
The Art of Saying “No” – How to Politely Eat Your Way
Through an Infinite Meal
Dirk Pattinson, Imperial College London

(joint work with Neil Ghani and Peter Hancock)

IFIP WG 1.3 Udine September 2009



Infinite Objects are Coalgebras

Infinite Streams over A: νX.A × X

a0 → a1 → a2 → . . .

Infinite Binary Trees over A:
νX.A × X2

a0
2 . . .

a0
1

a3
2 . . .

a0

a3
2 . . .

a1
1

a3
2 . . .

Signatures (variable branching):
νX.A × X2 + B × X + C

b2 . . .
a1

a0 c2 . . .

b1 c

September 19, 2009 1



Enter Topology . . .

Goal. Algebraic Treatment of continuous functions νT → νS

• e.g. representatives of reals: {−1, 0, 1}ω
! [−1, 1]

• clean (co)inductive definitions and proofs

Discrete Codomain. Continuous Functions f : νX.TX → B

• output b ∈ B after reading finite amount of information in νX.TX

Example. Infinite Streams, or coalgebraically νX.A × X → B

• f(α) depends on finite initial prefix of α

Conceptually. This is the Cantor topology on Aω (with A discrete)

• generated by α · Aω where α ∈ A∗

September 19, 2009 2



Coalgebraic View

Final Coalgebras arise as infinite limits: e.g. streams

Aω = νX.A × X
p0

p1

p2

1 A A2 A2 . . .

Topology generated by p−1
i (o), o ⊆ Ai open

Coalgebraic Generalisation. Suppose νX.TX
σ
→ T (νX.TX)

νX.TX
p0

p1

p2 p3

1 T1 T 21 T 31 . . .

where pi+1 = Tpi ◦ σ. Topology generated by p−1
i (o), “o ⊆ T i1 open”

September 19, 2009 3



Continuous Functions: The Case of Streams

Goal. Characterise continuous functions of typeAω → B with B discrete.

Continuity. (A and B discrete) f : Aω → B is continuous . . .

• iff f locally constant.

(∀(a0, a1, . . . ) ∈ Aω)(∃n ∈ ω) f constant on (a0, a1, . . . , an) · Aω

• iff f is in the least class C closed under

f constant

C(f)

(∀a ∈ A)C(f(a : _))

C(f)

Proof (⇐) locally constant functions are so closed.

Proof (⇒) classical logic and dependent choice.

September 19, 2009 4



Representation of Continuous Stream Functions

Idea. Proofs of Continuity define the least class of functions

f constant

C(f)

(∀a ∈ A)C(f(a : _))

C(f)

and can be represented as an inductive data type:

R = µX.B + (A → X) ∼= B + (A → R)

with two constructors: Ret : B → R and and Rd : (A → R) → R

from which a continuous function can be extracted:

eat : µX.B + (A → X) → Aω → B

eat (Retb) (a : α) = b

eat (Rdf) (a : α) = eat(f a)α

Theorem. If→c is continuous functions, then eat : R → (Aω →c B) is onto.

September 19, 2009 5



From Streams to Trees

Goal. Classify functions Tree(A) →c B where Tree(A) = νX.A × X2

Idea. Let R denote the type of representatives with constructors Rd and Ret.

eat : R → Tree(A) → B

eat (Ret b) (a, l, r) = b

eat (Rd f) (a, l, r) = eat(f a)(l, r)

Observation. eat(f a) : Tree(A)2 → B, so f(a) represents Tree(A)2 → B

Mathematical Obfuscation. Rn represents Tree(A)n → B

eatn : Rn → Tree(A)n → B

eatn (Ret b) (t1, . . . , tn) = b

eatn (Rdi f) (t1, . . . , tn) = eatn+1(f ai)(t1, . . . , ti−1, l, r, ti+1, . . . , tn)

where l, r are the left/right subtree of ti. Constructors. Ret, Rd1, . . . , Rdn

September 19, 2009 6



Escaping the Underworld of Indices

Desired (Inductive) Type with constructors Ret, Rd1, . . . , Rdn as above.

Rn
∼= B +

∑

i∈n

(A → Rn+1)

Realisation Mapping.

eatn : Rn → Tree(A)n → B

eatn (Ret b) (t1, . . . , tn) = b

eatn (Rdi f) (t1, . . . , tn) = eatn+1(f ai)(t1, . . . , ti−1, l, r, ti+1, . . . , tn)

Taking Indices Seriously.

R(n) ∼= B +
∑

i∈n

(A → R(n + 1))

Observation. Now R has type Set → Set – and we want the least such

R = µF :Set → Set.ΛI : Set. B + I × (A → F (I + 1))

September 19, 2009 7



Conceptual Digression

Streams. Represent Stream(A)S → B by R(S) where

R(S) = µX.B + S × (A → X)

• each R(S) is an initial algebra for a functor of type Set → Set

• eat(S) defined by initiality of R(S) – separately for all arities

Linearity: Family of Inductive Types

Trees. Represent Tree(A)S →c B by R(S) where

R = µF : Set → Set.ΛS : Set.B + S × (A → F (S + 1))

• R is an initial algebra for a functor (Set → Set) → (Set → Set)

• eat is natural and defined by initiality ofR – simultaneously for all arities

Nonlinearity: Inductive Family of Types

September 19, 2009 8



Infinite Objects of Container Type

Container Functors. (Abbot, Altenkirch, Ghani)

(S " P )(X) =
∑

s∈S

XP (s)

• S : Set is a set of shapes, each of which stores data

• P : S → Set associates a set of positions to every shape

Continuous Functions of type (νX.(S " P )X)I → B

R = µF : Set → Set.ΛI : Set.B +
∑

i∈I

∏

s∈S

F (I + P (s))

Unfolding Isomorphisms.

R(I) ∼= B +
∑

i∈I

∏

s∈S

R(I + P (s))

Intuition.

• if not constant, select tree (i ∈ I), extract root (s ∈ S), behead and continue

September 19, 2009 9



Discrete Codomains are Boring

Next Goal. RepresentAω →c Bω

Idea. f : Aω → Bω is continuous iff we have an infinite proof

(R)
∀a(C(f(a : _)))

C(f)
(W )

C(f)

C(λα.b : f(α))

where, on any branch in a proof, the right hand rule occurs infinitely often.

Induced Data Type. Wrap up finite occurrences of (R) using a µ

R ∼= νX.µY.B × X + (A → Y ) ∼= B × R + (A → R)

with constructors Ret : B × R → R and Rd : (A → R) → R

Extracted Continuous Function.

eat : νX.µY.B × X + (A → Y ) → Aω → Bω

eat (Ret (b, r)) (a : α) = b : eat r (a : α)

eat (Rd f) (a : α) = eat (f a) α

September 19, 2009 10



Alternative Computational Representation

We know. Continuous functions of type Aw → B are represented by

Aω →C B ! R = µX.B + (A → X)

Idea. Re-start the computation as soon as a digit has been produced

Aω →C Bω
! νX.µY.B×X + (A → Y )

with the same computational interpretation

eat : νX.µY.B × X + (A → Y ) → Aω → Bω

eat (Ret (b, r)) (a : α) = b : eat r (a : α)

eat (Rd f) (a : α) = eat (f a) α

Note. Occurrence of B × X suggests that “codomain slots in”

September 19, 2009 11



Stream Functions are Trees

Observation. First-Order FunctionsAω → Bω are trees

R = νX.µY.B × X + (A → Y )

•
0 1

b
0 1

•
0 1

•
0 1

b b •
0 1

b • b • b b

Initiality guarantees infinitely many labels on every path

September 19, 2009 12



General Codomain

More Ambitious Goal. RepresentAω → νX.(S " P )X = νX.
∑

s∈S XP (s)

By Analogy.

R = νX.µY.
∑

s∈S

XP (s) + (A → Y ) ∼=
∑

s∈S

RP (s) + (A → R)

with constructors Rets : (P (s) → R) → R and Rd : (A → R) → R

Associated Functional.

eat : νX.µY.
∑

s∈S XP (s) + (A → Y ) → Aω → νZ.(P " S)Z

eat (Rets (ri)) (a : α) = (s, (eat ri (a : α))i∈P (s))

eat (Rd f) (a : α) = eat (f a) α

Observation.

• codomain just “slots in”, more general domains by same recipie

September 19, 2009 13



Induction Meets Coinduction

Example. Continuous Stream Functions

f : Aω →c Bω

are represented by

νX.

TA(B×X)
︷ ︸︸ ︷

µY B×X + Y A

︸ ︷︷ ︸

PA(B)

Lambek’s Lemma.

PA(B) = (νX)(µY )B × X + Y A ∼= (µY )B × PA(B) + Y A

Pleasant Mathematical Theory.

• supports both inductive and coinductive definitions and proofs.

• similar for other (co)domains

September 19, 2009 14



Inductive Maps Between Coinductive Types

Example. Composition: PB(C) × PA(B) → PA(C) where

TA(B) = µX.B + (A → X) and PA(B) = νX.TA(B × X)

Operation on representatives

PB(C) × PA(B) PA(C)

(Bω →c Cω) × (Aω →c Bω) (Aω →c Cω)

As PA(B) ∼= TA(B × PA(B)) is bi-inductive: composition

γ : S = TB(C × PBC) × TA(B × PAB) → TA(C × S)

is an inductively defined map between coinductive types

September 19, 2009 15



More on Composition

Inductive definition of composition

γ : S =TB(C × PBC)×TA(B × PAB)→ TA(C × S)

〈 Ret 〈c, pbc〉 , tab 〉 .→ Ret 〈c, out pbc, tab〉

〈 Rdφ , Ret 〈b, pab〉 〉 .→ γ〈φ b, out pab〉

〈 tbc , Rdψ 〉 .→ Rdλa.γ〈tbc,ψ a〉

whose coinductive cousin (out : νF → F (νF ))

χ :PB(C)×PA(B)→ PA(C)

〈post , pre〉 .→ (unfold γ)〈out post , out pre〉

represents composition.

This is output centered – alternatives are possible.

September 19, 2009 16



Higher-Order Functions

Observation. First-Order FunctionsAω → Bω are trees

•
0 1

b

0 1

•

0 1

•

0 1

b b •

0 1

b • b • b b

Idea.

• represent higher-order functions as functions on trees

• but: domain doesn’t fit into νZ.(S " P )Z = νZ.
∑

s∈S ZP (s)

September 19, 2009 17



Topological Excursion

Question. What’s the natural topology onAω → Bω?

Topology on RepresentativesR = νX.µY.B × X + (A → Y ).

• consider TX = µY.B × X + (A → Y ) and σ : R → TR

• topology given by the inverse limit

νX.TX
p0

p1

p2 p3

1 T1 T 21 T 31 . . .

where pi+1 = Tpi ◦ σ. Topology generated by p−1
i (o), o ⊆ T i1 open

Induced Topology on (Aω → Bω) is compact-open:

• elements of T n1 are layers of A-branching trees with labels in B

• single trees define compact-open constraints

September 19, 2009 18



Container Magic

Summary so far.

• have representation of functions νZ.(S " P )Z → X

• want: representations of νX.µY.(B × X) + (A → Y ) → X

Container Translation. Representations for free – if we solve

µY.(B × X) + (A → Y ) = (S " P )X

Theorem. (Abbot/Alternkirch/Ghani) Containers are closed under µ, ν.

More precisely: for every n-ary container

C(X1, . . . , Xn) =
∑

s∈S

X
P1(s)
1 × · · ·× XPn(s)

n

there is an n − 1-ary containerD(X1, . . . , Xn−1) that satisfies

D(X1, . . . , Xn−1) = µXn.C(X1, . . . , Xn)

September 19, 2009 19



Container Translation by Example

Wanted. Solutions of

µY.B × X + (A → Y ) ∼= (S " P )X =
∑

s∈S

XP (s)

Observation. We see trees with payload at the leaves.

•
0 1

b, x •
0 1

b, x •
0 1

b, x b, x

Shapes.

S = µX.B + (A → X)

Positions.

P (s) = { paths in S from root to leaves}

September 19, 2009 20



Order-Two Example

Representatives. (Recall: S = µX.B + (A → X) and P (s) = paths )

R = νF.µG.ΛI. C × F (I) + I ×
∏

s∈S

G(I + P (s))

Unfolding Isomorphisms. (Recall: R(I) represents (Aω → Bω)I → Cω)

R(I) ∼= C × R(I) + I ×
∏

s∈S

R(I + P (s))

Induced Representation.

eat(I) : R → T I → νZ.C × Z

eat(I) (Ret(c, r)) (φ) = c : (eat r φ)

eat(I) (Rd (i, f)) (φ) = eat (f(rootφ(i))) [φ, debris(φ(i))]

Notation. For t = (r, d) ∈ T = νX.(S " P )X ∼=
∑

s∈S T P (s)

root(r, d) = r and debris(r, d) = d

September 19, 2009 21



Conclusions

Tree Eating.

• linear structures (streams)! family of inductive types

• nonlinear structures (trees)! inductive families of types

• in both cases: sound and complete representation of continuous functions

Higher Order Functions.

• reducible to tree case – but with coding

• possibly very inefficient in practice – try out

Open Questions.

• more combinators (e.g. buffering, currying)

• concrete case studies – in particular integration

• complexity of (higher order) stream functions?

September 19, 2009 22


