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Infinite Objects are Coalgebras

Infinite Streams over A: νX.A × X

a0 → a1 → a2 → . . .

Infinite Binary Trees over A:
νX.A × X2

a0
2 . . .

a0
1

a3
2 . . .

a0

a3
2 . . .

a1
1

a3
2 . . .

Signatures (variable branching):
νX.A × X2 + B × X + C

b2 . . .
a1

a0 c2 . . .

b1 c
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Enter Topology . . .

Goal. Algebraic Treatment of continuous functions νT → νS

• e.g. representatives of reals: {−1, 0, 1}ω
! [−1, 1]

• clean (co)inductive definitions and proofs

Discrete Codomain. Continuous Functions f : νX.TX → B

• output b ∈ B after reading finite amount of information in νX.TX

Example. Infinite Streams, or coalgebraically νX.A × X → B

• f(α) depends on finite initial prefix of α

Conceptually. This is the Cantor topology on Aω (with A discrete)

• generated by α · Aω where α ∈ A∗
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Coalgebraic View

Final Coalgebras arise as infinite limits: e.g. streams

Aω = νX.A × X
p0

p1

p2

1 A A2 A2 . . .

Topology generated by p−1
i (o), o ⊆ Ai open

Coalgebraic Generalisation. Suppose νX.TX
σ
→ T (νX.TX)

νX.TX
p0

p1

p2 p3

1 T1 T 21 T 31 . . .

where pi+1 = Tpi ◦ σ. Topology generated by p−1
i (o), “o ⊆ T i1 open”
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Continuous Functions: The Case of Streams

Goal. Characterise continuous functions of typeAω → B with B discrete.

Continuity. (A and B discrete) f : Aω → B is continuous . . .

• iff f locally constant.

(∀(a0, a1, . . . ) ∈ Aω)(∃n ∈ ω) f constant on (a0, a1, . . . , an) · Aω

• iff f is in the least class C closed under

f constant

C(f)

(∀a ∈ A)C(f(a : _))

C(f)

Proof (⇐) locally constant functions are so closed.

Proof (⇒) classical logic and dependent choice.
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Representation of Continuous Stream Functions

Idea. Proofs of Continuity define the least class of functions

f constant

C(f)

(∀a ∈ A)C(f(a : _))

C(f)

and can be represented as an inductive data type:

R = µX.B + (A → X) ∼= B + (A → R)

with two constructors: Ret : B → R and and Rd : (A → R) → R

from which a continuous function can be extracted:

eat : µX.B + (A → X) → Aω → B

eat (Retb) (a : α) = b

eat (Rdf) (a : α) = eat(f a)α

Theorem. If→c is continuous functions, then eat : R → (Aω →c B) is onto.
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From Streams to Trees

Goal. Classify functions Tree(A) →c B where Tree(A) = νX.A × X2

Idea. Let R denote the type of representatives with constructors Rd and Ret.

eat : R → Tree(A) → B

eat (Ret b) (a, l, r) = b

eat (Rd f) (a, l, r) = eat(f a)(l, r)

Observation. eat(f a) : Tree(A)2 → B, so f(a) represents Tree(A)2 → B

Mathematical Obfuscation. Rn represents Tree(A)n → B

eatn : Rn → Tree(A)n → B

eatn (Ret b) (t1, . . . , tn) = b

eatn (Rdi f) (t1, . . . , tn) = eatn+1(f ai)(t1, . . . , ti−1, l, r, ti+1, . . . , tn)

where l, r are the left/right subtree of ti. Constructors. Ret, Rd1, . . . , Rdn
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Escaping the Underworld of Indices

Desired (Inductive) Type with constructors Ret, Rd1, . . . , Rdn as above.

Rn
∼= B +

∑

i∈n

(A → Rn+1)

Realisation Mapping.

eatn : Rn → Tree(A)n → B

eatn (Ret b) (t1, . . . , tn) = b

eatn (Rdi f) (t1, . . . , tn) = eatn+1(f ai)(t1, . . . , ti−1, l, r, ti+1, . . . , tn)

Taking Indices Seriously.

R(n) ∼= B +
∑

i∈n

(A → R(n + 1))

Observation. Now R has type Set → Set – and we want the least such

R = µF :Set → Set.ΛI : Set. B + I × (A → F (I + 1))
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Conceptual Digression

Streams. Represent Stream(A)S → B by R(S) where

R(S) = µX.B + S × (A → X)

• each R(S) is an initial algebra for a functor of type Set → Set

• eat(S) defined by initiality of R(S) – separately for all arities

Linearity: Family of Inductive Types

Trees. Represent Tree(A)S →c B by R(S) where

R = µF : Set → Set.ΛS : Set.B + S × (A → F (S + 1))

• R is an initial algebra for a functor (Set → Set) → (Set → Set)

• eat is natural and defined by initiality ofR – simultaneously for all arities

Nonlinearity: Inductive Family of Types
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Infinite Objects of Container Type

Container Functors. (Abbot, Altenkirch, Ghani)

(S " P )(X) =
∑

s∈S

XP (s)

• S : Set is a set of shapes, each of which stores data

• P : S → Set associates a set of positions to every shape

Continuous Functions of type (νX.(S " P )X)I → B

R = µF : Set → Set.ΛI : Set.B +
∑

i∈I

∏

s∈S

F (I + P (s))

Unfolding Isomorphisms.

R(I) ∼= B +
∑

i∈I

∏

s∈S

R(I + P (s))

Intuition.

• if not constant, select tree (i ∈ I), extract root (s ∈ S), behead and continue
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Discrete Codomains are Boring

Next Goal. RepresentAω →c Bω

Idea. f : Aω → Bω is continuous iff we have an infinite proof

(R)
∀a(C(f(a : _)))

C(f)
(W )

C(f)

C(λα.b : f(α))

where, on any branch in a proof, the right hand rule occurs infinitely often.

Induced Data Type. Wrap up finite occurrences of (R) using a µ

R ∼= νX.µY.B × X + (A → Y ) ∼= B × R + (A → R)

with constructors Ret : B × R → R and Rd : (A → R) → R

Extracted Continuous Function.

eat : νX.µY.B × X + (A → Y ) → Aω → Bω

eat (Ret (b, r)) (a : α) = b : eat r (a : α)

eat (Rd f) (a : α) = eat (f a) α
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Alternative Computational Representation

We know. Continuous functions of type Aw → B are represented by

Aω →C B ! R = µX.B + (A → X)

Idea. Re-start the computation as soon as a digit has been produced

Aω →C Bω
! νX.µY.B×X + (A → Y )

with the same computational interpretation

eat : νX.µY.B × X + (A → Y ) → Aω → Bω

eat (Ret (b, r)) (a : α) = b : eat r (a : α)

eat (Rd f) (a : α) = eat (f a) α

Note. Occurrence of B × X suggests that “codomain slots in”
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Stream Functions are Trees

Observation. First-Order FunctionsAω → Bω are trees

R = νX.µY.B × X + (A → Y )

•
0 1

b
0 1

•
0 1

•
0 1

b b •
0 1

b • b • b b

Initiality guarantees infinitely many labels on every path
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General Codomain

More Ambitious Goal. RepresentAω → νX.(S " P )X = νX.
∑

s∈S XP (s)

By Analogy.

R = νX.µY.
∑

s∈S

XP (s) + (A → Y ) ∼=
∑

s∈S

RP (s) + (A → R)

with constructors Rets : (P (s) → R) → R and Rd : (A → R) → R

Associated Functional.

eat : νX.µY.
∑

s∈S XP (s) + (A → Y ) → Aω → νZ.(P " S)Z

eat (Rets (ri)) (a : α) = (s, (eat ri (a : α))i∈P (s))

eat (Rd f) (a : α) = eat (f a) α

Observation.

• codomain just “slots in”, more general domains by same recipie
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Induction Meets Coinduction

Example. Continuous Stream Functions

f : Aω →c Bω

are represented by

νX.

TA(B×X)
︷ ︸︸ ︷

µY B×X + Y A

︸ ︷︷ ︸

PA(B)

Lambek’s Lemma.

PA(B) = (νX)(µY )B × X + Y A ∼= (µY )B × PA(B) + Y A

Pleasant Mathematical Theory.

• supports both inductive and coinductive definitions and proofs.

• similar for other (co)domains
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Inductive Maps Between Coinductive Types

Example. Composition: PB(C) × PA(B) → PA(C) where

TA(B) = µX.B + (A → X) and PA(B) = νX.TA(B × X)

Operation on representatives

PB(C) × PA(B) PA(C)

(Bω →c Cω) × (Aω →c Bω) (Aω →c Cω)

As PA(B) ∼= TA(B × PA(B)) is bi-inductive: composition

γ : S = TB(C × PBC) × TA(B × PAB) → TA(C × S)

is an inductively defined map between coinductive types
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More on Composition

Inductive definition of composition

γ : S =TB(C × PBC)×TA(B × PAB)→ TA(C × S)

〈 Ret 〈c, pbc〉 , tab 〉 .→ Ret 〈c, out pbc, tab〉

〈 Rdφ , Ret 〈b, pab〉 〉 .→ γ〈φ b, out pab〉

〈 tbc , Rdψ 〉 .→ Rdλa.γ〈tbc,ψ a〉

whose coinductive cousin (out : νF → F (νF ))

χ :PB(C)×PA(B)→ PA(C)

〈post , pre〉 .→ (unfold γ)〈out post , out pre〉

represents composition.

This is output centered – alternatives are possible.
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Higher-Order Functions

Observation. First-Order FunctionsAω → Bω are trees

•
0 1

b

0 1

•

0 1

•

0 1

b b •

0 1

b • b • b b

Idea.

• represent higher-order functions as functions on trees

• but: domain doesn’t fit into νZ.(S " P )Z = νZ.
∑

s∈S ZP (s)
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Topological Excursion

Question. What’s the natural topology onAω → Bω?

Topology on RepresentativesR = νX.µY.B × X + (A → Y ).

• consider TX = µY.B × X + (A → Y ) and σ : R → TR

• topology given by the inverse limit

νX.TX
p0

p1

p2 p3

1 T1 T 21 T 31 . . .

where pi+1 = Tpi ◦ σ. Topology generated by p−1
i (o), o ⊆ T i1 open

Induced Topology on (Aω → Bω) is compact-open:

• elements of T n1 are layers of A-branching trees with labels in B

• single trees define compact-open constraints
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Container Magic

Summary so far.

• have representation of functions νZ.(S " P )Z → X

• want: representations of νX.µY.(B × X) + (A → Y ) → X

Container Translation. Representations for free – if we solve

µY.(B × X) + (A → Y ) = (S " P )X

Theorem. (Abbot/Alternkirch/Ghani) Containers are closed under µ, ν.

More precisely: for every n-ary container

C(X1, . . . , Xn) =
∑

s∈S

X
P1(s)
1 × · · ·× XPn(s)

n

there is an n − 1-ary containerD(X1, . . . , Xn−1) that satisfies

D(X1, . . . , Xn−1) = µXn.C(X1, . . . , Xn)
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Container Translation by Example

Wanted. Solutions of

µY.B × X + (A → Y ) ∼= (S " P )X =
∑

s∈S

XP (s)

Observation. We see trees with payload at the leaves.

•
0 1

b, x •
0 1

b, x •
0 1

b, x b, x

Shapes.

S = µX.B + (A → X)

Positions.

P (s) = { paths in S from root to leaves}
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Order-Two Example

Representatives. (Recall: S = µX.B + (A → X) and P (s) = paths )

R = νF.µG.ΛI. C × F (I) + I ×
∏

s∈S

G(I + P (s))

Unfolding Isomorphisms. (Recall: R(I) represents (Aω → Bω)I → Cω)

R(I) ∼= C × R(I) + I ×
∏

s∈S

R(I + P (s))

Induced Representation.

eat(I) : R → T I → νZ.C × Z

eat(I) (Ret(c, r)) (φ) = c : (eat r φ)

eat(I) (Rd (i, f)) (φ) = eat (f(rootφ(i))) [φ, debris(φ(i))]

Notation. For t = (r, d) ∈ T = νX.(S " P )X ∼=
∑

s∈S T P (s)

root(r, d) = r and debris(r, d) = d
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Conclusions

Tree Eating.

• linear structures (streams)! family of inductive types

• nonlinear structures (trees)! inductive families of types

• in both cases: sound and complete representation of continuous functions

Higher Order Functions.

• reducible to tree case – but with coding

• possibly very inefficient in practice – try out

Open Questions.

• more combinators (e.g. buffering, currying)

• concrete case studies – in particular integration

• complexity of (higher order) stream functions?
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