
An Overview of
Recent Research Activities

around CafeOBJ

FUTATSUGI,Kokichi
 二木 厚吉

JAIST

(Japan Advanced Institute of Science and Technology)

IFIP WG1.3, Winchester, 110904 2

Topics of this talk
!  Some introductory remarks on Formal Methods,

CafeOBJ, and Proof Scores
!  Combination of inference and search in the proof

score method
!  Abstraction-with-Inference + search
!  Induction Guided Falsification

! Backward-search (inference) + forward-
search (search)

!  Sound and complete proof rules underlie the proof
score method

!  Concluding remarks

Our Perception on
Formal Methods and

Specification Verifications

IFIP WG1.3, Winchester, 110904 4

Application areas of formal methods (FM)

1.  Analysis and verification of developed program
codes (post-coding)

2.  Analysis and verification of (models/specs of)
domains, requirements, and designs before/
without coding (pre-coding or without coding)

Successful application of formal methods to the area
of (modeling/specification of) domains, requirements,
designs can bring drastic good effects for systems
developments, but it is not well exploited and/or
practiced yet.

specification = description of model

IFIP WG1.3, Winchester, 110904 5

The current situation of FM

!  Verification with formal specifications still have a
potential to improve the practices in upstream (pre-
coding) of systems development processes

!  Model checking has brought a big success but still
has limitations
!  It is basically “model checking” for program codes

!  Still mainly for post-coding
!  Infinite state to finite state transformation can be unnatural

and difficult
!  Established interactive theorem provers (Isabelle/

HOL, Coq, PVS, etc.) are still to be well accepted to
ordinary software/systems engineers
!  especially in upstream (pre-coding) phase

IFIP WG1.3, Winchester, 110904 6

!  Reasonable blend of user and machine
capabilities, intuition and rigor, high-level
planning and tedious formal calculation
•  fully automated proofs/verifications are not

necessary good for human beings to perceive
logical structures of real problems/systems

•  interactive understanding/description of real
problem domains/requirements/designs is
necessary

Our approach

Proof Score Approach

IFIP WG1.3, Winchester, 110904 7

Proof Score
as a Complete Set of Symbolic Test cases

!  Domain/requirement/design engineers are
expected to construct proof scores together
with formal specifications

!  Proof score is a complete set of symbolic test
cases such that when executed (or evaluated/
reduced) and everything evaluates as expected,
then the desired property is convinced (or
proved) to hold. Proof score is supposed to be
read by engineers.
!  Proof by construction/development
!  Proof by computation/reduction/rewriting
!  Test Driven (Specification) Development

IFIP WG1.3, Winchester, 110904 8

Development of proof scores in CafeOBJ

!  Many simple proof scores are written in OBJ
language from 1980’s; some of them are not
trivial

!  From around 1997 CafeOBJ group at JAIST use
proof scores seriously for verifying
specifications for various examples
!  From static to dynamic/reactive system
!  From ad hoc to more systematic proof scores
!  Introduction of OTS (Observational Transition

System) was a most an important step

IFIP WG1.3, Winchester, 110904 9

Some achievements of
CafeOBJ/OTS proof score approach

! Some classical mutual exclusion algorithms
! Some real time algorithms
 e.g. Fischer’s mutual exclusion protocol
! Railway signaling systems
! Authentication protocol
 e.g. NSLPK, Otway-Rees, STS protocols
! Practical sized e-commerce protocol of SET
 (some of proof score exceeds 60,000 lines;
 specification is about 2,000 lines,
 20-30 minutes for reduction of the proof score)
! UML semantics (class diagram + OCL-assertions)
! Formal Fault Tree Analysis
! Secure workflow models, internal control

CafeOBJ/OTS approach has been applied to the following
kinds of problems and found usable:

Verification by Inference and Search
in

Proof Scores

Inference Search

IFIP WG1.3, Winchester, 110904

11

Two topics

!  Abstraction by inference (TP) and counter
example finding by search (MC)
!  QLOCK example

!  Counter example finding by MC (Search)
and TP (Inference)
!  NSPK example

IFIP WG1.3, Winchester, 110904

12

Modeling QLOCK (via Signature Diagram)
with OTS (Observational Transition System)

…
k j i

i

k

j

is i?

is j?
put

get

get

…

put

Queue

Label

Pid

Sys

want

try

pc

queue

exit

init

action declaration

initial state declaration

system sort declaration

observation declaration

visible sort declaration

CafeOBJ signature for QLOCKwithOTS
-- state space of the system
[Sys]

-- visible sorts for observation
[Queue Pid Label]

-- observations
bop pc : Sys Pid -> Label
bop queue : Sys -> Queue

-- any initial state
bop init : -> Sys {constr}
-- actions
bop want : Sys Pid -> Sys {constr}
bop try : Sys Pid -> Sys {constr}
bop exit : Sys Pid -> Sys {constr}

13 IFIP WG1.3, Winchester, 110904

Transition system for QLOCK (1)

IFIP WG1.3, Winchester, 110904

14

mod* QLOCKconfig {!
 inc(QLOCK)!
 [Config]!
 op <_> : Sys -> Config .!
}!
-- pre-transiton system with an agent/process p!
mod* QLOCKpTrans {!
 inc(QLOCKconfig)!
 op p : -> PidConst .!
 var S : Sys .!
 -- possible transitions!
 ctrans < S > => < want(S,p) > if c-want(S,p) .!
 ctrans < S > => < try(S,p) > if c-try(S,p) .!
 ctrans < S > => < exit(S,p) > if c-exit(S,p) .!
}!

Transition system for QLOCK (2)

IFIP WG1.3, Winchester, 110904

15

-- transition system with 2 agents i j!
mod* QLOCKijTrans {!
 inc((QLOCKpTrans * {op p -> i}) +!
 (QLOCKpTrans * {op p -> j}))!
}!
!
-- transition system with of 3 agents i j k!
mod* QLOCKijkTrans {!
 inc(QLOCKijTrans +!
 (QLOCKpTrans * {op p -> k}))!
}!
!

Search predicate of CafeOBJ
 a la Maude’s search command

pred _=(_,_)=>*_ : Any NzNat* NzNat* Any

CafeOBJ System has the following built-in predicate:
 - Any is any sort (that is, the command is available for any sort)
 - NzNat* is a built-in sort containing non-zero natural number

and the special symbol “*” which stands for infinity

(t1 =(m,n)=>* t2) returns true if t1 can be translated (or
rewritten), via more than 0 times transitions, to some term which
matches to t2. Otherwise, it returns false . Possible
transitions/rewritings are searched in breadth first fashion. n is
upper bound of the depth of the search, and m is upper bound of
the number of terms which match to t2. If either of the depth of
the search or the number of the matched terms reaches to the
upper bound, the search stops.

16 IFIP WG1.3, Winchester, 110904

t1 =(m,n)=>* t2

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

m : the number of
 the searched terms

which match to t2
…

 …

17 IFIP WG1.3, Winchester, 110904

suchThat predicate

pred1(t2) is a predicate about t2 and can
refer to the variables which appear in t2.
pred1(t2) enhances the condition used to
determine the term which matches to t2.

t1 =(m,n)=>* t2 suchThat pred1(t2)

18 IFIP WG1.3, Winchester, 110904

t1 =(m,n)=>* t2 suchThat pred1(t2)

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

m : the number of
 the searched terms

which match to t2 and
satisfy pred(t2)

…
 …

19 IFIP WG1.3, Winchester, 110904

withStateEq predicate

t1 =(m,n)=>* t2
 withStateEq pred2(V1:St,V2:St)

Pred2(V1:St,V2:St) is a binary predicate of two
arguments with the same sort St of the term t2.
Pred2(V1:St,V2:St) is used to determine a newly
searched term (a state configuration) is already searched one.
If this withStateEq predicate is not given, the term identity
binary predicate is used for the purpose.

t1 =(m,n)=>* t2 suchThat pred1(t2)
 withStateEq pred2(S1:Sort,S2:Sort)

Using both of suchTant and withStateEq is also possible

20 IFIP WG1.3, Winchester, 110904

t1 =(m,n)=>* t2
withStateEq pred2(V1:St,V2:St)

…

…

…

…

…

…

t1

…

n : the depth of
 the search tree

…
 …

m : the number of
 the searched terms

which match to t2

: pred2 = true

21 IFIP WG1.3, Winchester, 110904

IFIP WG1.3, Winchester, 110904

22

Verification by Searching with
Observational Equivalence

red in (QLOCKijTrans + QLOCKobEq + MEX) :!
 < init > =(*,*)=>* < S:Sys > !
 suchThat (not mutualEx(S,i,j))!
 withStateEq (C1:Config =ob= C2:Config) .!

This CafeOBJ code searches for a counter
example of mutual exclusion property in
the whole state space Sys(i,j) of two
agents system. If this returns false, the
two agents system is verified to have the
mutual exclusion property.

IFIP WG1.3, Winchester, 110904

23

Simulation of any number of agents systems
by the two agents system

let i and j be any two distinctive process identifiers, and
let Sys(i,j) be the state space of QLOCK with only the
two processes i and j,
then
 (there is a counter example in Sys)
 implies
 (there exits a counter example in Sys(i,j))
that is,
 (for-all t:Sys(i,j)).pred(t,i,j)
 implies
 (for-all s:Sys).pred(s,i,j)

verify the following

simOfQLOCKbyQLOCKijPS.mod
csQtopPS.modProof of

Counter example finding
by forward and backward search
-- another kind of collaborative use of MC & TP

IFIP WG1.3, Winchester, 110904 24

!  MC & TP can be collaboratively used to find a
counterexample that exists at a deep position.
•  Properties concerned are invariants.
•  Bounded model checking (BMC) is used as an MC

technique.
•  Induction is mainly used as a TP technique.

!  We have proposed a collaborative use of BMC & induction
to find a deep counterexample for invariants: Induction-
Guided Falsification (IGF).

K. Ogata, M. Nakano, W. Kong, K. Futatsugi: Induction-Guided Falsification,
8th ICFEM, LNCS 4260, Springer, pp.114-131 (2006).

Induction-Guided Falsification (IGF)

IFIP WG1.3, Winchester, 110904

transition t
¬G

¬L

init

"  Suppose that a counterexample of an invariant G exists outside of the
bounded reachable state space that can be exhaustively traversed.

"  induction may conjecture a lemma L such that its counterexample exists
in the space.

Forward

Backward

"  BMC tries to find a
counterexample forward. "  Induction tries to show

that there are no paths
from any states such that
¬G to any initial states.

"  IGF can be regarded
as a combination of
forward & backward
reachability analysis
methods.

25

Sound and “Complete” Proof Rules
for

Proof Scores

IFIP WG1.3, Winchester, 110904

Topics

!  Specification/Descriptions, Models, and Realities

!  Constructor-based Order Sorted Algebra

!  Satisfaction of a Property by a Specification
#  SPEC |= prop

#  Proof rules for SPEC |= prop and SPEC |- prop

27

IFIP WG1.3, Winchester, 110904

Specifications, Models, Realities
Specifications/Descriptions (Texts)

Realities/Real-World

Models (Conceptual, Diagram, Formal/Mathematical)

Theories/Mathematics/Logics

Engineering/Technology

Implements/
Realizes

28

IFIP WG1.3, Winchester, 110904

Specification

An constructor-based equational specification SPEC
in CafeOBJ (a text in the CafeOBJ language with only
equational axioms) is defined as a pair (Sig,E) of order-
sorted constructor-based signature Sig and a set E of
conditional equations over Sig. A signature Sig is defined
as a triple (S,F,Fc) of an partially ordered set S of sorts,
an indexed family F of sets of S-sorted functions/
operations, and a set Fc of constructors. Fc is a family of
subsets of F, i.e. Fc ⊆ F .

SPEC = ((S,F,Fc),E)

29

IFIP WG1.3, Winchester, 110904

Model: (S,F)-Algebra

A formal/mathematical model of a specification
SPEC = ((S,F,Fc),E) is an reachable order-sorted
algebra A which has the signature (S,F) and satisfies
all equations in E.

An order-sorted algebra which has a signature (S,F) is
called an (S,F)-algebra. An (S,F)-algebra A interprets
a sort symbol s in S as a (non empty) set Asand an
operation (function) symbol f :s1 s2 …sn->s(n+1) in F
as a function Af : As1,As2,..,Asn->As(n+1). The
interpretation respects the order-sort constrains.

30

IFIP WG1.3, Winchester, 110904

An example of Signature and its Algebra
-- Let (PNAT+)-sig be
-- the signature of PNAT+
-- sort
[Zero NzNat < Nat]
-- operators
op 0 : -> Nat {constr}
op s_ : Nat -> NzNat {constr}
op _+_ : Nat Nat -> Nat

S_

Nat

0
NzNat Zero

+

A (PNAT+)-sig-algebra
Order-Sorted Algebra with Signature (PNAT+)-sig:

<Nat, NzNat, Zero; 0, s_, _+_>

31

IFIP WG1.3, Winchester, 110904

Model: (S,F,FC)-Algebra

If a sort s ∈ S is the co-arity of some operator f ∈ FC,
the sort s is called a constrained sort. A sort which is
not constrained is called a loose sort.

An (S,F)-algebra A is called (S,F,FC)-algebra if any value
v ∈ As for any constrained sort s ∈ S is expressible only
using
 (1) function Af for f ∈ FC

and
 (2) function Ag for g ∈ F whose co-arity is loose sort .

32

(S,F,FC)-algebra can also be called FC-reachable algebra

IFIP WG1.3, Winchester, 110904

Valuation, Evaluation

Given a model A and a valuation v, a term t of sort s,
which may contain variables, is evaluated to a value
Av(t) in As

A valuation (or an assignment) is a sort preserving
map from the (order-sorted) set of variables of a
specification to an order-sorted algebra (a model),
and assigns values to all variables.

33

IFIP WG1.3, Winchester, 110904

Equation

Given terms t, t’,t1,t1’,t2,t2’…tn,tn’ , a conditional equation
is a sentence of the form:
 t = t’ if (t1 = t1’) /\ (t2 = t2’) /\ …/\ (tn = tn’)
An ordinary equation is a sentence of the form:
 t = t’
that is n=0.

34

A conditional equation in CafeOBJ notation:
 t = t' if c
where t,t' are any terms and c is a Boolean term is an
abbreviation of
 t = t' if c = true

IFIP WG1.3, Winchester, 110904

Satisfiability of Equation

An ordered-sorted algebra A satisfies a conditional
equation:
 t = t’ if (t1 = t1’) /\ (t2 = t2’) /\…/\ (tn = tn’)
iff
Av(t1)=Av(t1’) and Av(t2)=Av(t2’) and…and Av(tn)=Av(tn’)
 implies Av(t)=Av(t’)
for any valuation v .

The satisfaction of an equation by a model A is denoted by
A |= (t = t’ if (t1 = t1’) /\ (t2 = t2’) /\…/\ (tn = tn’))

35

CafeOBJ _=_ (meta-level equality) and
 Boolean _=_ (object-level equality)

IFIP WG1.3, Winchester, 110904

36

If a specification SP includes,
op _=_ : S S -> Bool .
eq (X = X) = true .
ceq X = Y if (X = Y) .

then
 SP |= t=t' if (t1=t1')/\ (t2=t2')/\.../\(tn=tn')
 iff
 SP |= ((t1=t1' and t2=t2' and ...and tn=tn’)
 implies t=t') = true .

1.  Object-level equality can substitute for meta-
level equality

2.  Every sentence (conditional equation) can be
written as a Boolean term.

IFIP WG1.3, Winchester, 110904

For a specification SPEC = ((S,F,Fc), E), a
SPEC-algebra is a (S,F,FC)-algebra which
satisfies all equations in E .

SPEC-algebra

37

IFIP WG1.3, Winchester, 110904

Satisfiability of property by specification:
SPEC |= prop

A specification SPEC = ((S,F,Fc),E) is defined to satisfy a
property p (a term of sort Bool) iff A |= (p = true) holes
for any SPEC-algebra A.

The satisfaction of a predicate prop by a specification
SPEC = ((S,F,Fc),E) is denoted by:

SPEC |= p or E |= p

A most important purpose of developing a specification
SPEC = ((S,F,Fc),E) in CafeOBJ is to check whether

SPEC |= prop
holds for a predicate prop which describes some
important property of the system which SPEC specifies.

38

Proof rules for
 SPEC |= prop (semantic entailment)

IFIP WG1.3, Winchester, 110904

39

For doing formal verification, it is common to think of
syntactic (proof theoretic) entailment:
 SPEC |- prop
which corresponds to semantic entailment:
 SPEC |= prop .

We have developed a sound and quasi complete set of
proof rules for |- which satisfies:
 SPEC |- prop iff SPEC |= prop
for unstructured specifications and constitutes a
theoretical foundation for verifications with proof scores.

Proof Rules (1) -- entailment system
 (S, P, or Ei denotes a set of equations)

IFIP WG1.3, Winchester, 110904

40

 E1 |- E2

E1 |- E2 , E2 |- E3
--

E1 |- E3

E1 |- E2 , E1 |- E3

E1 |- E2 U E3

S |-! P

 "(S) |-!’ "(P)
 for any signature morphism
　　 ": ! -> !’

Translation:

Monotonicity:

Transitivity:

Unions:

 for any E2⊆E1

Proof Rules (2) -- equational reasoning
 (t and ti denotes terms, f denotes operator, p denotes predicate)

IFIP WG1.3, Winchester, 110904

41

|- {t=t}

{t1=t2, t2=t3} |- {t1=t3}

Reflexivity:

Transitivity:

Symmetry:

{t1=t2} |- {t2=t1}

 {t1=t1’,t2=t2’,…,tn=tn’} |- f(t1,t2,…,tn)=f(t1’,t2’,…,tn’)
Congruence:

{t1=t1’,t2=t2’,…,tn=tn’} U {p(t1,t2,…,tn)} |- p(t1’,t2’,…,tn’)

P-Congruence:

Proof Rules (3)
(H denotes a set of equations, p denotes predicate,
 X, Y, or Z denotes set of variables, x denotes variable)

IFIP WG1.3, Winchester, 110904

42

S |- P U {(/\H=>p)}

 S U H |- P U {p}

S |- P

S U {(∀x)p} |- P U {(∀Y)p(x<-t)}

S |-! P U {(∀Z)p}

S |-!(Z) P U {p}

Implication:

Generalization:

Substitutivity:

S U H |- P U {p}

S |- P U {(/\H=>p)}
and

S |-!(Z) P U {p}

S |-! P U {(∀Z)p}
and

Proof Rules (4) – these are infinite in nature
(p denotes predicate, Y denotes set of variables,
 x denotes variable, f denotes a function, ti denotes a term)

IFIP WG1.3, Winchester, 110904

43

 { (S |- {(∀Y)p(x<-t)}) | t is constructor Y-term, Y are loose vars }

S |- {(∀x)p}

Case Analysis:

C-Abstraction (Constructor Abstraction):

 { (S U {f(t1,…,tn)=t} |-!(Y) {p}) | t is constructor Y-term, Y are loose vars }

S |-! {p}

Concluding Remarks

IFIP WG1.3, Winchester, 110904

Three levels of CafeOBJ applications

1.  Construct formal models; describe formal
specifications

2.  Do rapid prototypings or animations and check the
properties of specifications; execute specifications
for validations/verifications

3.  Write proof scores to verify properties of
specifications; verifications/proofs with reductions/
rewritings

Choose an appropriate level
depending on problems and situations

 45

IFIP WG1.3, Winchester, 110904

Prerequisites for
proof score writing in CafeOBJ (1)

!  Algebraic modeling: development of algebraic
specifications
•  defining signature for a real problem
•  expressing the semantics of a problem in

equations
!  more exactly, expressing the problem in reduction

rules

 46

IFIP WG1.3, Winchester, 110904

Prerequisites for
proof score writing in CafeOBJ (2)

!  Equational logic, rewriting, and
propositional calculus
!  equationl reasoning

!  equivalence relation, equational calculus, …
!  propositional calculus with “xor”

normal forms which has the complete
rewriting calculus

!  reduction/rewriting
!  termination, confluence, sufficiently

completeness

 47

IFIP WG1.3, Winchester, 110904

Prerequisites for
proof score writing in CafeOBJ (3)

!  Proof by induction and case analysis
!  case splitting using constructors or key

predicates in specifications
!  discovery of lemmas
!  decomposition of a goal predicate into

an appropriate conjunctive form

These are the most difficult parts of
proof score writing
But this is common to any kind of interactive verifiers!

 48

IFIP WG1.3, Winchester, 110904

Traceability in proof score approach with CafeOBJ

!  All reductions are done exactly using
equations in specifications as rewriting rules
!  this make it easy to detect necessary changes in

specs for letting something happen (or not happen)
!  Usually reductions are sufficiently fast, and

encourage prompt interactions between user
and system
This is a quit unique feature of the proof
score approach with CafeOBJ comparing
to other verification method which often
involves several formalisms/logics and
translations between them

 49

IFIP WG1.3, Winchester, 110904

Equational proofs by reduction/rewriting

Why do we care about “equational reasoning by
reduction” ?
#  It is simple and powerful and a promising light

weighted formal reasoning method
!  easy to understand and can be more acceptable for

software engineers
#  It supports transparent relation between specs

and reasoning by reduction (good traceability)

 50

IFIP WG1.3, Winchester, 110904

Future Issues
!  Development of the environment for proof score constructions

!  Standard platforms for programming environment can be
naturally used

!  Proof score checker to check correctness of the proof scores
as independently as possible

!  Farther development of the Kumo/Tatami scheme to realize a
web (or hypertext) based constructions of specs and proof
scores

!  Serious development of practical domain/requirement/design
specifications in the application area like e-government, e-
commerce, open standards for automotive software, etc.
!  The development should aim at reasonable balance of

informal and the formal specifications, and verify as much as
meaningful and important properties of the models/problems
the specifications are describing

 51

IFIP WG1.3, Winchester, 110904

CafeOBJ official home page

http://www.ldl.jaist.ac.jp/cafeobj/

52

