

CafeOBJ signature for QLOCKwithOTS		
state space of the system]	
[Sys]	system sort declaration	
visible sorts for observation		
[Queue Pid Label]	visible sort declaration	
observations		
bop pc : Sys Pid -> Label	observation declaration	
bop queue : Sys -> Queue		
any initial state		
bop init : -> Sys {constr}	initial state declaration	
actions		
bop want : Sys Pid -> Sys {constr}	action declaration	
bop cry : Sys Fid -> Sys {constr} bop exit : Sys Pid -> Sys {constr}		
3 IFIP WG1.3, Winchester, 110904	J Care o DJ	


```
-- transition system with 2 agents i j
mod* QLOCKijTrans {
    inc((QLOCKpTrans * {op p -> i}) +
        (QLOCKpTrans * {op p -> j}))
    }
-- transition system with of 3 agents i j k
mod* QLOCKijkTrans {
    inc(QLOCKijTrans +
        (QLOCKpTrans * {op p -> k}))
    }
EIPWG13, Winchester, 11094
```


Equation	
Given terms t, t',t ₁ ,t ₁ ',t ₂ ,t ₂ 't _n ,t _n ', a conditional equation is a sentence of the form: $\mathbf{t} = \mathbf{t}'$ if $(\mathbf{t}_1 = \mathbf{t}_1') \land (\mathbf{t}_2 = \mathbf{t}_2') \land \land (\mathbf{t}_n = \mathbf{t}_n')$ An ordinary equation is a sentence of the form: $\mathbf{t} = \mathbf{t}'$ that is n=0	١
t = t' if c	
where t,t' are any terms and c is a Boolean term is an abbreviation of	
t = t' if c = true	
IFIP WG1.3, Winchester, 110904	OBJ

An ordered-sorted algebra **A** satisfies a conditional equation: t = t' if $(t_1 = t_1') \land (t_2 = t_2') \land ... \land (t_n = t_n')$ iff $A_v(t_1)=A_v(t_1')$ and $A_v(t_2)=A_v(t_2')$ and ... and $A_v(t_n)=A_v(t_n')$ implies $A_v(t)=A_v(t')$ for any valuation v. The satisfaction of an equation by a model **A** is denoted by $A = (t = t' \text{ if } (t_1 = t_1') \land (t_2 = t_2') \land ... \land (t_n = t_n'))$ CafeOBJ

