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Abstract

The 0-1 quadratic knapsack problem consists of maximizing a quadratic
objective function subject to a linear capacity constraint. To exactly solve
large instances of this problem with a tree search algorithm (e.g., a branch
and bound method), the knowledge of good lower and upper bounds is cru-
cial for pruning the tree but also for fixing as many variables as possible in
a preprocessing phase. The upper bounds used in the best known exact ap-
proaches are based on Lagrangian relaxation and decomposition. It appears
that the computation of these Lagrangian dual bounds involves the resolu-
tion of numerous 0-1 linear knapsack subproblems. Thus, taking this huge
number of resolutions into account, we propose to embed reoptimization
techniques for improving the efficiency of the preprocessing phase of the 0-1
quadratic knapsack resolution. Namely, reoptimization is introduced to ac-
celerate each independent sequence of 0-1 linear knapsack problems induced
by the Lagrangian relaxation as well as the Lagrangian decomposition. Nu-
merous numerical experiments validate the relevance of our approach.

1 Introduction

The 0-1 quadratic knapsack problem (QKP) consists of maximizing a quadratic
objective function subject to a linear capacity constraint. It can be formulated as
follows:
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(QKP )


max

∑
i∈N

∑
j∈N cijxixj

s.t.
∑

j∈N ajxj ≤ b

xj ∈ {0, 1} j ∈ N

(1)

where N = {1, . . . , n}, the coefficients aj (j ∈ N) and cij (i ∈ N, j ∈ N) are
positive integers and b is an integer such that max{aj : j ∈ N} ≤ b <

∑
j∈N aj.

Problem (QKP) is a generalization of the 0-1 linear knapsack problem, in which
all the cij = 0, for all i 6= j and it is known to be NP -hard. Literature surveys on
solution approaches and applications (e.g., several classical graph theory problems
(max clique, graph bipartitioning problem, k-clustering); economical problems (lo-
calization of railway stations and airports); compiler design problem) can be found
in [17] and [31].

An important phase in the resolution of any combinatorial optimization pro-
blem is the preprocessing phase, which is all the more important since the instance
sizes are large. It includes heuristics and relaxation methods for finding lower and
upper bounds on the value of the optimal solution of the problem. Another im-
portant step for 0-1 programming problems aims at the reduction of the instance
size (generally by fixing some variables at their optimal value) by exploiting these
bounds. In addition, to solve exactly large instances with a tree search algorithm
(e.g., a branch and bound method), the knowledge of good lower and upper bounds
is also crucial for pruning the tree.

The choice of bounding methods is usually a tradeoff between the tightness of
the bound obtained and the computation time to achieve it. As far as the 0-1
quadratic knapsack problem is concerned, the upper bounds produced by the best
known exact approaches are based on Lagrangian relaxation and decomposition
(see, e.g., [19, 27, 28, 33]) or semidefinite programming (see, e.g., [20, 21]).

To our knowledge, the best known exact approach is designed by Pisinger, Ras-
mussen and Sandwik [32] (denoted by method PRS). This approach combines a
Lagrangian relaxation proposed by Caprara, Pisinger and Toth [11] (denoted by
method CPT ) and a Lagrangian decomposition proposed by Billionnet, Faye and
Soutif [7, 8] (denoted by method BFS), taking advantage of the fact that the two
methods CPT and BFS complete each other.

It appears that the computation of these Lagrangian dual bounds involves the
resolution of numerous 0-1 linear knapsack subproblems. Thus, taking this huge
number of resolutions into account, we propose to embed reoptimization tech-
niques for improving the efficiency of the preprocessing phase for the 0-1 quadratic
knapsack resolution.
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In this paper, we propose to introduce reoptimization to accelerate each in-
dependent sequence of 0-1 continuous linear knapsack problems induced by the
Lagrangian relaxation of Caprara, Pisinger and Toth’s method (CPT ) and the
Lagrangian decomposition of Billionnet, Faye and Soutif’s method (BFS). Two
reasons for this choice: first, these two methods are the basic bricks of method
PRS, and second, it was possible to get the two original software from the au-
thors. Thus, this work propose to lay the foundations of reoptimization for (QKP )
by a straightforward exploitation of the two existing codes.

Section 2 recalls the principle of methods CPT and BFS to compute upper
bounds for problem (QKP ). Section 3 deals with the introduction of reoptimiza-
tion in the resolution of the 0-1 continuous linear knapsack problems solved in
the preprocessing phase for the 0-1 quadratic knapsack problem. In this way, we
propose to exploit reoptimization tools introduced successfully to improve the com-
putation time of iterative algorithms (like subgradient methods) for a 0-1 bidimen-
sional knapsack problem Lagrangian dual [36, 37]. Finally, numerous numerical
experiments validate the relevance of our approach (Section 4).

2 Lagrangian upper bounds for problem (QKP )

The Lagrangian approaches CPT [11] and BFS [7, 8] for problem (QKP ) com-
bine linearization or decomposition techniques with Lagrangian relaxation or La-
grangian decomposition. The main steps of these dual methods are described be-
low: the Lagrangian relaxation of method CPT in Section 2.1 and the Lagrangian
decomposition of method BFS in Section 2.2. This emphasizes the need to solve
a huge number of 0-1 linear knapsack problems (e.g., about n problems of size n
at each step of a subgradient procedure for method CPT ).

2.1 The Lagrangian relaxation in method CPT

Using a linear reformulation of (QKP ), Caprara, Pisinger and Toth [11] propose a
computation of an upper bound by considering its Lagrangian relaxation (after a
linearization step), which is solvable through numerous 0-1 linear knapsack prob-
lems.

In short, the first step in this upper bounding procedure is a reformulation-
linearization technique (RLT) like linearization [1]. In a second step, by relaxing
n2 symmetric constraints, the authors prove that each Lagrangian relaxation may
be solved by means of n independent 0-1 linear knapsack subproblems plus one
global 0-1 linear knapsack problem depending on the solutions of the n previous
ones. In order to speed up the subgradient algorithm used to solve the Lagrangian
dual, only the continuous relaxations of these n+ 1 linear knapsack problems are
considered at each iteration.
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Namely, the first step of method CPT [11] consists of linearizing (QKP ) as
follows:

.

(ILP )



max
∑

j∈N cjjxj +
∑

j∈N
∑

i∈N\{j} cijyij
s.t.

∑
j∈N ajxj ≤ b∑
i∈N\{j} aiyij ≤ (b− aj)xj ∀j ∈ N (2)

0 ≤ yij ≤ xj ≤ 1 ∀(i, j) ∈ N2, i 6= j
yij = yji ∀(i, j) ∈ N2, i < j (3)
xi,yij ∈ {0, 1} ∀(i, j) ∈ N2, i 6= j

For this linearization, the binary variables yij are introduced to replace the
product xixj. These new variables are linked to the old one by suitable inequali-
ties. Indeed, constraints (2) consists of multiplying the capacity constraint by each
variable and replacing x2

j by xj since the variables are binary variables. They are
redundant as long as the integer restriction on the variables is imposed [1, 3, 17, 26].
Caprara, Pisinger and Toth solve this problem by a branch and bound method.
Their evaluation of nodes is based on a Lagrangean relaxation (LRILP (µ)) which
relaxes the symmetric constraints (3), by denoting µij the dual multipliers associ-
ated with yij. The authors highlight this decomposition result: for each µ ∈ Rn2

,
solving (LRILP (µ)) is equivalent to solve n + 1 linear 0-1 knapsack problems.
Namely, relaxing the integer conditions on variables (for monitoring time com-
plexity), these knapsack problems are considered in a two level way as follows:

1. First, n 0-1 continuous linear knapsack problems (CKPj(µ)) j ∈ N :
max

∑
i∈N\{j}(cij + µij)zij

s.t.
∑

i∈N\{j} aizij ≤ (b− aj)

0 ≤ zij ≤ 1 ∀i ∈ N\{j}

associated with constraint (2) are solved. For each j ∈ N , let us denote by
zj an optimal solution of (CKPj(µ)) and by pj its value.

2. Second, it remains to solve the following 0-1 continuous linear knapsack
problem (CKP ) associated with the capacity constraint (1), whose objective
function includes the results pj j ∈ N of the first level:

max
∑

j∈N(pj + cjj)xj

s.t.
∑

j∈N ajxj ≤ b

0 ≤ xj ≤ 1 ∀j ∈ N

Let us denote by x its optimal solution.

Therefore, an optimal solution y of (LRILP (µ)) can be simply computed in this
way:

yij = zijxj ∀i, j ∈ N, i 6= j.
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Thus, this evaluation is realized in 0(n2) time since each continuous linear
knapsack problem may be performed in 0(n) time [15, 16].

As far as numerical experiments are concerned, Caprara, Pisinger and Toth
highlight that their approach leads to a good quality bound (denoted further by
ubCPT ) for high density problems and needs low computational time.

2.2 The Lagrangian decomposition in method BFS

Using a preliminary data partition of the problem, Billionnet, Faye and Soutif
[7] propose the computation of an upper bound ubBFS for v(QKP ) based on La-
grangian decomposition.

In brief, their method BFS consists of three major steps:

• Creation of clusters : partition of the variable set into m disjoint classes k,
k ∈ {1, . . . ,m}.

• Lagrangian decomposition: splitting the problem into m independent 0-1
linear knapsack subproblems, associated with the m clusters.

• Computation of the upper bound : solving the Lagrangian dual problem by
means of a subgradient algorithm.

By denoting nk the number of variables for cluster k, k = 1, . . . ,m, at each
iteration of their subgradient algorithm, 2nk 0-1 linear knapsack problems have to
be solved for each cluster k. But, in order to speed up the dual resolution, the
authors propose to relax the integrality conditions on the variables. Thus, like for
method CPT described in the previous section, they only consider the continuous
relaxation of all the 0-1 linear knapsack subproblems.

Namely, for each cluster k ∈ {1, . . . ,m}, we propose to describe the generic
problem which has to be solved among the 2nk 0-1 linear knapsack problems, at
each iteration of the associated Lagrangian decomposition dual resolution. For
this, let us give the main points of the method.

First, m clusters of variables are created (the authors do not propose any order
to realize this partition but suggest to fix empirically a common size (e.g., 5) to
each cluster). Let us denote by Ik the index set associated with variables of clus-
ter k, k = 1, . . . ,m (so nk = |Ik|). A copy y of variable x is then created in this way:

ykj = xj, j ∈ N\Ik, k = 1, . . .m
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in order to consider a new formulation of problem (QKP ):

(QKP
′
)



max
m∑
k=1

fk(x, y)

s. t.
xj = ykj k = 1, ...,m; j ∈ N\Ik (4)∑
i∈Ik

aixi +
∑

j∈N\Ik

ajy
k
j ≤ b k = 1, ...,m (5)

xi ∈ {0, 1} i ∈ Ik; k = 1, ...,m (6)
ykj ∈ {0, 1} j ∈ N\Ik; k = 1, ...,m (7)

where

fk(x, y) =
∑
i∈Ik

cixi +
∑
i∈Ik

∑
i′∈Ik,i′ 6=i

cii′xi′xi +
∑
i∈Ik

∑
j∈N\Ik

cijxiy
k
j

By relaxing the copy constraints (4) using the following multipliers:

λ = (λk
j )1≤k≤m,j∈N\Ik

we get a Lagrangian relaxation:

max

m∑
k=1

(fk(x, y) +
∑

j∈N\Ik

λk
j (xj − ykj ))

s. t. ∑
i∈Ik

aixi +
∑

j∈N\Ik

ajy
k
j ≤ b k = 1, ...,m

xi ∈ {0, 1} i ∈ Ik; k = 1, ...,m
ykj ∈ {0, 1} j ∈ N\Ik; k = 1, ...,m

which may be decomposed into m subproblems. When variables xi are fixed at 0
or 1, these subproblems are nothing else that 0-1 linear knapsack problems (in y)
with size n− nk.
In order to reduce computation times, the integrality constraints over variables yj
are relaxed for considering continuous knapsack problems, but on the other side,
to improve the upper bound quality, the constraints of (QKP

′
) are expanded by

the following ones:

xiy
k
j = xjy

h
i i ∈ N\Ih; j ∈ N\Ik; 1 ≤ k < h ≤ m

And by relaxing them, using the following multipliers:

µ = (µkh
ij )i∈N\Ih;j∈N\Ik;1≤k<h≤m
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the resulting Lagrangian decomposition differs from the previous one only by a
modification of the objective function which becomes:

m∑
k=1

(fk(x, y) +
∑

j∈N\Ik

λk
j (xj − ykj ) +

∑
i∈N\Ih;j∈N\Ik;1≤k<h≤m

µkh
ij (xiy

k
j − xjy

h
i ))

and does not disturb the knapsack structure of the subproblems.

In summary, at each iteration of the Lagrangian decomposition dual resolution,
for each cluster k ∈ {1, . . . ,m}, by considering the 2nk fixings of variables xi in
Ik, a 0-1 linear knapsack problem (in ykj ) with size n− nk is solved in continuous.
According to the data k, x, λ and µ (a large part of the previous objective function
becomes a constant), it has the following form (KP k(x, λ, µ)):



max
∑
i∈Ik

∑
j∈N\Ik

cijxiy
k
j −

∑
j∈N\Ik

λk
jy

k
j +

∑
i∈N\Ih;j∈N\Ik;1≤k<h≤m

µkh
ij (xiy

k
j − xjy

h
i )

s.t. ∑
j∈N\Ik

ajy
k
j ≤ b−

∑
i∈Ik

aixi

ykj ∈ {0, 1} j ∈ N\Ik
It should be noted that m Lagrangian decomposition duals have to be solved

to get the upper bound ubBFS.

Billionnet and Soutif [8] highlight that their approach embedded in a branch
and bound scheme, consumes more computation time but produces better experi-
mental results than method CPT for low and middle density instances.

Summary
On one hand, we note that these two previous approaches involve a huge num-

ber of 0-1 linear knapsack resolutions at each step of a subgradient algorithm. On
the other hand, the works of Thiongane, Nagih and Plateau [37] have shown that
reoptimization techniques can be applied successfully to solve a sequence of 0-1
linear knapsack problems in a subgradient scheme. Thus, combining these two
situations, as method PRS uses a hybridization of CPT and BFS methods (see
Section 1), we propose now to introduce specific reoptimization techniques in these
two basic approaches separately.

3 Reoptimization for problem (QKP )

In this paper, reoptimization consists of exploiting the resolution of a given instance
of a problem (P ) to accelerate the resolution of another instance (P ′) next to the
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previous one (e.g., with a slight modification of part of the data). Thus, having
reoptimization in mind, while solving (P ) it is important to store information that
might be useful for the resolution of (P ′). Reoptimization techniques might be
applied for a sequence of two instances or more generally for a larger sequence of
instances (see, e.g., [5, 6, 12, 18, 22, 23, 25, 38, 39]).

As it is pointed out in the previous section, one of the critical things in the
resolution of each Lagrangian dual of (QKP) is the huge number of continuous
0-1 linear knapsack problems to be solved. For improving the efficiency of the
computation of the upper bounds ubCPT and ubBFS, we propose to reduce the
global computation time of methods CPT and BFS by exploiting a part of the
reoptimization techniques of method MARIE (Method combining Approximation
and Reoptimization for Integer programming Evoluating instances) [35, 37], in
the resolution of the (finite) sequences of 0-1 linear knapsacks.

Section 3.1 details the specific reoptimization tool we propose to embed in
methods CPT and BFS for bounding and reducing problem (QKP ). Section 3.2
describes the general reoptimization framework we design for the preprocessing
phase of these two methods.

3.1 Reoptimization for the continuous 0-1 knapsack prob-
lem

The Lagrangian heuristic method MARIE was designed by Thiongane, Nagih and
Plateau for the 0-1 linear bidimensional knapsack problem [35, 37]. MARIE com-
bines a variable fixing phase and a local search for improving the lower bound on
the value of the bidimensional knapsack produced by Lagrangian heuristics. More-
over, the sequence of 0-1 linear one-dimensional knapsack instances obtained from
the algorithm are solved by using reoptimization techniques in order to reduce the
total computational time effort. Computational results reported in [37] show that
duality gaps produced by MARIE are close to zero with small CPU times.

Here we focus on the specific reoptimization tool that we propose to be embed-
ded in methods (CPT ) and (BFS) for bounding and reducing problem (QKP ).
We consider the following generic 0-1 linear knapsack problem:

(K(u))


max

∑
j∈I c(u)jxj

s.t.
∑

j∈I ajxj ≤ cap

xj ∈ {0, 1} j ∈ I

where u is a positive real number, the index set I is a subset of N , the coefficients
aj (j ∈ I) are positive integers, the coefficients c(u)j (j ∈ I) are real numbers, and
cap is an integer such that max{aj : j ∈ I} ≤ cap <

∑
j∈I aj. This model stands

for each knapsack problem solved in subgradient algorithms (with the Lagrangian
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multiplier u) for solving the duals detailed in Section 2. Namely, all along the sub-
gradient algorithms several sequences of 0-1 knapsack problems have to be solved.
And in each sequence, all the problems have the same constraint and only differ,
one to another, on the objective function via the parameter u.

Solving the LP relaxation (K(u)) of (K(u)) is equivalent to determining an
optimal multiplier µ(u) associated with the constraint of (K(u)). It is well known
that:

∃ i ∈ I such that µ(u) =
c(u)i
ai

and two sets U(u) and L(u) forming a tripartition of I which satisfy the two
properties:

(i) ∀ j ∈ U(u)
c(u)j
aj
≥ µ(u) ≥ c(u)l

al
∀ l ∈ L(u)

(ii)
∑

j∈U(u)

aj ≤ cap <
∑

j∈U(u)

aj + ai

The LP solution x is then obtained by:

xj =


1 j ∈ U(u)
0 j ∈ L(u)

c(u)i(
cap−

∑
j∈U(u) aj

ai
) j = i

From the set of ratios
c(u)j
aj

, a sequence of tripartitions is realized from diffe-

rent target values while checking if condition (ii) holds. Different versions of the
algorithm detailed in Figure 3.1 appeared simultaneously in 1977 in three papers
reported in [4, 13, 24]. The version proposed here has an average linear time com-
plexity [2, 15] (note that, in expectation of reoptimization, index i is saved even if
x is an optimal solution of (K(u)) (in this case xj is equal to 0 or 1)).

It is important to recall that the computational time of this algorithm will go
down as each target value (also denoted below by pivot), chosen to realize the
sequence of partitions, satisfies at least one of the following properties:

• to be close to the median of the set of concerned ratios
c(u)j
aj

This choice allows to create a sequence of equitable partitions of the ratio
sets (see, e.g., [10, 29, 30, 34] ). Namely, for each set of the sequence, about
half of elements of the previous set is considered. This tends to approach a
worst case linear time complexity, in a simpler way than the median method
[2, 9] used in Lawler’s algorithm [24].

• to be close to the optimal multiplier µ(u)
This property may be reached for the first pivot of the process when it
is possible to exploit the data distribution of the generated instances (see
for example, [14]). This choice tends to reduce drastically the number of
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/* initialization */
L← I; U ← ∅; σ ← 0

/* iterative algorithm */
while σ < cap do

choose an item h in L
L1 ← {j ∈ L| c(u)j/aj ≥ (c(u)h/ah}\{h}
L2 ← {j ∈ L| c(u)j/aj < c(u)h/ah}
if (σ +

∑
L1

aj > cap) then L← L1

else
σ ← σ +

∑
j∈L1

aj;U ← U ∪ L1

if (σ < cap) then
U ← U ∪ {h}; σ ← σ + ah; L← L2

endif
endif

end while
i← h /*in expectation of reoptimization*/
xj ← 1, j ∈ U ; xj ← 0, j /∈ U
if σ = cap then

x is feasible and optimal for (K(u)); v(K(u))← c(u)x
else

σ ← σ − ai
xi ← (cap− σ)/ai;U(u)← U\{h};L(u)← N\U ; v(K(u))← c(u)x

endif

Figure 3.1: Solving the continuous knapsack problem (K(u)) in linear time complexity

iterations of the algorithm. For the best situation (the chosen initial pivot is
optimal), this leads to the direct resolution of (K(u)) with a single iteration.
Our reoptimization process comes into this scope.

For the Lagrangian dual context, we recall that all along the subgradient al-
gorithms, we have to solve a sequence of 0-1 knapsack problems which have the
same constraint and only differ, one to another, on the objective function. In order
to accelerate the computational time of the iterative procedures, which determine
the optimal tripartition of I, we propose to reduce the number of its exchanges
by using the optimal multiplier found at the previous iteration of the subgradient
algorithm. In other words, let us consider at iteration l the index il of the optimal
basic variable of the LP relaxation (K(ul)). For solving (K(ul+1)), we consider
c(ul+1)il/ail as the first pivot. In this way, we expect that this target value is not
far from µ(ul+1) and that the first tripartition of I will be close to the optimal
tripartition characterizing µ(ul+1) (see Figure 3.2).
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3.2 Reoptimization in methods CPT and BFS

The computation of the Lagrangian dual bounds ubCPT and ubBFS involves the
resolution of numerous 0-1 continuous linear knapsack subproblems (Section 2).
In fact, each iterative preprocessing phase of methods CPT and BFS consists of a
dynamic reduction of variables of problem (QKP ), which both update the upper
and lower bounds and the problem size until the reduction process fails. This leads
to a huge number of 0-1 continuous knapsack problems in which we propose to
embed the reoptimization technique detailed in Section 3.1.

We design a generic reoptimization framework (Figure 3.3), which respects our
wish to realize a straightforward exploitation of the codes used by the authors in
papers [11] for method CPT and [7, 8] for method BFS. As we only add adequate
conditional instructions without changing the structure of the codes, we have to
point out that, first the computation times could be greatly improved by using
adequate data structures, and second, the reoptimization used for the variable fix-
ing phase is far from the best possible procedure which should imply a complete
rewriting of parts of the codes.

For giving an evaluation of the number of 0-1 continuous linear knapsack solved
for computing bounds and fixing variables in the two codes, we denote by tour
the number of iterations of the preprocessing phase and iter the number of iter-
ations of the subgradient procedure for solving the Lagrangian dual (we denote
by p the number of knapsack problems solved at each iteration). Moreover, we
always denote by n the size of the current problem (QKP ) at the beginning of a
preprocessing phase (i.e., after possible reduction(s) of the problem):

Reoptimization in method CPT
The iterative preprocessing phase stops when no new variable can be fixed. This

drastic stopping criterion gives value of parameter tour. The stopping criterion for
the computation of ubCPT is simply a prefixed number of iterations: iter is equal
to n+200. Finally, parameter p is equal to n+1. We recall that it corresponds to
n 0-1 continuous linear knapsack problems (CKPj(µ)) with size n−1 following by
a unique 0-1 continuous linear knapsack problem (CKP ) with size n (see Section
2.1).

Reoptimization in method BFS
The number of iterations of the preprocessing phase tour depends on stopping

criteria based on size reduction threshold values. The number of iterations iter for
computing ubBFS derives from stopping criteria, which combine threshold values
both for the standard duality gap defined as upperbound−lowerbound

lowerbound
and for the sizes

of the Lagrangian multipliers. The parameter p is equal to
∑m

k=1 2
nk . Namely, for

each cluster k ∈ {1, . . . ,m}, and for each of the 2nk fixings of variables xi in Ik,

11



/* initialization */
il ← index of the optimal basic variable of (K(ul))
L← the index set of items in the order found at the end of the resolution of (K(ul))
h← il

ratio← c(ul+1)h/ah
L1 ← {j ∈ L|c(ul+1)j/aj ≥ ratio}\{h}
L2 ← {j ∈ L|c(ul+1)j/aj < ratio}
if (

∑
L1

aj > cap) then L← L1

else
σ ←

∑
j∈L1

aj
if (σ = cap) or (σ + ah = cap) then

/* (K(ul+1)) and (K(ul+1)) are both solved */
if (σ = cap) then U(ul+1)← L1 else U(ul+1)← L1 ∪ {h} endif
il+1 ← h; xj ← 1, j ∈ U(ul+1); xj ← 0, j /∈ U(ul+1); v(K(ul+1))← c(ul+1)x

else
U ← L1

if σ + ah > cap then
/* (K(ul+1)) is solved */
il+1 ← h; xh ← (cap− σ)/ah; U(ul+1)← U
xj ← 1, j ∈ U(ul+1); xj ← 0, j /∈ U(ul+1) ∪ {h}; v(K(ul+1))← c(ul+1)x

else /* σ + ah < cap*/
σ ← σ + ah;U ← U ∪ {h};L← L2

/* iterative algorithm */
see Figure 3.1 with u = ul+1

endif
endif

endif

/* information stored for the next problem instance */
save il+1 and the current order of set L

Figure 3.2: Reoptimization for the continuous knapsack problem (K(ul+1)) after solving
(K(ul))
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tour ← 1
repeat

l← 1
/* upper bound computation */
repeat

apply reoptimization for each of the p independent 0-1 continuous linear knapsack pro-

blems (Kj(u
l+1)) knowing the resolution of (Kj(u

l)) j ∈ {1, . . . p} (see Figure 3.2)
l← l + 1

until (stopping criteria)
/* variable fixing */
/* let us denote by iter the number of iterations for computing the upper bound, and by
x the solution associated with the best known lower bound*/
for each free variable xf do

apply reoptimization for each of the p independent 0-1 continuous linear knapsack pro-

blems (Kj(u
iter)|xf fixed at 1− xf ) knowing the resolution of (Kj(u

iter)) j ∈ {1, . . . p}
with the aim to fix xf at xf (see Figure 3.2)

endfor
tour ← tour + 1
until (stopping criteria)

Figure 3.3: Generic reoptimization framework

a 0-1 continuous linear knapsack problem with size n − nk has to be solved (see
problem (KP k(x, λ, µ)) of Section 2.2).

4 Computational results

This section is devoted to an experimental study over randomly generated in-
stances. Using a uniform distribution, the data belong to the following inter-
vals: cij ∈ [1, 100], aj ∈ [1, 50] and b ∈ [1,

∑
j∈N aj] for i, j ∈ {1, . . . , n} with

n ∈ {100, . . . , 600} for method CPT and n ∈ {100, . . . , 400} for method BFS.
In the four tables, δ represents the density of the quadratic matrix (25 %, 50 %,
75 % and 100 %) and the results are average values over 10 instances. All the
experiments have been carried out on an Intel Xeon bi-processor dual core 3 GHz
with 2 GB of RAM (only one core has been used).

The experiments are designed to appreciate the intrinsic impact of reoptimiza-
tion in methods CPT and BFS. Starting from the original codes, we only expand
them by our reoptimization tools without modifying the parameters worked by
the authors. In particular, we keep the original size (5) for the clusters in method
BFS (it should be noted that the gains are of the same order whatever the cluster
sizes). Moreover, for the original code of method BFS, core memory problems ap-
pear from instances with 500 variables. This explain the limitation of experiments
for BFS.
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Each column Aver. reports the average values of savings in terms of exchanges
(Tables 1 and 3) and of CPU times (Tables 2 and 4) realized into the continuous
knapsack resolutions of the preprocessing phase. The average values of standard
deviations of columns Dev. refine these results.

The results show that the use of reoptimization techniques in the preprocessing
phase leads to an average exchange saving of 28.53% for method CPT and 27.73%
for method BFS. Moreover, we note that without implementing any dedicated
data structures, we get an average time saving of 4.15 % for method CPT and
21.27 % for method BFS. Standard deviations highlight regular gains for method
CPT . On the other hand, the more important standard deviation values indicate
more chaotic gains for method BFS, even if all the mean gains remain positive in
all cases.

n \ δ 25 % 50 % 75 % 100 %

Ave. Dev. Ave. Dev. Ave. Dev. Ave. Dev.

100 14.13 10.31 31.41 12.30 46.97 8.62 56.80 4.33

200 17.13 10.88 24.52 7.95 46.41 9.38 58.05 4.56

300 20.59 11.35 22.19 9.24 18.23 13.66 53.38 2.40

400 12.50 8.09 12.90 9.85 32.76 5.01 53.30 3.86

500 10.90 4.91 16.77 13.36 32.51 14.08 53.52 3.35

600 7.86 2.68 27.27 10.16 27.88 9.93 51.13 3.91

Table 1: Number of exchanges saved for method CPT (%)

n \ δ 25 % 50 % 75 % 100 %

Ave. Dev. Ave. Dev. Ave. Dev. Ave. Dev.

100 6.11 7.43 7.66 6.73 20.67 15.94 17.60 7.69

200 3.70 7.73 4.81 20.36 12.70 12.36 19.60 8.84

300 8.11 11.73 2.35 6.88 5.12 8.70 11.73 8.60

400 3.31 5.42 1.22 4.11 4.15 4.21 13.70 5.42

500 0.68 6.54 2.70 8.59 7.36 11.14 13.43 6.82

600 1.85 3.59 2.08 4.05 0.80 11.60 11.89 6.95

Table 2: CPU time (s) saved for method CPT (%)
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n \ δ 25 % 50 % 75 % 100 %

Ave. Dev. Ave. Dev. Ave. Dev. Ave. Dev.

100 33.66 33.65 19.94 32.89 51.09 74.54 74.81 17.86

200 1.19 1.56 67.94 20.12 36.76 54.94 22.67 34.56

300 63.27 32.30 43.69 42.17 0.37 5.62 75.15 58.10

400 41.45 43.80 62.50 31.00 6.87 11.58 0.11 23.31

Table 3: Number of exchanges saved for method BFS (%)

n \ δ 25 % 50 % 75 % 100 %

Ave. Dev. Ave. Dev. Ave. Dev. Ave. Dev.

100 8.29 12.64 5.00 4.39 28.59 28.06 37.47 15.57

200 0.78 0.86 34.15 37.97 25.45 44.40 8.26 15.95

300 43.96 29.28 29.54 21.29 1.57 5.29 36.69 33.51

400 27.93 31.39 42.96 20.21 11.56 17.97 2.65 11.68

Table 4: CPU time (s) saved for method BFS (%)

5 Conclusion

Caprara, Pisinger and Toth [11] and Billionnet, Faye and Soutif [7, 8] have proposed
efficient Lagrangian based methods for solving the 0-1 integer quadratic knapsack
problem. As their preprocessing phases involve the resolution of numerous 0-
1 integer linear knapsack problems, we have proposed to improve the efficiency
of these two well known methods by introducing reoptimization techniques. We
designed a generic reoptimization framework for these two different Lagrangian
methods by exploiting the resolution of the huge number of 0-1 continuous linear
knapsack problems embedded in their iterative schemes. Using the original codes
of the authors expanded by our reoptimization tools, the numerical experiments
validate the relevance of our approach. In the near future, we intend to redesign
the variable reduction phase by using adequate data structures of the two codes.
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