The Art of Saying "No" - How to Politely Eat Your Way Through an Infinite Meal

Dirk Pattinson, Imperial College London
(joint work with Neil Ghani and Peter Hancock)

Infinite Objects are Coalgebras

Infinite Streams over $A: \nu X . A \times X$

$$
a_{0} \rightarrow a_{1} \rightarrow a_{2} \rightarrow \ldots
$$

Infinite Binary Trees over A : Signatures (variable branching):
$\nu X . A \times X^{2}$

$$
\nu X . A \times X^{2}+B \times X+C
$$

Enter Topology ...

Goal. Algebraic Treatment of continuous functions $\nu T \rightarrow \nu S$

- e.g. representatives of reals: $\{-1,0,1\}^{\omega} \leadsto[-1,1]$
- clean (co)inductive definitions and proofs

Discrete Codomain. Continuous Functions $f: \nu X . T X \rightarrow B$

- output $b \in B$ after reading finite amount of information in $\nu X . T X$

Example. Infinite Streams, or coalgebraically $\nu X . A \times X \rightarrow B$

- $f(\alpha)$ depends on finite initial prefix of α

Conceptually. This is the Cantor topology on A^{ω} (with A discrete)

- generated by $\bar{\alpha} \cdot A^{\omega}$ where $\bar{\alpha} \in A^{*}$

Coalgebraic View

Final Coalgebras arise as infinite limits: e.g. streams

Topology generated by $p_{i}^{-1}(o), o \subseteq A^{i}$ open

Coalgebraic Generalisation. Suppose $\nu X . T X \xrightarrow{\sigma} T(\nu X . T X)$

where $p_{i+1}=T p_{i} \circ \sigma$. Topology generated by $p_{i}^{-1}(o)$, " $o \subseteq T^{i} 1$ open"

Continuous Functions: The Case of Streams

Goal. Characterise continuous functions of type $A^{\omega} \rightarrow B$ with B discrete.
Continuity. (A and B discrete) $f: A^{\omega} \rightarrow B$ is continuous ...

- iff f locally constant.

$$
\left(\forall\left(a_{0}, a_{1}, \ldots\right) \in A^{\omega}\right)(\exists n \in \omega) f \text { constant on }\left(a_{0}, a_{1}, \ldots, a_{n}\right) \cdot A^{\omega}
$$

- iff f is in the least class C closed under

$$
\frac{f \text { constant }}{C(f)} \quad \frac{(\forall a \in A) C\left(f\left(a:_{-}\right)\right)}{C(f)}
$$

Proof (\Leftarrow) locally constant functions are so closed.
Proof (\Rightarrow) classical logic and dependent choice.

Representation of Continuous Stream Functions

Idea. Proofs of Continuity define the least class of functions

$$
\frac{f \text { constant }}{C(f)} \quad \frac{(\forall a \in A) C\left(f\left(a:_{-}\right)\right)}{C(f)}
$$

and can be represented as an inductive data type:

$$
R=\mu X \cdot B+(A \rightarrow X) \cong B+(A \rightarrow R)
$$

with two constructors: Ret : $B \rightarrow R$ and and $\mathrm{Rd}:(A \rightarrow R) \rightarrow R$
from which a continuous function can be extracted:

$$
\begin{aligned}
& \text { eat: } \mu X . B+(A \rightarrow X) \rightarrow A^{\omega} \rightarrow B \\
& \text { eat } \quad(\operatorname{Ret} b) \quad(a: \alpha)=b \\
& \text { eat } \quad(\operatorname{Rd} f) \quad(a: \alpha)=\operatorname{eat}(f a) \alpha
\end{aligned}
$$

Theorem. If \rightarrow_{c} is continuous functions, then eat $: R \rightarrow\left(A^{\omega} \rightarrow_{c} B\right)$ is onto.

From Streams to Trees

Goal. Classify functions $\operatorname{Tree}(A) \rightarrow{ }_{c} B$ where $\operatorname{Tree}(A)=\nu X . A \times X^{2}$
Idea. Let R denote the type of representatives with constructors Rd and Ret.

$$
\begin{aligned}
& \text { eat : } \quad R \quad \rightarrow \text { Tree }(A) \rightarrow B \\
& \text { eat }(\operatorname{Ret} b)(a, l, r) \quad=b \\
& \text { eat }(\operatorname{Rd} f)(a, l, r)=\operatorname{eat}(f a)(l, r)
\end{aligned}
$$

Observation. eat $(f a): \operatorname{Tree}(A)^{2} \rightarrow B$, so $f(a)$ represents $\operatorname{Tree}(A)^{2} \rightarrow B$
Mathematical Obfuscation. R_{n} represents $\operatorname{Tree}(A)^{n} \rightarrow B$

$$
\begin{array}{lcll}
\text { eat }_{n}: & R_{n} & \rightarrow \operatorname{Tree}(A)^{n} & \rightarrow B \\
\text { eat }_{n} & (\operatorname{Ret} b) & \left(t_{1}, \ldots, t_{n}\right) & =b \\
\operatorname{eat}_{n} & \left(\operatorname{Rd}_{i} f\right) & \left(t_{1}, \ldots, t_{n}\right) & =\operatorname{eat}_{n+1}\left(f a_{i}\right)\left(t_{1}, \ldots, t_{i-1}, l, r, t_{i+1}, \ldots, t_{n}\right)
\end{array}
$$

where l, r are the left/right subtree of t_{i}. Constructors. Ret, $\operatorname{Rd}_{1}, \ldots, \operatorname{Rd}_{n}$

Escaping the Underworld of Indices

Desired (Inductive) Type with constructors $\operatorname{Ret}, \operatorname{Rd}_{1}, \ldots, \operatorname{Rd}_{n}$ as above.

$$
R_{n} \cong B+\sum_{i \in n}\left(A \rightarrow R_{n+1}\right)
$$

Realisation Mapping.

$$
\begin{aligned}
& \text { eat }{ }_{n}: \quad R_{n} \quad \rightarrow \text { Tree }(A)^{n} \quad \rightarrow B \\
& \text { eat }_{n} \quad(\operatorname{Ret} b) \quad\left(t_{1}, \ldots, t_{n}\right)=b \\
& \operatorname{eat}_{n}\left(\operatorname{Rd}_{i} f\right)\left(t_{1}, \ldots, t_{n}\right)=\operatorname{eat}_{n+1}\left(f a_{i}\right)\left(t_{1}, \ldots, t_{i-1}, l, r, t_{i+1}, \ldots, t_{n}\right)
\end{aligned}
$$

Taking Indices Seriously.

$$
R(n) \cong B+\sum_{i \in n}(A \rightarrow R(n+1))
$$

Observation. Now R has type Set \rightarrow Set - and we want the least such

$$
R=\mu F: \text { Set } \rightarrow \text { Set. } \Lambda I: \text { Set. } B+I \times(A \rightarrow F(I+1))
$$

Conceptual Digression

Streams. Represent Stream $(A)^{S} \rightarrow B$ by $R(S)$ where

$$
R(S)=\mu X \cdot B+S \times(A \rightarrow X)
$$

- each $R(S)$ is an initial algebra for a functor of type Set \rightarrow Set
- eat (S) defined by initiality of $R(S)$ - separately for all arities

Linearity: Family of Inductive Types

Trees. Represent Tree $(A)^{S} \rightarrow{ }_{c} B$ by $R(S)$ where

$$
R=\mu F: \text { Set } \rightarrow \text { Set. } \Lambda S: \text { Set. } B+S \times(A \rightarrow F(S+1))
$$

- R is an initial algebra for a functor $($ Set \rightarrow Set $) \rightarrow($ Set \rightarrow Set $)$
- eat is natural and defined by initiality of R - simultaneously for all arities

Nonlinearity: Inductive Family of Types

Infinite Objects of Container Type

Container Functors. (Abbot, Altenkirch, Ghani)

$$
(S \triangleleft P)(X)=\sum_{s \in S} X^{P(s)}
$$

- S : Set is a set of shapes, each of which stores data
- $P: S \rightarrow$ Set associates a set of positions to every shape

Continuous Functions of type $(\nu X .(S \triangleleft P) X)^{I} \rightarrow B$

$$
R=\mu F: \text { Set } \rightarrow \text { Set. } \Lambda I: \text { Set. } B+\sum_{i \in I} \prod_{s \in S} F(I+P(s))
$$

Unfolding Isomorphisms.

$$
R(I) \cong B+\sum_{i \in I} \prod_{s \in S} R(I+P(s))
$$

Intuition.

- if not constant, select tree $(i \in I)$, extract root $(s \in S)$, behead and continue

Discrete Codomains are Boring

Next Goal. Represent $A^{\omega} \rightarrow{ }_{c} B^{\omega}$
Idea. $f: A^{\omega} \rightarrow B^{\omega}$ is continuous iff we have an infinite proof

$$
(R) \frac{\forall a\left(C\left(f\left(a:_{-}\right)\right)\right)}{C(f)} \quad(W) \frac{C(f)}{C(\lambda \alpha \cdot b: f(\alpha))}
$$

where, on any branch in a proof, the right hand rule occurs infinitely often.
Induced Data Type. Wrap up finite occurrences of (R) using a μ

$$
R \cong \nu X . \mu Y . B \times X+(A \rightarrow Y) \cong B \times R+(A \rightarrow R)
$$

with constructors Ret : $B \times R \rightarrow R$ and $\mathrm{Rd}:(A \rightarrow R) \rightarrow R$

Extracted Continuous Function.

$$
\begin{array}{lcl}
\text { eat }: & \nu X \cdot \mu Y \cdot B \times X+(A \rightarrow Y) & \rightarrow A^{\omega}
\end{array} \rightarrow B^{\omega}, ~(a: \alpha)=b: \text { eat } r(a: \alpha)
$$

Alternative Computational Representation

We know. Continuous functions of type $A^{w} \rightarrow B$ are represented by

$$
A^{\omega} \rightarrow_{C} B \leadsto R=\mu X . B+(A \rightarrow X)
$$

Idea. Re -start the computation as soon as a digit has been produced

$$
A^{\omega} \rightarrow_{C} B^{\omega} \leadsto \nu X . \mu Y . B \times X+(A \rightarrow Y)
$$

with the same computational interpretation

$$
\left.\begin{array}{lll}
\text { eat }: & \nu X . \mu Y . B \times X+(A \rightarrow Y) & \rightarrow A^{\omega}
\end{array} \rightarrow B^{\omega}\right] \text { eat } \begin{array}{ccl}
\text { eat } & (\operatorname{Ret}(b, r)) & (a: \alpha)=b: \text { eat } r(a: \alpha) \\
\text { eat } & (\operatorname{Rd} f) & (a: \alpha)=\text { eat }(f a) \alpha
\end{array}
$$

Note. Occurrence of $B \times X$ suggests that "codomain slots in"

Stream Functions are Trees

Observation. First-Order Functions $A^{\omega} \rightarrow B^{\omega}$ are trees

$$
R=\nu X . \mu Y . B \times X+(A \rightarrow Y)
$$

Initiality guarantees infinitely many labels on every path

General Codomain

More Ambitious Goal. Represent $A^{\omega} \rightarrow \nu X .(S \triangleleft P) X=\nu X . \sum_{s \in S} X^{P(s)}$

By Analogy.

$$
R=\nu X \cdot \mu Y \cdot \sum_{s \in S} X^{P(s)}+(A \rightarrow Y) \cong \sum_{s \in S} R^{P(s)}+(A \rightarrow R)
$$

with constructors $\operatorname{Ret}_{s}:(P(s) \rightarrow R) \rightarrow R$ and $\mathrm{Rd}:(A \rightarrow R) \rightarrow R$
Associated Functional.

$$
\begin{array}{lll}
\text { eat }: & \nu X \cdot \mu Y \cdot \sum_{s \in S} X^{P(s)}+(A \rightarrow Y) & \rightarrow A^{\omega}
\end{array} \rightarrow \nu Z \cdot(P \triangleleft S) Z ~ 子 ~(a: \alpha)=\left(s,\left(\text { eat } r_{i}(a: \alpha)\right)_{i \in P(s)}\right),
$$

Observation.

- codomain just "slots in", more general domains by same recipie

Induction Meets Coinduction

Example. Continuous Stream Functions

$$
f: A^{\omega} \rightarrow{ }_{c} B^{\omega}
$$

are represented by

$$
\underbrace{\nu X \cdot \overbrace{\mu Y B \times X+Y^{A}}^{T_{A}(B \times X)}}_{P_{A}(B)}
$$

Lambek's Lemma.

$$
P_{A}(B)=(\nu X)(\mu Y) B \times X+Y^{A} \cong(\mu Y) B \times P_{A}(B)+Y^{A}
$$

Pleasant Mathematical Theory.

- supports both inductive and coinductive definitions and proofs.
- similar for other (co)domains

Inductive Maps Between Coinductive Types

Example. Composition: $P_{B}(C) \times P_{A}(B) \rightarrow P_{A}(C)$ where

$$
T_{A}(B)=\mu X \cdot B+(A \rightarrow X) \quad \text { and } \quad P_{A}(B)=\nu X \cdot T_{A}(B \times X)
$$

Operation on representatives

As $P_{A}(B) \cong T_{A}\left(B \times P_{A}(B)\right)$ is bi-inductive: composition

$$
\gamma: S=T_{B}\left(C \times P_{B} C\right) \times T_{A}\left(B \times P_{A} B\right) \rightarrow T_{A}(C \times S)
$$

is an inductively defined map between coinductive types

More on Composition

Inductive definition of composition

$$
\left.\begin{array}{rlrl}
\gamma: S= & T_{B}\left(C \times P_{B} C\right) \times & T_{A}\left(B \times P_{A} B\right) & \rightarrow T_{A}(C \times S) \\
& \left\langle\operatorname{Ret}\left\langle c, p_{b c}\right\rangle\right. & , t_{a b} &
\end{array} \mapsto \operatorname{Ret}\left\langle c, \text { out } p_{b c}, t_{a b}\right\rangle\right)
$$

whose coinductive cousin (out : $\nu F \rightarrow F(\nu F)$)

$$
\begin{aligned}
& \chi: P_{B}(C) \times P_{A}(B) \\
& \rightarrow P_{A}(C) \\
&\langle\text { post }, \quad \text { pre }\rangle \mapsto(\text { unfold } \gamma)\langle\text { out post, out } \text { pre }\rangle
\end{aligned}
$$

represents composition.

This is output centered - alternatives are possible.

Higher-Order Functions

Observation. First-Order Functions $A^{\omega} \rightarrow B^{\omega}$ are trees

Idea.

- represent higher-order functions as functions on trees
- but: domain doesn't fit into νZ. $(S \triangleleft P) Z=\nu Z . \sum_{s \in S} Z^{P(s)}$

Topological Excursion

Question. What's the natural topology on $A^{\omega} \rightarrow B^{\omega}$?
Topology on Representatives $R=\nu X . \mu Y . B \times X+(A \rightarrow Y)$.

- consider $T X=\mu Y . B \times X+(A \rightarrow Y)$ and $\sigma: R \rightarrow T R$
- topology given by the inverse limit

where $p_{i+1}=T p_{i} \circ \sigma$. Topology generated by $p_{i}^{-1}(o), o \subseteq T^{i} 1$ open
Induced Topology on $\left(A^{\omega} \rightarrow B^{\omega}\right)$ is compact-open:
- elements of $T^{n} 1$ are layers of A-branching trees with labels in B
- single trees define compact-open constraints

Container Magic

Summary so far.

- have representation of functions $\nu Z .(S \triangleleft P) Z \rightarrow X$
- want: representations of $\nu X . \mu Y .(B \times X)+(A \rightarrow Y) \rightarrow X$

Container Translation. Representations for free - if we solve

$$
\mu Y .(B \times X)+(A \rightarrow Y)=(S \triangleleft P) X
$$

Theorem. (Abbot/Alternkirch/Ghani) Containers are closed under μ, ν.
More precisely: for every n-ary container

$$
C\left(X_{1}, \ldots, X_{n}\right)=\sum_{s \in S} X_{1}^{P_{1}(s)} \times \cdots \times X_{n}^{P_{n}(s)}
$$

there is an $n-1$-ary container $D\left(X_{1}, \ldots, X_{n-1}\right)$ that satisfies

$$
D\left(X_{1}, \ldots, X_{n-1}\right)=\mu X_{n} . C\left(X_{1}, \ldots, X_{n}\right)
$$

Container Translation by Example

Wanted. Solutions of

$$
\mu Y . B \times X+(A \rightarrow Y) \cong(S \triangleleft P) X=\sum_{s \in S} X^{P(s)}
$$

Observation. We see trees with payload at the leaves.

Shapes.

$$
S=\mu X \cdot B+(A \rightarrow X)
$$

Positions.
$P(s)=\{$ paths in S from root to leaves $\}$

Order-Two Example

Representatives. (Recall: $S=\mu X . B+(A \rightarrow X)$ and $P(s)=$ paths)

$$
R=\nu F . \mu G . \Lambda I . C \times F(I)+I \times \prod_{s \in S} G(I+P(s))
$$

Unfolding Isomorphisms. (Recall: $R(I)$ represents $\left(A^{\omega} \rightarrow B^{\omega}\right)^{I} \rightarrow C^{\omega}$)

$$
R(I) \cong C \times R(I)+I \times \prod_{s \in S} R(I+P(s))
$$

Induced Representation.

$$
\begin{array}{lcll}
\operatorname{eat}(I): & R & \rightarrow T^{I} & \rightarrow \nu Z . C \times Z \\
\operatorname{eat}(I) & (\operatorname{Ret}(c, r)) & (\phi) & =c:(\text { eat } r \phi) \\
\operatorname{eat}(I) & (\operatorname{Rd}(i, f)) & (\phi) & =\operatorname{eat}(f(\operatorname{root} \phi(i)))[\phi, \operatorname{debris}(\phi(i))]
\end{array}
$$

Notation. For $t=(r, d) \in T=\nu X .(S \triangleleft P) X \cong \sum_{s \in S} T^{P(s)}$

$$
\operatorname{root}(r, d)=r \quad \text { and } \quad \operatorname{debris}(r, d)=d
$$

Conclusions

Tree Eating.

- linear structures (streams) \leadsto family of inductive types
- nonlinear structures (trees) \leadsto inductive families of types
- in both cases: sound and complete representation of continuous functions

Higher Order Functions.

- reducible to tree case - but with coding
- possibly very inefficient in practice - try out

Open Questions.

- more combinators (e.g. buffering, currying)
- concrete case studies - in particular integration
- complexity of (higher order) stream functions?

