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1 Introduction

An integer linear program where constraints are partitioned in two subsets can be
formulated as follows:

(P )




max ctx

s.c. Ax = a

Bx = b

x ∈ X,

where c ∈ Rn, A is a m × n matrix, B is a p × n matrix, a ∈ Rm, b ∈ Rp and
X ⊆ Nn.

These problems are generally NP-hard and bounds are needed to solve
them in generic branch and bound like schemes. To improve the bound based
on the continuous relaxation of (P ), Lagrangian methods, like Lagrangian
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Relaxation (LR) (Geoffrion, 1974), Lagrangian Decomposition (LD) (Guignard
and Kim, 1987a, 1987b, Michelon, 1991, Nagih and Plateau, 2000a, 2000b),
Lagrangian substitution (Reinoso and Maculan, 1992) and Surrogate Relaxation
(SR) (Glover, 1965), are well-known techniques for obtaining bounds in Integer
Linear Programming (ILP).

This work recalls the existing link between LR and classical
Dantzig-Wolfe Decomposition (DWD) (Dantzig and Wolfe, 1960) and
establishes the relationship between LD and DWD to derive a new DW
master model.

The equivalence between DWD and LR is well known (Lemaréchal, 2003).
Solving a linear program by Column Generation (CG), using DWD, is
the same as solving the Lagrangian dual by Kelley’s cutting plane method
(Kelley, 1960). This work recalls the previous result and extends it to LD,
which can be viewed as a specific DWD, to prove the superiority of the
new bound obtained.

The paper is organised as follows. Section 2 deals with LR, LD and
DWD principles. Section 3 shows the relationship between LD and DWD,
and gives a new proof on the LD bound dominance over the LR one.
In Section 4 we illustrate with two DW master models on the 0-1
Bi-dimensional Knapsack Problem (0-1_BKP) and the Generalised Assignment
Problem (GAP). In Section 5 we present some computational results on the
two previous problems.

2 Lagrangian duals and Dantzig-Wolfe decomposition

These approaches can be used in the pre-treatment phase of an exact or
heuristic method in order to compute better bounds than linear relaxation.
In this section, we recall the principle of Lagrangian duality and its link
with DWD and CG.

2.1 Dual Lagrangian relaxation

LR consists in omitting some complicating constraints (Ax = a) and
in incorporating them in the objective function using a Lagrangian multiplier
π ∈ Rm. We obtain the following relaxation:

(LR(π))




max ctx + πt(a − Ax)

s.c. Bx = b

x ∈ X.

For any π ∈ Rm, the value of (LR(π)) is an upper bound on v(P ). The best one is
given by the LR dual:

(LRD) ≡ min
π∈Rm

(LR(π))

≡ min
π∈Rm

max
{x∈X,Bx=b}

ctx + πt(a − Ax).
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Let be XB = {x ∈ X |Bx = b} and Conv(XB) its convex hull (boundary of the
convex polygon), supposed bounded. We denoted by x(k), k ∈ {1, . . . , K} the
extreme points of Conv(XB). Hence, (LRD) can be reformulated as follows:

(LRD) ≡ min
π∈Rm

max
k=1,... ,K

ctx(k) + πt(a − Ax(k))

≡




min z

s.t. z + πt(Ax(k) − a) ≥ ctx(k), k = 1, . . . , K

π ∈ Rm, z ∈ R.

This new formulation potentially contains an exponential number of constraints,
equal to K. Kelley’s cutting plans method (Kelley, 1960) considers a reduced set of
these constraints that handle a restricted problem. Cuts (constraints) are added at
each iteration until the optimum reached.

2.2 Lagrangian Decomposition dual

It is well-known that the efficiency of branch and bound like scheme depends on
the quality of the bounds. To improve those provided by LR, Guignard and Kim
(1987a, 1987b) have proposed to use LD. In such an approach, copy constraints
are added to the formulation (P ) to build an equivalent problem:




max ctx

s.c. Ax = a

By = b

x = y

x ∈ X, y ∈ Y, with Y ⊇ X

where the copy variables permits to split the initial problem in two independent
sub-problems after applying LR on the copy constraints x = y:

(LD(w))




max ctx + wt(y − x)

s.c. Ay = a

Bx = b

x ∈ X, y ∈ Y,

where w ∈ Rn are dual variables associated to the copy constraints. We obtain the
two following independent sub-problems:

(LDy(w))




max wty

s.c. Ay = a

y ∈ Y

and (LDx(w))




max (c − w)tx

s.c. Bx = b

x ∈ X
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The LD dual is given by

(LDD) min
w∈Rn

v(LD(w))

where

v(LD(w)) = max{wty | y ∈ YA} + max{(c − w)tx |x ∈ XB}

with

YA = {y | Ay = a, y ∈ Y } XB = {x | Bx = b, x ∈ X}.

This dual can be rewritten as :

(LDD)

{
min max(c − w)tx + max wty

w ∈ Rn x ∈ XB y ∈ YA.

We assume that the convex hull of the sets YA and XB are bounded. We denote
by x(k), k ∈ {1, . . . , K} the extreme points of XB and by y(l), l ∈ {1, . . . , L} those
of YA. We obtain the following formulation:

(LDD)

{
min max(c − w)tx(k) + max wty(l)

w ∈ Rn k = 1, . . . , K l = 1, . . . , L

which can be expressed in this equivalent linear form:

(LDD)




min z1 + z2

z1 ≥ (c − w)tx(k), k = 1, . . . , K

z2 ≥ wty(l), l = 1, . . . , L

w ∈ Rn, z1, z2 ∈ R.

The following theorem give the well-known dominance relationship between (P ),
(LRD), (LDD) and (LP) which is the linear relaxation of (P ).

Theorem 1 (Guignard and Kim, 1987a, 1987b): v(P ) ≤ v(LDD) ≤ v(LRD) ≤
v(LP ).

2.3 Dantzig-Wolfe decomposition and column generation

The key idea of DWD (Dantzig and Wolfe, 1960) is to reformulate the problem by
substituting the original variables with a convex combination of the extreme points
of the polyhedron corresponding to a substructure of the formulation.

We know that

∀x ∈ Conv(XB), x =
K∑

k=1

λkx(k)
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with
∑K

k=1 λk = 1, λk ≥ 0, ∀k ∈ 1, . . . , K.
By substituting in (P ) we obtain the master problem of DWD:

(MP)




max
K∑

k=1

(ctx(k))λk

s.c.

K∑
k=1

(Ax(k))λk = a

K∑
k=1

λk = 1

λk ≥ 0, k = 1, . . . , K.

(MP) contains m + 1 constraints and (potentially) a huge number of variables (i.e.,
the number K of extreme points of Conv(XB)).

Remark 1: Due to the fact that (LRD) is a dual of (MP), v(LRD) = v(MP)
(Lemaréchal, 2003).

CG consists in generating iteratively a subset of the extreme points of XB to
determine an optimal solution of (MP) by solving alternatively:

• a Restricted Master Problem of DWD on a subset K of {1, . . . , K}:

(RMP)




max
∑
k∈K

(ctx(k))λk

s.c.
∑
k∈K

(Ax(k))λk = a

∑
k∈K

λk = 1

λk ≥ 0, k ∈ K

• a pricing problem:

(SP)




max ctx − πtAx − π0

s.c. Bx = b

x ∈ X

where (π, π0) ∈ Rm × R are the dual variables provided by the resolution of
(RMP). The solution of (SP) is incorporated (as a column) in (RMP) if its
value is non negative.

This process ends when there is no more variables in {1, . . . , K}\K with a positive
reduced cost.
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3 Lagrangian and Dantzig-Wolfe decompositions

This section is dedicated to LD duality. We establish the relationship between LD,
DWD and CG. We consider the following DW master problem :

(MPD)




max
K∑

k=1

(cx(k))λk

K∑
k=1

x(k)λk −
L∑

l=1

y(l)γl = 0

K∑
k=1

λk = 1

L∑
l=1

γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L

,

where x(k), k ∈ {1, . . . , K} are the extreme points of XB and y(l), l ∈ {1, . . . , L}
those of YA.

Lemma 1: The value of this master problem (MPD) provides a better upper
bound on v(P ) than the value of the classical DWD (MP).

Proof:

v(MPD) =




max
K∑

k=1

(cx(k))λk

K∑
k=1

x(k)λk −
L∑

l=1

y(l)γl = 0

K∑
k=1

λk = 1

L∑
l=1

γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L.

By duality

v(MPD) =




min z1 + z2

z1 + wtx(k) ≥ cxk, k = 1, . . . , K(1)

z2 − wty(l) ≥ 0, l = 1, . . . , L(2)

w ∈ Rn, z1, z2 ∈ R
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If we consider only a subset of the multipliers w ∈ Rn such that wt = πtA, where
π is a vector of Rm, and substitute in equations (1) and (2) we obtain the following
problem:



min z1 + z2

z1 + πtAx(k) ≥ cxk, k = 1, . . . , K

z2 − πtAy(l) ≥ 0, l = 1, . . . , L

w ∈ Rn, z1, z2 ∈ R

for which the dual is:


max
K∑

k=1

(cx(k))λk

K∑
k=1

Ax(k)λk −
L∑

l=1

Ay(l)γl = 0

K∑
k=1

λk = 1

L∑
l=1

γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L.

As y(l), l ∈ {1, . . . , L} are the extreme points of YA, we have Ay(l) = a, and by∑
l γl = 1, we obtain the problem (MP). Thus v(MPD) ≤ v(MP). �

Remark 2: If n > m, the set {πtA, π ∈ Rm} � Rn and then v(MPD) can be stricly
better than v(MP).

Remark 3: As (LDD) (resp. (LRD)) is the dual of (MPD) (resp. (MP)), we can
state that

v(MPD) = v(LDD) = min
w∈Rn

v(LD(w)) ≤ min
πt∈Rm

v(LD(πtA))

and

min
πt∈Rm

v(LD(πtA)) = min
π∈Rm

v(LR(π)) = v(LRD) = v(MP).

This approach supply an alternative proof to the dominance of LD over LR.

4 Decomposition models

This section is devoted to an illustration of this new DWD model on two classical
combinatorial optimisation problems : the 0-1 bi-dimensional knapsack problem
and the generalised assignment problem.
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4.1 The 0-1 bi-dimensional knapsack problem

This problem consists in selecting a subset of given objects (or items) in such a
way that the total profit of the selected objects is maximised while two knapsack
constraints are satisfied. The formulation of this problem is given by :

(0-1_BKP )




max
n∑

i=1

cixi

s.c.
n∑

i=1

aixi ≤ A

n∑
i=1

bixi ≤ B

xi ∈ {0, 1}, i = 1, . . . , n

where n is the number of objects (or items), the coefficients ai(i = 1, . . . , n), bi(i =
1, . . . , n) and ci(i = 1, . . . , n) are positive integers and A and B are integers such
that max{ai : i = 1, . . . , n} ≤ A <

∑
i=1,... ,n ai and max{bi : i = 1, . . . , n} ≤ B <∑

i=1,... ,n bi.
The classical Dantzig-Wolfe master problem is given by:




max
K∑

k=1

( n∑
i=1

cix
(k)
i

)
λk

s.c.
K∑

k=1

( n∑
i=1

aix
(k)
i

)
λk ≤ A

K∑
k=1

λk = 1

λk ≥ 0, k = 1, . . . , K.

where x(k), k = 1, . . . , K, are the extreme points of Conv({xi ∈ {0, 1} |
∑n

i=1 bixi ≤
B, i = 1, . . . , n}); and the pricing problem is:




min
n∑

i=1

(ci − πai)xi − πA

s.c.
n∑

i=1

bixi ≤ B

xi ∈ {0, 1}, i = 1, . . . , n.
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The master problem associated to LD decomposition is given by:




max
K∑

k=1

( n∑
i=1

cix
(k)
i

)
λk

K∑
k=1

( n∑
i=1

x
(k)
i

)
λk −

L∑
l=1

( n∑
i=1

y
(l)
i

)
γl = 0

K∑
k=1

λk = 1

L∑
l=1

γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L

where x(k), k = 1, . . . , K (resp. y(l), l = 1, . . . , L), are the extreme points of
Conv({xi ∈ {0, 1}, i = 1, . . . , n |

∑n
i=1 bixi ≤ B, i = 1, . . . , n}) (resp. Conv({yi ∈

{0, 1}, i = 1, . . . , n |
∑n

i=1 aiyi ≤ A})); and the pricing problems are:




min
n∑

i=1

uiyi

s.c.
n∑

i=1

aiyi ≤ A

yi ∈ {0, 1}, i = 1, . . . , n

and




min
n∑

i=1

(ci − ui)xi

s.c.
n∑

i=1

bixi ≤ B

xi ∈ {0, 1}, i = 1, . . . , n.

where xi, i = 1, . . . , n and yi, i = 1, . . . , n are equal to 1 if object i is filled in the
knapsack.

4.2 The generalised assignment problem

It consists of finding a maximum profit assignment of T jobs to I agents such that
each job is assigned to precisely one agent subject to capacity restrictions on the
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agents (Martello and Toth, 1992). The standard integer programming formulation
is the following:




max
∑

i

∑
t

citxit

s.c.
∑

i

xit = 1, t = 1, . . . , T

∑
t

ritxit ≤ bi, i = 1, . . . , I

xit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.

Two classical Dantzig-Wolfe decompositions can be made, by relaxing the
assignment constraints or the capacity constraints.

The first classical Dantzig-Wolfe master problem is given by:




max
K∑

k=1

( ∑
i

∑
t

citx
(k)
it

)
λk

s.c.
K∑

k=1

( ∑
i

x
(k)
it

)
λk = 1, t = 1, . . . , T

∑K
k=1 λk = 1

λk ≥ 0, k = 1, . . . , K

where x(k), k = 1, . . . , K, are the extreme points of Conv({xit ∈ {0, 1} |
∑

t ritxit ≤
bi, i = 1, . . . , I}); and the associated pricing problem is:




min
∑

i

∑
t

(cit − πt)xit −
∑

t

πt

s.c.
∑

t

ritxit ≤ bi, i = 1, . . . , I

xit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.

The second classical Dantzig-Wolfe master problem is given by:




max
L∑

l=1

( ∑
i

∑
t

city
(l)
it

)
γl

s.c.
L∑

l=1

( ∑
t

rity
(l)
it

)
γl ≤ bi, i = 1, . . . , I

L∑
l=1

γl = 1

γl ≥ 0, l = 1, . . . , L
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where y(l), l = 1, . . . , L are the extreme points of Conv({yit ∈ {0, 1}|
∑

i yit = 1, t =
1, . . . , T}); and the associated pricing problem is:




min
∑

i

∑
t

(cit − πi)yit −
∑

i

πi

s.c.
∑

i

yit = 1, t = 1, . . . , T

yit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T.

The master problem associated to LD is given by:




max
K∑

k=1

( ∑
i

∑
t

citx
(k)
it

)
λk

K∑
k=1

( ∑
i

∑
t

x
(k)
it

)
λk −

L∑
l=1

( ∑
i

∑
t

y
(l)
it

)
γl = 0

K∑
k=1

λk = 1

L∑
l=1

γl = 1

λk ≥ 0, k = 1, . . . , K, γl ≥ 0, l = 1, . . . , L

where x(k), k = 1, . . . , K (resp. y(l), l = 1, . . . , L), are the extreme points of
Conv({xit ∈ {0, 1}|

∑
t ritxit ≤ bi, i = 1, . . . , I}) (resp. Conv({yit ∈ {0, 1}|

∑
i yit =

1, t = 1, . . . , T})); and the pricing problems are:




min
∑

i

∑
t

uityit

s.c.
∑

i

yit = 1, t = 1, . . . , T

yit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T

and




min
∑

i

∑
t(cit − uit)xit

s.c.
∑

t

ritxit ≤ bi, i = 1, . . . , I

xit ∈ {0, 1}, i = 1, . . . , I, t = 1, . . . , T

where xit, i = 1, . . . , I, t = 1, . . . , T and yit, i = 1, . . . , I, t = 1, . . . , T are equal to
1 if job t is assigned to agent i.
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5 Numerical experiments

This section is devoted to an experimental comparative study between LD and LR
when solved by the CG algorithm. We consider the two optimisation problems
defined in the previous section : the 0-1 bidimensional knapsack problem and the
generalised assignment problem.

We consider in our tests 6 instances of the 0-1 bi-dimensional knapsack
problem from the OR-Library. Table 1 presents a comparative study between CG
resolution of LD and LR formulations (denoted CG_LD and CG_LR respectively).
The master and pricing problems are solved by CPLEX11.2 solver.

CG_LR and CG_LD optimality are reached for all instances. As expected, LD
gives better upper bounds then LR. On average on instances WEINGi, i = 1, . . . , 6,
%vE associated to LD (resp. RL) is 0.02 (resp. 0.78), but we observe that the
average resolution time of CG_LR (0.07 s) is very small compared to CG_LD
computation time (10.54 s), this is due to the fact that the computational effort of
each CG_LD iteration is greater than the CG_LR one and to the slow convergence
of CG_LD compared to CG_LR.

We consider also in our tests 6 instances of the GAP from the OR-Library.
All instances gap i, i = 1, . . . , 6 have the same sise, 5 agents and 15 jobs. The
master and pricing problems are solved by CPLEX11.2 solver. Table 2 shows a
comparison between LR and LD algorithms performances, when we apply for
LR the second classical Dantzig-Wolfe decomposition, by relaxing the capacity
constraints (cf. Section 4.2).

As before, CG_LR and CG_LD optimality are reached for all instances.
LD gives better upper bounds then LR. On average on instances gapi, i = 1, . . . , 6,
%vE associated to LD (resp. RL) is 0.13 (resp. 2.85), but we observe that the
average resolution time of CG_LR (0.24 s) is still very small compared to CG_LD
computation time (282.58 s).

The first classical Dantzig-Wolfe decomposition for LR, by relaxing the
assignment constraints (cf. Section 4.2), has been also tested on the same
instances, the results show that the bounds are tighter (but they are not better
then those obtained by LD) and the CG algorithm takes more iterations and
time to converge.

6 Conclusion

This paper focused on Dantzig-Wolfe Decomposition principle. We propose a new
Dantzig-Wolfe master problem for ILP, which allows to propose an alternative
dominance proof of LD bound over LR bound. As illustration, we have given
the two Dantzig-Wolfe decomposition models for the 0-1 Bi-dimensional Knapsack
Problem and the Generalised Assignment Problem. The obtained experimental
results demonstrate the superiority of the LD bound, but the gain on bound quality
impose an additional computation effort. In fact, at each iteration of the CG
algorithm for the LD, two pricing problems (generally integer problems) have to
be solved. Through this experimental study, we conclude that column generation
resolution of LD can be useful if we want to obtain a good initial bound, as for
example at the root node of a branch and bound or a branch and price scheme.
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Table 1 Lagrangian Relaxation and LD for (0-1_BKP) 
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Table 2 Lagrangian Relaxation and LD for (GAP) 
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