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Abstract
A virtual network laboratory —allowing to emulate a physical net-
work of computers and network devices such as switches or routers
in software— represents a valuable tool for students, and may also
be useful to researchers and system administrators. A tool of this
kind, particularly if it aims at being usable by inexperienced stu-
dents, should offer the same opportunities of configuring and ex-
perimenting with components as a physical network, providing also
an intuitive graphical user interface fordynamicallymanipulating
the network topology and each individual virtual device.

Building such an inherently concurrent system is nontrivial, re-
quiring the integration of many different components written in dif-
ferent languages and a complex control logic. Indeed some projects
with similar purposes have been existing for years, and typically
use scripting languages such asPythonandBash; by contrast our
system,Marionnet1, has been implemented using the functional
language OCaml in just six man-months and yet providing several
important features still missing in more mature projects.

We seize the occasion of describing Marionnet to discuss the
relevance of the functional style and of advanced type systems for
dramatically cutting development time.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.1.3 [Concurrent Programming]; D.1.5
[Object-oriented Programming]; D.3.3 [Language Constructs
and Features]: Polymorphism. Classes and objects. Inheritance;
C.2.m [Miscellaneous]; C.2.m [Miscellaneous]; I.6.3 [Applica-
tions]; I.6.7 [Simulation Support Systems]; K.3.2 [Computer and
Information Science Education]: Computer science education;
K.3.1 [Computer Uses in Education]: Collaborative learning.

General Terms Design, Languages, Experimentation

Keywords OCaml, static typing, emulation, virtual machine,
GUI, User Mode Linux

1. Motivations
Enabling students to practice on network configuration and dis-
tributed application development using physical components is

1 Marionnetis supported as ane-learningproject by Universit́e Paris Nord.
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cumbersome and expensive, particularly in a crowded classroom
environment where the availability of devices such as computers,
switches or routers is limited.
It is also completely unrealistic to expect that students are able to
do exercises at home on their own, when they typically only have
access to a single Internet-connected computer.
The possibility of a direct “hands-on” experience with network
protocols is also impaired by the same difficulties, and may end up
being undeservedly neglected in a traditional teaching setting.

A straightforward solution to solve this pedagogical problem con-
sists in emulating2 a whole computer network on a single machine.

Moreover, the scope of such an application may extend well
beyond our initial didactic motivation, and a system of this kind
can prove itself to be valuable also as a testing tool for network
administrators and computer scientists interested in security: many
network attacks can be easily and safely emulated, without any
need for hardware setup.

2. Introduction
As a first approximation, nesting a whole network into a single
computer essentially amounts to:

• emulating single machinesusing one among the several already
existing technical solutions3; without any pretense of exhaus-
tivity we cannot but cite some free software projects as Bochs
([26]), QEmu ([6]), UML ([ 14, 15, 16] ) and Xen ([4]), and the
proprietary product VMWare ([46]).

• emulating network devicessuch as cables, hubs, switches and
IP routers; this second problem can also be solved in a vari-
ety of ways, all of them consisting in some functionality —of
widely varying complexity— built on inter-process communi-
cation and operating system features such astun/tap inter-
faces ([25]).

The differences among all the possible approaches above are
not particularly significant for our purposes, although they may in-
fluence the performance and applicability of a certain solution.

2 Here we take the term “emulation” in a very broad sense, including
solutions as different asfull hardware simulation, paravirtualization, user-
mode kernels, and so on.
3 Such solutions greatly differ in their scope and implementation style: as-
sembly instructioninterpretervs. incremental compiler, hardware emula-
tion vs. operating system virtualization. The original intents of them were
also varying, including the concurrent use of different operating systems
on the same machine, and security applications such ashoneypottingand
sandboxing.



We choose UML as a platform because of its maturity, documenta-
tion, relatively simple installability and good performance.

UML allows one to manage several kernels as standard userspace
processes, and in its turn this enables us to emulate GNU/Linux ma-
chines —very suitable to networks— on commonly available x864

hardware.
This choice is by no means the “only” possible one: other tech-

nologies like Xen would also have been reasonable alternatives.

2.1 An high level architecture: network emulation layers

As shown in Figure1, the network emulation problem can be
abstractly modeled into four layers, all of them nontrivial. Each
layer depends on the layers below it for its implementation, and as
usual the level of abstraction grows upward.
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Figure 1. Emulation layers for a virtual network

Emulation platform. At the bottom level anemulation platform
allows one to create several independent virtual computers running
on a single —possibly not even networked—hostcomputer. Virtual
machines should realistically replicate real machines’ behavior,
allowing to execute user software with no modification, and to
normally read and write a localvirtual filesystem.

Communication layer. Virtual machines must be able to commu-
nicate with one another in some way, employing real network pro-
tocols; in practice supporting at least Ethernet is imperative, due to
its ubiquity.
Virtual network devicessuch as switches, hubs and IP routers
should also be available. Such virtual network devices should be
running as host processes, but replicating in the closest possible
way the behavior of their physical counterparts. We call this inter-
mediate level thecommunication layer.

This layer might also provide some mean to observe the network
traffic: it seems natural to implement such functionality at this level,
as the emulation of communication among machines and devices
already requires to work with protocols at a low level.

Control layer. A control layer allows one to define a virtual
network and run it, reasoning with emulated components at a very
high level. As a bare minimum a control layer should provide
means tostatically define, then startup and shutdown a whole
virtual network.
A more flexible layer may allow one todynamicallydefine network

4 We did not test the application on PowerPC yet.

devices, turning on and offindividual components, and connect or
disconnect virtual cables, all of thiswhile the network is running.

GUI layer. At the top level the user could be exposed to a user
interface, providing an intuitive view of the network and allowing
to easily interact with the control layer.
It may be worthy to emphasize that, on one hand, our main target
users are inexperienced first- or second-year students, unaccus-
tomed to complex interfaces and still without a deep understanding
of how networks work; on the other hand, a full network configu-
ration is quite complex a state, and requires some sophistication in
the interface to be presented in a readily understandable way.
The need to balance among these two conflicting needs makes also
the interface design nontrivial; and a vast number of features (see
section3) might make the use of a GUI nearly a necessity.

Some applications explicitly aimed at didactics in this field already
exist, but to our knowledge none of them implements dynamic
control; two project support GUIs, but their sophistication in this
aspect is limited by their laying upon astaticcontrol layer. See sec-
tion 6 for more information and a detailed comparison with related
projects.

2.2 Contributions

Our application,Marionnet, is anOCaml5 ([28, 9]) implementation
of the topmost two levels, afully dynamic control layerand aGUI
layer.

The emulation platform consists inUML, by Jeff Dike et al.,
and the communication layer isVDE, by Renzo Davoli et al. ([13]).
UML and VDE —both written in C— have also been patched for
Marionnet (see subsubsections4.9.1and4.9.2), but the very limited
scope of such changes makes unreasonable to talk about a mixed
OCaml / C implementation: the C components have been re-used
essentially as they were.

Our GTK+ ([42]) user interface (see Figure2) is very simple
to use: in our tests “on the field” most students have started to be
productive with it in a matter of minutes.

The static part of the interface has been mostly built with Glade
([45]), and the dynamic part with LablGTK ([22]), the OCaml
GTK+ binding.

Our OCaml implementation amounts to just 12,000 lines of manu-
ally written code, which testifies in favor of the language concise-
ness and suitability for rapid development: the whole application
was built by the authors in just aboutsixman-months.

Even if not yet polished the application has proved to be solid,
and a preliminary version has already been used by one author in
occasion of thePractice of Network Protocolsexam at IUT6 of
Universit́e Paris Nord in June 2007.

Marionnet is free software built on free software, distributed under
the GNU General Public License ([19]). We have taken advantage
of the possibility of modifying the source code of some of our com-
ponents (the Linux kernel and VDE), and in the true spirit of free
software we hope that our work may in its turn form a basis for
others to build upon.

3. Objectives
We are now going to briefly list application requirements as per-
ceived user expectations, teacher needs and implementation con-
straints.

5 The reasons for our choice of OCaml are discussed in section4.1.
6 “Institut Universitaire Technologique”.



Figure 2. The main window ofMarionnetshowing a simple net-
work with three computers, a switch, a hub and an Internet gateway.

3.1 Emulated network components

It was decided since the beginning that the network devices to be
emulated would have been user-configurable at a very fine level of
detail.

Computers: for each computer the user should be able to specify
theamount of RAM, thenumber of Ethernet cards and serial ports
(serial ports are also used as network devices), the particularkernel
and GNU/Linux distributionto run, and the way to runX ([40])
clients on the emulated machine: either connecting to the host X
server, or to a differentXnest7 per machine, or without any support
for graphics.

Hubs and switches: for each hub or switch the user can specify
the number of ports, and —for switches— whether it should sup-
port theSTPprotocol ([35]).

Routers: emulated routers should replicate in a close way the
behavior of physical Cisco routers; their configuration is complex
and mostly happens at runtime, except for the specification of the
number of ports.

Cables: anEthernetcable can be eitherstraight-thruorcrossover.
Serialcables have also to be supported.

Clouds: a cloud represents a slow and noisy IP connection (or a
whole network the user has no control upon), with two endpoints:
packets enter into one end and (possibly) exit from the other end,
generally out of order, with a randomdelayand theirttl decreased
by a random amount. The user can specify several parameters of
the involved probability density functions.

7 In this case Xnest processes run on virtual machines, butseen as X clients
they however require a connection to thehostX server; hence the problems
to solve are essentially the same.

Gateways: an emulated network gateway connects the virtual
network and thehostnetwork, and routes the traffic between them,
making possible even Internet access for emulated computers. The
only specified parameter for gateways is theirIP address.

3.2 Port and cable defects

Just as physical hardware can fail (and discovering and working
around such faults can provide an interesting, if sometimes unfore-
seen, learning opportunity), it should also be possible to definede-
fectsin any port or cable of the emulated network, with the gran-
ularity of eachdirection: left-to-right / right-to-left for cables, or
in-to-out/ out-to-infor ports. The supported defects aredelay, per-
centage oflost packets, percentage offlipped bitsandbandwidth
upper limit.
As for theclouddevice, the user should be able to set some param-
eters of the involved probability density functions.

3.3 Dynamic network reconfiguration

In order to enable users to perform the same kind of experimenta-
tion possible with physical networks it was decided from the be-
ginning to allow one to tunesingle devicesindependently from the
rest of the network. The user should be able to change the network
topology by adding or removing componentswhile other compo-
nents are running.

Each cable can be temporarily disconnected so that the user can
observe how the network works in its absence, and then recon-
nected; this is particularly useful to experiment with routing pro-
tocols.
As a useful “extension” of physical networks behavior it would
also be desirable to generalize temporary disconnection to other
devices, enabling users tosuspendthem and thenresumeit.

Statefuldevices such as machines can be turned off in a clean
way or by simply interrupting power8.

“Hot” reconfiguration was deemed essential even if it inevitably
complicates the implementation, raising the level of concurrency.

3.4 Filesystem history

A further extension to what would be possible with a real network
consists in —at leastlogically— saving the complete filesystem
image at shutdown time for machines and routers. This allows the
user to freely experiment with configuration, with the possibility of
returning at any moment to a known “working” state.

This feature may also be useful to the teacher, who may wish to
inspect a student “configuration history”.

3.5 GUI-related functionalities

Of course the interface should offer the usual functionalities of a
GUI program such as the possibility of opening and saving projects;
a project includes a network graph, the filesystem states forest and,
optionally, textual problem statements for students.

This feature is important because a Marionnet project file is also
thought as aninterchange format, particularly to enable teachers to
cooperate exchanging exercises9.

Network graph image. An up-to-date graphical representation of
the whole network graph should be available at any time. Such rep-
resentation should be automatically generated in an understandable
form, to spare users the irrelevant burden of placing nodes in a

8 And of course, as it happens with physical machines this may leave
filesystems in a messy state.
9 This practice happens to be surprisingly less frequent and more cumber-
some than it should, because of hardware and software incompatibilities
among the machines of different classes. We hope Marionnet might con-
tribute to alleviate such problems.



two-dimensional space; however a toolbar should also be provided
to fine-tune some representation parameters such as thewhole im-
age size, the distance from each node to its label, and theicons
size10. Different kind of cables (straight-thru vs. crossover vs. se-
rial) should be drawn as arcs of different colors; detached cables
should also be portrayed as such.

Virtual computer interface. For each computer a console should
be visible for users to log in and enter commands. Machines should
also be able to run graphical X applications, and particularly elab-
orate network applications such as the graphical sniffersEthereal
andWireshark.

Virtual device interface. In the same spirit, other network devices
should have a simulatedcontrol panelshowing a grid of blinking
LED lights representing port activity, in close resemblance to phys-
ical devices. This functionality provides a simple and intuitive way
to observe network traffic. See Figure3.

Figure 3. A virtual eight-port switchLED grid, with cables con-
nected to the ports 0, 1 and 7.

Filesystem history interface. An interface based on atreeview
widget should allow one to easily navigate in the filesystem history
displayed as a forest, showing which state is derived from which
other state for each machine and router, allowing todelete uninter-
esting states, to add textual commentsand toboot a device from
any saved state, like in Figure4.

Figure 4. Filesystem history interface

10Figure2 shows a network graph image automatically generated without
any fine tuning.

3.6 Classroom functionalities

Some more advanced functionalities for working in a classroom
are desirable: for example a teacher should be able to broadcast
a project to all the students’ computers (diffusion), and students
in their turn should be able to send modified projects back to the
teacher (retrieving).

When inexam modethe application should also automatically run
analysis scripts on all the students’ virtual machines at shutdown
time; the output of such scripts should be easily available to the
teacher.

3.7 Internationalization

The user interface should be fully internationalized, and support
some universal character set likeUTF-8 as theexternalrepresen-
tation for strings. Our short-term plans are mainly centered around
French localization, but there is no reason why Marionnet should
not be usable also in different locales.

3.8 Development time constraints

The bulk of the development effort had to be spent in implementing
the two topmost layers of Figure1 in the shortest possible time.
This challenging requirement was motivated by the fact that the
authors could not be full-time developers or maintainers, and the
application had to be at least usable by the end of the second
semester of 2007, in order to be employed for exams at the IUT
of Universit́e Paris Nord.

These constraints essentially dictated the need of reusing ex-
isting software whenever possible, and using a high-productivity
language for all the new code.

4. The solution
4.1 Language choice

We made the choice of using a functional language fairly early,
because of our long positive experiences, in one case for teaching
and in the other in large implementation projects ([39]).

OCaml was preferred over other functional languages such as
Haskell ([36]) because of its natural support for mixed program-
ming styles ([32]). Because of the importance of the imperative
side of our project and in the light of our past experiences, we
have some doubts about how Haskellmonadswould “match” our
problem. Despite their mathematical beauty, we feel that monads
leave to be desired as a practical programming construct: intro-
ducing some stateful computation or I/O within some code which
was initially written as functional invariably implies the need for a
cascade of changes in the types ofsurroundingexpressions. Said
in other words, introducing a monadic construct as alocal change
tends to haveglobaleffects. While side effects do indeed introduce
problems, they appear to function better as amean of abstraction
in the sense of [1], section 1.1. This theme is touched in [39].

4.2 Implementation guidelines

In spite of the prevalence of the functional style (subsection4.7and
subsubsection4.8.4show interesting examples) our use of OCaml
also takes advantage of theobject-orientedstyle, particularly in the
control layer (see subsection4.4), where “objects” in the OO sense
tend to represent thephysicalobjects to be emulated.

Concurrency makes the implementation substantially more
complex, but it is unavoidable to support our dynamic control layer.
Anyway our use of threads is controlled and restricted to just a few
cases (see subsection4.4, subsubsection4.8.3 and especially the
code in subsection5.3), in order to keep the complexity manage-
able and the development time short.



4.3 Network structure: user-level vs. emulation-level

Due to the strict time constraints forcing us to reuse an existing
communication layer we decided fairly soon to useVDE, to our
knowledge the most powerful way to interconnect UML virtual
machines11.

VDE allows one to createvirtual switches and hubsconnected
to the Ethernet interfaces of UML machines12 and virtual wires.
All virtual switch and hub ports are implemented via Unix sockets
([41]) or tun/tap interfaces [25]. Wires can be destroyed and re-
created at runtime without affecting virtual machines. Such func-
tionality may apparently look like a perfect match for our problem.

Unfortunately, however, a couple of implementation choices
in VDE and UML prevent a direct application of VDE devices
to emulate the devices specified by the user in Marionnet. The
first problem is thatwhen a network interface is defined for
an UML machine, a switch or hub where to connect it can be
specified, butnot a wire: in other words, some virtual cables are
not directly represented as cables in VDE, and are left implicit.
This risks to force us to introduce gratuitous asymmetries and
particular cases in our code but, more importantly, also creates
problems with dynamicity: destroying the virtual hub or switch to
which a virtual Ethernet interface is connected makes the interface
unusable; by contrast we need“stable endpoints”to which we can
dynamically connect and disconnect cables which on their turn may
be connected to other devices.

VDE also implements defects as we need them13 but only in
cables, whereas we require the same functionality also for ports.

To overcome such problems we devised a two-level emulation
approach whereeach device in theuser-level network is repre-
sented, in general, byseveral UML and VDE processes, making
up the emulation-level network.

Such dichotomy is of course completely invisible to the user.

Our mapping fromuser-levelinto emulation levelmay be most
easily understood with an example:
a virtual computer withn Ethernet cards is represented by:

• oneUML process connected to

• n two-port VDE hub processes (“hublets” in our jargon and
code), in their turn connected to

• n VDE cable processes incorporating port defects, connected to

• n hublet processes, representing user-level Ethernet ports to
which virtual wires can be connected at any time.

Figure5 shows, among other things, how a machine with two
Ethernet interface at user-level is represented at emulation level.

Hublets are used as thestable endpoints we need for Ether-
net connections: they are only destroyed when a virtual device is
destroyed or the number of its ports is changed. Virtual cables can
be connected or disconnected from hublets at any moment.

11The simpleuml switch by Jeff Dike et al. ([16]) also allows a set
of UML machines to communicate, but it does not allow one to link
several switches to one another, and especially does not support thedynamic
behavior we need.uml switch2 by Felix Müri ([31]) improves Jeff Dike’s
uml switch at least by allowing to cascade devices, but does not allow
dynamic control. By contrast VDE allows one to cascade virtual switches
and hubs, and the possibility of creating and destroyingvirtual wires at
runtime is another of its main features ([13]).
12VDE can also be used as a communication layer for QEmu and host
machines, but this is not important for our purpose.
13We modified the “defect” functionality of VDE only in a trivialway: see
subsection4.9.2.

Such a solution allows for great flexibility, and also makes the
implementation modular and consistent: a virtual switch with four
ports, for example, is always represented by the same number and
type of processes, wherever it occurs in the user-level network.
This convenience comesat a negligible costin runtime perfor-
mance: traversing one or two switches more has no observable
delay, and average localping time between two virtual machines
has consistently been measured as well below one millisecond on
all our test machines14.

We adopt the same strategy also for emulating serial ports and
cables: in this case we simply map virtual machine serial ports to
host ptys —which is supported by UML— so that we canuse
ptys as stable endpoints for serial connections. We simply em-
ploy cat processes with input/output redirection to emulate serial
cables, dynamically spawning and killing them as needed.

Figure5 shows how each element of a very simple network is
represented atuser-levelandemulation level.

Two distinct levels of emulation exist, and this is clearly reflected
by the structure of our OCaml code. On one hand a hierarchy of
classes representsprocesses, on the other a second distinct hierar-
chy implementsdevices, using processes as building blocks. Both
processes and devices internally represent the current emulation
state as a DFA state (including for exampleonandoff for a device,
andrunningandsuspendedfor a process: see Figure6 and the code
in subsection5.1). In both cases methods are provided for follow-
ing existing DFA transitions, interacting with the external UML,
VDE andcat processes and updating the emulation state.

4.3.1 Translation of virtual devices into processes

What follows is a quick description of the mapping from the user-
level network to the emulation-level network for each kind of
device.

Virtual computer with n Ethernet cards and m serial ports: A
UML processu is connected ton hubletshi1, and eachhi1 is
connected to another hublethi2 via a cableci incorporating the
defect of the Ethernet portethi. Each user-levelethi —seen as a
connection endpoint— is represented by the hublethi2.

Each serial portj of u is connected to a dynamically allocated
pty, which representsttyj as a connection endpoint.

The special Ethernet interfaceeth4215 is also always emulated
to allow graphical applications to communicate with the host X
server.eth42 is ghostified, and connected to a hosttap interface
rather than to a hublet: see subsection4.9.1for information about
what this means and implies.

Virtual Ethernet cable connecting any pair of Ethernet ports:
The two endpoints are simply connected by a VDE cable process.
No distinction is needed betweenstraight-thruandcrossoverca-

14Our smallest test machine was a Pentium III 800MHz with 512Mb RAM.
Marionnet itself is quite lightweight for a graphical application; most pro-
cessor time, and especially memory, is consumed by UML processes. We
found that a minimum of 50Mb per UML instance is needed for com-
fortably running graphical applications on virtual computers (16Mb are
enough for many typical non-graphical applications). Hublets and cables
have not a significant overhead because they are idle for most of the time,
and only slightly increase the emulated network latency whencommunicat-
ing, due to the added context switches and to blink commands (see subsub-
section4.8.3).
15 The number 42 is “The Answer to the Ultimate Question of Life, the
Universe, and Everything” in [2].
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bles since the GUI does not allow one to connect cables of the
wrong type16.

16However the possibility of connecting cables of the “wrong”type (thus
obtaining a non-working connection) could have some educational value,
and it is being considered for addition as an optional feature.

Virtual serial cable connecting two machines: A simple cat
process has its standard input and standard output redirected to the
endpoints’ptys.

Virtual hub or switch with n ports: A main VDE hub or switchm
is connected ton cablesci, each incorporating the defects ofporti.
Each cableci is connected to a hublethi, representingporti as an
endpoint.

Virtual router with n ports: A router withn ports is represented
exactly as a machine withn Ethernet ports and no serial ports.
Routing protocols are implemented “in software” on the virtual
machine, using theQuaggaservice ([8, 23]).

Cloud: Two hubletsh1 andh2 are connected by a cablec. All
“defects” like lost packets or delay are implemented inc, while
the randomttl decrease17 is implemented (by convention) inh1.
The free endpoints ofh1 andh2 represent the two user-level cloud
endpoints.

Gateway: A hublet is connected to a hosttap on one side, and has
the other side available for connecting cables, as the only gateway
endpoint in the user-level network.

4.4 Control layer

The control layer is heavily object-oriented. A class hierarchy im-
plements each device as a class, hiding the details of managing the
the individual processes involved in the emulation.

The startup order of virtual devices is constrained by the need
for hublets to be runningbeforeany of the VDE cables and UML
processes directly connected to them.

17Such a functionality was not originally in VDE, but has been easy to add
by patching its C source.



In the same way, a cable process can be spawned only when both
its endpoints are already running.
Apart from these two constraints, all process spawns can proceed
in parallel18.

For usability’s sake it is very important that the GUI does not
“freeze” when a relatively long operation takes place, such as start-
ing up a set of devices together. In order to achieve this the whole
business of process management is delegated to acontrol thread,
with the purpose of asynchronously acceptingtasksto be enqueued,
while executing them in a FIFO fashion. Each request may also in-
ternally involve concurrency.

The control thread is also responsible for reacting tounexpected
terminationof emulation-level processes, which may happen be-
cause of several conditions such as insufficient memory or explicit
termination of a process by the user. Being able at least to termi-
nate related processes in such cases and to keep the internal state
consistent improves the application fault-tolerance.
Unexpected termination monitoring is performed by handling
SIGCHLD signals from spawned processes.

To avoid implementing a command interpreter and ease inter-thread
communication we devised a generic message-passing feature re-
lying on OCaml’s higher-order functions. The core of its imple-
mentation is shown in subsection5.3.

4.4.1 Cable reference counter

A feature quite useful in practice is the possibility of temporarily
disconnectingand thenreconnectinga single virtual cable, without
destroying it19.
This is nontrivial to implement because of the complexity added
by the need for a cable process to have both its endpoints (hublets
or ptys) alive to be started: for example a cable whose endpoints
become alive might be currently in disconnected state (hence the
cable process should not be spawn), or the configuration of a
currently running cable endpoint could be modified, leaving the
cable with only one alive endpoint (and hence the cable process
should be terminated).

We found a very compact and elegant solution to this prob-
lem involving areference counter: each cable object has a muta-
ble integer fieldreference counter, always in the range[0, 3].
reference counter is initialized to1, and then:

• decremented at eachdisconnection

• incremented at eachreconnection

• incremented at eachendpoint startup

• decremented at eachendpoint shutdown

A cable process has be spawn only when thereference counter
of its cable object rises from2 to 3, and must be terminated as soon
asreference counter drops from3 to 2.

4.5 UML kernels

When defining a virtual computer the user can choose fromseveral
UML kernelscompiled with different configurations20, particularly

18Such cases of process-level parallelism, very frequent in Marionnet,
allow one to easily exploit SMP systems. OCaml, by contrast, can not
exploit thread-levelconcurrency for parallel execution on SMPs, due to the
current garbage collection design. We hope this limitation will be lifted in
a future release.
19 In order to mirror what happens with physical cables, virtualcables can
not be “turned on” or “turned off”, and they are “connected” by default.
20This simply involves kernels compiled with different.config configu-
ration files.

with regard to network parameters. As UML kernels are seen by
the host as normal processes this poses no particular problems.

When we need to supply some parameters from the OCaml side
to a UML instance we simply bind some variables on the kernel
command line, and then retrieve them in the emulated computer
from the Linux virtual file/proc/cmdline.

For example to implement theexam mode, we simply invoke
UML with the parameterexam=1; the GNU/Linux distributions we
provide are modified to check at shutdown time whetherexam is
bound in/proc/cmdline and, it that is the case, to run an analysis
script and saving the machine configuration and other relevant
results.

4.6 Virtual filesystems

The user can also choose amongseveral GNU/Linux distributions
installed on the host disk as filesystem images. The same distribu-
tion can be used by different virtual computers at the same time,
and each machine must be able towrite to its virtual filesystem,
without interfering with the others. Making copies would be very
impractical because of the typically large size of filesystem image,
in the order of hundreds of megabytes or even several gigabytes.
Fortunately UML allows one to solve this problem in a simple way,
using as a virtual filesystem apair of files:

• a read onlyfilesystem image

• a sparsefile containing only changes relative to the initial im-
age. In UML jargon such a “patch” is called —for understand-
able reasons—copy-on-write file, or cow.

Filesystem images can thus be shared without any concern for
concurrency, and each machine needs only itscowfile for running,
as shown in the example of Figure5.

Typical cowfiles takejust few megabyteson disk but require
sparse file supporton the host filesystem. Such support is in prac-
tice always present on GNU/Linux, but it may be lacking on other
systems to which the user might want to copy some files. For this
reason we work withcows only in temporary directories of the host
filesystem, and always save Marionnet project files as compressed
GNU tar archives.tars may contain sparse files without wasting
space and without being sparse themselves, hence they are safe to
copy to any filesystem.

To get an idea of a “reasonable” projects file size, the project
files delivered by students after their three hours exam mentioned
in subsection2.2involved three machines (hence at least threecow
files) and took on average 4Mb each.

4.7 Network graph representation

The network graph is implemented in object-oriented style in a
quite straightforward manner, usinglists for holding together el-
ements of the same type.

Methods for looking up and updating elements byid, nameand
type are implemented using higher-order functions on lists, typi-
cally of linear complexity. This is perfectly acceptable in our case:
the small size of the networks which can be practically managed
with the GUI makes performance concerns irrelevant.

4.8 Graphical User Interface

GTK+ ([42], [22]) and Glade ([45]) allow one to build aesthetically
pleasant interfaces with a “native” feel.

In this spirit we paid attention to respect the usual conventions
of GUI applications that users typically expect, such as the presence
of the usualFile menu, status bars and toolbars.

In order not to make the user interface heavy we usednotebook
widgets, which tend to save space on the screen and make some
interface elements visible only when requested. It is important that



Marionnet windows do not fill the whole screen, as often several
other windows are needed, like virtualcomputer terminals, virtual
device LED grids, plus the windows for allgraphical applications
running on virtual computers.

Figure7 shows a not particularly complicated scenario of this
kind.

Like any event-driven GUI, our interface makes heavy use of call-
back functions21. Being able to use higher order and in particular
partial function applicationproved to be a huge advantage for
writing callbacks, allowing to specify some parametersat event
connection timerather than at function definition time.

An example from our filesystem history interface shows this:

(* A callback definition: *)
let on_add_row treeview selection file_name () =

(* body *);;

(* ... From the function creating a popup menu,
in an environment where treeview, add_row_menuitam
and selection are visible: *)

add_row_menuitam#connect#activate
~callback:(on_add_row

treeview
selection
"file.text");

LablGTK ([22]) —the OCaml binding for GTK+— requires that
callbacks have typeunit -> unit and the partially applied func-
tion we connect to theactivateevent has indeed that type, but while
connect’ing it we are also able to supplyany other parameter
needed in the callback body, and all of this with static type check-
ing.

Such flexibility relies on the language support for closures,
hence is simply unthinkable in most imperative languages includ-
ing GTK+’s “native” C.

As one of the very few open-ended “experiments” we conceded
ourselves, we implemented a polymorphicenvironmentdatatype
representing the outcome of all user interactions via dialogs, seen
as a set of< key, value > pairs. Using environments allowed for
some more modularity in interface code22.

4.8.1 Network graph image

The graphical representation of the whole network shown in the
notebookHardware|Imageis automatically built byGraphviz([3])
from aDOT specification regenerated by the OCaml code at every
network modification. The user is also free to set several parameters
such as edge length and icon size, whose effect is forcing and
immediate regeneration of the image with the appropriate DOT
options.

Reusing the sophisticated functionalities of Graphviz allowed
us to save considerable development time, with a negligible perfor-
mance impact. Algebraic data types and higher-order make OCaml
extremely well suited for symbolic manipulation of which thiscom-
pilation is an instance. The availability of such features has made
this part of the implementation particularly simple.

4.8.2 Computer terminals

UML easily allows one to use anxterm or gnome-terminal as
the virtual machine console.

Practically the only “customization” we needed consisted in
displaying the virtual machine name on the window title bar, to

21Here we do not take into account the subtle distinction betweensignals
andeventsmade by GTK+. What we say here applies to both signaland
event handlers
22And also made GUI implementation a bit more interesting.

enable users to recognize which console belongs to which machine.
This was achieved “in software” by making the GNU/Linux system
running on virtual machines print a string withXTerm terminal
control sequencesat startup ([11]).

4.8.3 Device LED grids

For eachrunningvirtual hub, switch or router a GTK+ window is
shown displaying the emulated device LED grid23, as it can be seen
in Figures3 and7. This allows one to easily inspect theconnection
stateand traffic for each single port, mirroring what could be seen
with a physical device.

LED blinking is exact, i.e. each blink reflects the transmission
or reception ofoneEthernet frame.

This is implemented with a small patch to the VDE virtual cable
wirefilter (see subsection4.9.2) and, at the OCaml side, with a
thread waiting for ’blink’ commands fromwirefilter processes.
Each command simply contains a LED grid identifier and a port
index, encoded in a text string to ease portability.

Inter-process communication is implemented withdatagram
socketsin thePF LOCAL namespace.

LED grids are implemented with a relatively complex combina-
tion of GTK+ widgets; in particular each light, which can beon or
off, consists of anotebookwidget (see [42]) with two hidden tabs,
each of which contains apixmap. The same pixmaps are shared by
all lights.

GTK+ timers are used to automatically toggle the light state
back to theon state (i.e. “connected but not communicating”) after
a fixed time interval for each blink (currently 80 milliseconds),
making the interface completely asynchronous.

Despite the occasionally high bandwidth of blink commands
this functionality has no noticeable impact on responsiveness, prob-
ably due to the efficiency of the implementations of GTK+ and
Unix sockets. Garbage collection pauses are hardly perceivable.

4.8.4 Filesystem history and defects interfaces

Despite their very different uses, the filesystem history interface
shown in Figure4 and the defects interface (anotebookpage for
editing the defects of all ports and cables) share most of their logic,
and at the implementation level they inherit from the same base
class, heavily relying on the GTK+treeviewwidget ([34]).

The functionality of both interfaces consists in displaying and
allowing modifications to forest data structures: in one case the tree
of filesystem states for each machine or router, in the other one the
set of defects for each direction of each port or cable, organized as
a set of trees for visual simplicity.

The forest data structure is implemented as apolymorphic alge-
braic data type, as shown in subsection5.2.

Albeit slightly complicated by to the nature oftreeviewsthis kind of
implementation is interesting because it relies more on parametric
polymorphism than on inheritance for code sharing.

Because performance is not a particular concern for these in-
terfaces due to the very small size of managed data —in the order
of few hundreds of nodes for typical cases— we can afford to do
translations from forest data structures to GTK+ widgets and vice
versa at every structure modification.

23Despite the apparent and indeed partly intended “eye candy”nature of
such an interface, experience on the field with students has shown it to be
very valuable for debugging virtual network configurations.
LED grids have also been useful for debugging the application itself.



Figure 7. A very typical Marionnet session showing virtual machine terminals and device LED grids. The computera is pinging a remote
machine reachable via the gatewayG1, spyis executingtcpdump observinga’s traffic, andb is running the graphical applicationxeyes. The
network traffic betweenb and the host X server cannot be spied because ofghostification, as explained in subsection4.9.1.

4.9 Patches to the C code

We modified the Linux kernel (which includes UML24) and VDE
to implement a couple of functionalities we needed to support
emulation.

4.9.1 Ghostification

A ghostifiedinterface25 is a network interface which remains fully
functional in receiving and sending frames but can not be in
any way detected or configured by userspace processes, includ-
ing utilities like ifconfig, route andnetstat, and sniffers like
tcpdump.

An interface can be ghostified and unghostified by calling the
new ioctlsSIOCGIFGHOSTIFY andSIOCGIFUNGHOSTIFY.

Ghostification works by making someioctls fail when their pa-
rameter is a currently ghostified interface, returning-ENODEV as if
the device did not exist.

This functionality has a mostly pedagogical purpose: ghostifica-

24Our added functionality does not necessarily requires UML,and also
works on host kernels. In order to better test the patch (and to better impress
coworkers) one of the authors has been running the patched kernel on his
main machines for months now, without stability or performance problems.
25The video [29] gives a practical demonstration of ghostification.

tion is used on guest kernels to allow virtual computers to connect
to the host X server in a fashion completely invisible to the user.
Users might run sniffers with graphical interfaces, hence needing
to communicate with the host X server, but such network traffic
should be hidden to the sniffer itself.
More in general we are trying to replicate what would happen with
a physical network where graphic works only locally, as in most
typical cases.

Hiding ghostified interfaces also saves the student from the
unnecessary burden of dealing with the complexity of network-
transparent graphics.

4.9.2 Defects and blinking

We modified VDE in just two simple ways:

• In virtual cables’ defect support we made the random delay
follow a normal distribution rather than a uniform distribution.

• For every frame received or sent by a virtual cable we option-
ally26 send blink commands (see subsection4.8.3, dealing with
LED grids) to aPF LOCAL namespacedatagram socketcon-
nected to the main Marionnet process.

26This functionality is enabled only when appropriate command line pa-
rameters are passed.



4.10 Implementation scope

Our OCaml application consists in about 12,000 nonempty source
lines, including comments.

It was developed by the two authors in six man-months, working
full-time for three months with even distribution of effort.

5. Relevant code samples
We are now going to show some particularly illustrative code snip-
pets as samples of the different coding styles employed in Marion-
net.

5.1 Process implementation

This is the base class of the processes hierarchy, showing how
external processes are spawn, terminated, suspended and resumed.
Note that we donotuseUnix.system, thus saving the overhead of
a subshell invocation per started process.

class virtual process =
fun program

(arguments : string list)
?stdin:(stdin=Unix.stdin)
?stdout:(stdout=Unix.stdout)
?stderr:(stderr=Unix.stderr)
() -> object(self)

val pid : int option ref = ref None

(** Get the spawn process pid, or fail if the process
has not been spawn yet: *)

method get_pid =
match !pid with

(Some p) -> p
| _ -> raise (ProcessIsntInTheRightState "get_pid")

(** Startup the process using command_line, and return
its pid *)

method spawn =
match !pid with

(Some _) ->
raise (ProcessIsntInTheRightState "spawn")

| None ->
let new_pid =

(Unix.create_process
program
(Array.of_list (program :: arguments))
stdin
stdout
stderr) in

pid := (Some new_pid)

(** Kill the process with a SIGINT. This forbids any
interaction, until the process is started again: *)

method terminate =
match !pid with

(Some p) ->
(try

Unix.kill p Sys.sigint;
(* Wait for the subprocess to die, so that no

zombie processes remain: *)
ignore (Unix.waitpid [] p);

with _ ->
Printf.printf

"WARNING: termination of %i failed\n"
p);

pid := None
| None ->

raise (ProcessIsntInTheRightState "terminate")

(** By default gracefully_terminate is just an alias
for terminate. *)

method gracefully_terminate =

self#terminate

(** Stop the process with a SIGSTOP. This forbids any
interaction, until self#continue is called. *)

method stop =
match !pid with

(Some p) -> Unix.kill p Sys.sigstop
| None -> raise (ProcessIsntInTheRightState "stop")

(** Make a stopped process continue, with a SIGCONT. *)
method continue =

match !pid with
(Some p) -> Unix.kill p Sys.sigcont

| None -> raise (ProcessIsntInTheRightState "continue")
end;;

5.2 Forest data structure

The forest data structure is an algebraic polymorphic data type,
used for implementing the data structures displayed in the filesys-
tem history and defects GUI.

type ’a forest =
Empty

| NonEmpty of ’a * (* first tree root *)
(’a forest) * (* first tree subtrees *)
(’a forest);; (* other trees *)

Forests are easy to manipulate in a purely functional style, and
we rely on higher order for many operations:

let rec map f forest =
match forest with

Empty ->
Empty

| NonEmpty(root, subtrees, rest) ->
NonEmpty(f root, map f subtrees, map f rest)

Forests are saved into Marionnet project files using OCamlmar-
shalingsupport.

5.3 Message passing

A queue is a polymorphic data structure used to implement general
purpose inter-threadmessage passing.

The linear complexity concatenation in the methodenqueue
has not been a problem in practice, because of the typically small
size of queues; however this data structure could of course be
modified to rely on circular arrays instead of lists if the need ever
arose.

class [’a] queue = object(self)
val elements = ref []
val mutex = Mutex.create ()
val empty_condition = Condition.create ()

method private __empty =
!elements = []

method enqueue x =
Mutex.lock mutex;
elements := !elements @ [x];
Condition.signal empty_condition;
Mutex.unlock mutex

method dequeue : ’a =
Mutex.lock mutex;
while self#__empty do

Condition.wait empty_condition mutex;
done;
let result =

match !elements with
x :: rest -> elements := rest; x

| _ -> assert false in
Mutex.unlock mutex;



result
end;;

The control threadmentioned in subsection4.4 heavily relies
on this thunk-passing (see the type of thequeue field) facility
implemented with queues.

class task_runner = object(self)
val queue : (unit -> unit) queue = new queue

initializer
ignore (Thread.create

(fun () ->
while true do

let task = queue#dequeue in
task ();

done)
())

method schedule task =
queue#enqueue task

method terminate =
self#schedule

(fun () -> failwith "asked to terminate")
end;;

6. Related work
Some projects employing UML as a network emulation platform
for didactic purposes already exist; however they are all nontrivial
to use for beginners, and for what we know they only provide static
control layer:

• VNUML ([ 21, 20]), written in Python, allows one to define a
network as an XML file, describing the network to be emulated
once and for all, without allowing any change to network ele-
ments while the emulation is happening.

• Netkit ([38]), formerly implemented in Python and curiously
re-implemented in Bash, is a set of many interdependent scripts
implementing single operations such as starting up and termi-
nating a virtual machine. While powerful, this low-level inter-
face requires a considerable learning effort to master the large
set of available command line options.

• MLN ([5]) is interesting in its support for both UML and Xen
with the same configuration, and the possibility of allocating
different virtual network components on different hosts. Like
VNUML it defines a network configuration language, and pro-
vides a static control layer.

Concerning at least VNUML and Netkit, some related projects
exist to build high-level graphical interfaces on top of them: Net-
GUI ([33]), and vnumlgui ([7], written in Perl). This confirms our
intuition about the importance of an easy to use GUI layer, partic-
ularly if we consider that the control layer they employ is much
simpler than ours.

Although it lies at a different level than the other alternatives,
VDE has also been directly used for didactics by its author with
success ([12]). Despite working at a lower level of abstraction than
the other tools, VDE has the advantage of providing a platform for
implementing dynamic control.

7. Conclusions and further work
A virtual network can be an excellent teaching tool both for stu-
dents and for teachers. It can be also useful to system administra-
tors, scientists and developers in designing, implementing, testing,
installing and configuring network applications, services and pro-
tocols.

In this report we described Marionnet, a system we have writ-
ten in OCaml to enable users to define and control an emulated
network. Despite its large number of features and the complexity
of the related GUI, the application has been developed in just six
man-months by the authors. On the basis of our long experience
in programming using many different styles and tools —“popular”
and otherwise— we seriously doubt that thischallengecould have
been won by using more conventional tools like traditional imper-
ative languages (C, C++, Java, Ada) or “fashionable” scripting lan-
guages (Perl, Python).

The application has already been tested in the occasion of a real
exam and has been publicly demonstrated27; the interest shown by
teachers and Department directors makes us confident in a wide
adoption in French IUTs28 starting from the next academic year.

Even if most of the code was written in a functional style using
immutable structures such as lists, the peculiarities of OCaml in in-
tegrating the functional, imperative and object-oriented paradigms
have been profitable for our purposes.

Static checks have been extremely helpful to shorten develop-
ment time. Very few bugs have been found, and practically all of
them in the part dealing with external processes interaction, on
which the compiler does not have static control.

Our objectives have been almost completely reached. Only a
few features remain to be implemented before packaging the ap-
plication for being installable on major GNU/Linux distributions.
This further work will concern mainly GUI internationalization (as
it can be seen from screenshots, message localization is still incom-
plete, but could be easily enhanced by using, for example, a port of
gettext: [17, 27]) and enhanced support for teaching activities. We
plan to enable teachers to broadcast exercises as Marionnet projects
to all the students in a classroom, and eventually get the students’
work back.

Actually, this is possible thanks to thecopy-on-writetechnol-
ogy supported by UML, allowing to work with very small project
files. The teacher receiving backcowfiles containing the students’
modifications to filesystems will be able to manually inspect files
or to automatically run analysis scripts.

What we regard as the main current limit of our application is
directly inherited from the underlying UML technology, consisting
in the possibility to emulateonly the Linux kernel, and not others.
In order to enrich the variety of supported operating systems, we
are considering the idea of porting Marionnet to the Xen platform
as a further interesting, although not prioritary work.

A tempting possible approach for further developing Marionnet
would consist in using Marionnet itself to emulate the network-
classroom situation, including the teacher and the students’ ma-
chines. This kind of “bootstrap” would allow one to use a stable
version of Marionnet to run a newer testing version of itselfwithin
itself.
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