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Hets vs. MMT: Differences in Formal Details

! Imports unnamed in Hets, named in MMT

! Curry-Howard-based representation of axioms and theorems in
MMT

! Only primitive hiding and partial views in MMT

12

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Named vs. Unnamed Imports

! Named imports common in type theories and programming
languages e.g., SML functors

! Less common in algebraic specification
not present in OBJ, CASL, development graphs

! Advantages of named imports
! multiple import of the same theory without need for renaming
! concrete syntax for reference to theory morphism induced by

structure
! morphisms instantiate symbols with terms and structures with

morphisms
yields concrete syntax for decomposition of theorem links

13

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Curry-Howard-Representation

! Axioms and theorems are named

! Axiom a asserting F represented as a : true F

! Theorem t with proof p asserting F represented as
a = p : true F

! No loss of generality

! Operations and axioms/theorems treated uniformly
blurs difference between signatures and theories

14

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Hiding

! Syntax: morphism maps symbol to special term $
! Strictness: symbols depending on hidden symbols are hidden

! Semantics of structures: hidden symbols are dropped

! Semantics of views: views induce partial mappings
yields concrete syntax for local links

! MMT hiding more like deleting/forgetting

15

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Use cases 1, 2

1) Hiding auxiliary symbols

! avoids cluttering namespace in systems with unnamed imports

! possible in Hets

! not crucial in systems with named imports like MMT

2) Hiding defined symbols

! replace with definition

! possible in MMT and Hets

16

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Use case 3

Hiding inexpressible parts

! permits to represent partial translations

! consequences of hidden axioms should not be hidden (if
possible)

! possible in Hets

Example:

! import from HOL-Reals hiding higher-order axioms to obtain
FOL-Reals

! Idea for MMT: FOL-expressible theorems (with
non-FOL-expressible proofs) translated to axioms

17

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Use case 4
Hiding axiomatized symbols

! possible in Hets
! possible in MMT if symbol is defined using choice/description

operator
! general case awkward in MMT

Example:
! Hets: axiomatize concatenation c of lists by giving

FOL-axioms anil and acons
! Idea for MMT

1. define c using implicit definition
2. hide c and replace with description operator the c .(anil ∧ acons)
3. replace the x .P(x) with skolem constant c and axiom

c = the x .P(x)
4. apply axiom scheme P(the x .P(x))
5. drop choice operators
6. resulting FOL-theory is equivalent to Hets normal form

18

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Use case 5
Hiding implementation details

! permits changes to hidden symbols without affecting visible
interface

! theorems using hidden axioms should not be available
! current behavior of MMT
! not possible in Hets: hidden information not visible but still

there
! generalization: proofs using hidden axioms become proofs

with gaps
Example:

1. define real numbers in set theory
2. R, 0, etc. are defined constants, properties are theorems
3. hide underlying set theory to obtain theory in which R, 0, etc.

have no definitions, properties are axioms
4. for division implemented as total function, hide axiom 1/0 = 0

19

Differences in Spirit Syntax and Semantics Differences in Details Future of Hiding

Idea for Reconciliation

! Call MMT hiding a different name, e.g., deleting or forgetting

! Add syntax for model-theoretical hiding to MMT

! MMT semantics of structured theory: pair of flat theory with
visible interface given by subtheory

! Akin to Hidden Information Modules by Goguen, Rosu

! Given model theory for meta-theory (e.g., for fol),
model-theoretical semantics of hiding can be recovered from
MMT semantics

20

