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Abstract

We define an observational equivalence for Lafont’s interaction combinators, which we prove to be the least
discriminating non-trivial congruence on total nets (nets admitting a deadlock-free normal form) respecting
reduction. More interestingly, this equivalence enjoys an internal separation property similar to that of
Bo6hm’s Theorem for the A-calculus.

Keywords: Interaction nets, interaction combinators, observational equivalence, internal separation,
Bohm’s Theorem.

1 Introduction

Lafont’s interaction combinators [7] are a graph-rewriting model of deterministic
distributed computation. As in Turing machines, transitions are local, but they can
be performed in parallel; the determinism comes from the fact that the resulting
computation is unique up to permutation of rewriting steps. They can be seen as
a generalization of multiplicative linear logic proof-nets [1], and in fact fit into the
wider framework of interaction nets [6].

The original motivation behind the introduction of the interaction combinators
was indeed the definition of a simple universal interaction net system, i.e., a system
capable of simulating all other interaction net systems. The universality of the
combinators, which automatically entails their Turing-completeness, together with
their extreme simplicity and elegance, are in our opinion enough to justify the
interest of studying this system as an autonomous computational model, ignoring
its relationship to general interaction nets.

In this paper, we define a notion of observational equivalence for normal nets of
combinators, which is interesting because it is maximal (Theorem 3.2) and because
it can be characterized by means of a rewriting relation analogous to n-equivalence
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in the A-calculus. In other words, we prove an internal separation result similar to
Bo6hm’s Theorem (Theorem 4.1): given two non-(n-equivalent normal nets, there
exists a context separating them.

It is important to observe however that “separating” does not have exactly the
same sense as in Bohm'’s classical result: in the A-calculus, two distinct Gn-normal
forms can be separated by sending them to any pair of distinct terms (the typical
choice being the projections Azy.z and Azy.y); in the interaction combinators, the
uninformative behavior of the € combinator forces it to be one of the separation
values, as no context can extract any information from it. Therefore, we actually
obtain something more akin to Hyland’s Theorem (sometimes referred to as “semi-
separation”), which extends Bohm’s result to non-normal terms. This reveals a
sharp difference between interaction combinators and the A-calculus, as “full” sep-
aration already fails for normal nets.

Non-normal (or rather non-normalizable) nets will not be addressed in this pa-
per; indeed, even though considering nets with possibly infinite behavior is of clear
interest, we prefer to keep this issue for further study.

The main motivation behind the present work is to provide a foundation for a
semantical investigation of the interaction combinators. As a matter of fact, denota-
tional semantics is usually required to model the interactive behavior of syntactical
objects: the interpretation of two objects should coincide when they “behave in the
same way”. Formalizing the idea of “behaving in the same way” is precisely what
we are addressing here.

Related work. We must mention Maribel Fernandez and Tan Mackie’s in-depth study
on observational equivalence for interaction nets [3], in which one can find the n-like
rules we give in Section 3. The other equivalence rules we consider were already
found by Lafont through a semantical analysis. Nevertheless, no special property
about these equivalences had previously been proved (like maximality or internal
separation).

Acknowledgments. We would like to thank Michele Pagani for the many stimulating
discussions about observational equivalence and internal separation in A-calculi and
related systems, which have inspired several parts of this work.

2 Interaction Combinators

2.1 Combinators, nets, interaction rules

The interaction combinators are the three following cells:

VY ¥ ¢

Each cell has a number of ports; v and § have three, € has only one. The fundamental
property of cells is that exactly one of their ports is principal (drawn at the bottom
in the above graphical representation), the others being auziliary.
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Ports may be used to plug cells? together by means of wires to form nets, as in
the following example:

QLN
Y3 0c

Wires can have one or both of their extremities not connected to any cell, in which
case the net has a free port, principal or auxiliary (or neither) depending on the
nature of the port of the cell connected to the other extremity of the wire. The net
above has for example 7 free ports, of which 1 is principal and 4 are auxiliary. The
free ports of a net are referred to as its interface.

The above example shows that cyclic wires are also allowed. In case a net con-
tains such cyclic wires, for technical reasons we shall consider that the configuration
corresponds to a “virtual cell” with no auxiliary port and with its principal port
connected to itself. The set of all ports of all cells contained in a net p, with the
addition of its free ports and its “virtual ports”, is denoted Ports(u).

The distinction between principal and auxiliary ports comes into play when
defining the dynamics of nets. As a matter of fact, when two cells are connected
through their principal ports, they form an active pair, and they may be replaced
by another subnet according to the following interaction rules: the annihilations

Xl &n &

and the commutations
AN Yv & g
\W/ \V/ © a€{,0}

When a net p’ is obtained from p after the application of one of the above rules,
we say that p reduces in one step to p/, and we write u — p/. We can then define
the reduction relation —* on nets of combinators as the reflexive-transitive closure

<

of —. We write u ~g p iff there exists p” such that p —* " and p' —* p”.
Notice that interaction rules are purely local; if we add to this the fact that cells
have exactly one principal port, we immediately obtain that — is confluent, which

2 Here, and all throughout the rest of the paper, we shall make systematic confusion between cells and
occurrences of cells.
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implies that the reduction process is also (strongly) confluent. This ensures that the
computation is unique up to permutation of rules, and that ~g is an equivalence
relation. We remark here a substantial difference with respect to reduction in the
A-calculus: if a net is normalizable, then it is strongly so.

A net may contain configurations which cannot be removed through interaction,
like

in which clearly no cell can interact first (there is a sort of deadlock). The cyclic wire
already discussed above is another example, indeed the simplest, of such deadlocked
configurations, which are are called vicious circles.

In order to properly define what a vicious circle is, we use the notion of straight
path, inspired by the corresponding notion in linear logic proof-nets [2]. Straight
paths will also be of fundamental importance in proving termination properties of
nets.

Definition 2.1 (Port graph) The port graph of a net p, denoted PG(u), is the
undirected graph whose vertices are the elements of Ports(u), and such that, for
x,y € Ports(u), there is an edge between z and y iff one of the following two
mutually exclusive conditions holds:

e ¢ and y are connected by a wire in u;

e 1 and y are resp. principal and auxiliary ports of the same cell.

Definition 2.2 (Straight path) Let u be a net. A path ¢ (not necessarily simple)
of PG(p) is straight iff:

(non-bouncing) if ¢ contains a sequence of the form zyzx, then x and y are ports
of the same cell, and they are connected by a wire in y;

non-twisting oes not contain any sequence of the form apb where p is the

twisti d t tai f the f b wh is th
principal port of a binary cell and a # b are the two auxiliary ports of the same
cell.

The graph PG(u) has been introduced for formal purposes only; in the sequel, we
shall freely speak of a “straight path of ” meaning “straight path of PG(u)”.

Definition 2.3 (Vicious circle) A vicious circle is a cyclic straight path not
containing two principal ports of two different cells in a row.

A net containing no active pair and no vicious circle is said to be cut-free.® A
net admitting a cut-free form (necessarily unique by confluence) is said to be total.

3 Reduced in Lafont’s terminology [7].
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Cut-free nets are the “true” normal forms of the reduction; they can be seen
as the final result of a computation. On the other hand, non-total nets represent
deadlocked or divergent computations.

2.2 Basic nets

Wirings. A net containing no cells but just wires will be called a wiring. We shall
represent the generic wiring as

L

]

The following are examples of wirings:

W

We also allow the free ports of a wiring to belong to € cells, in which case we speak of
an e-wiring and we use the notation o or w. The following are examples of e-wirings:

on8| (oM

Notice that the wirings we denote with ¢ can be considered permutations; given
one such wiring, we can then define ¢! to be the unique wiring such that

Trees. Trees are defined inductively as follows. A single wire is a tree with one leaf,
denoted 1 (it is arbitrary which of the two extremities is the root and which is the
leaf). If 71 and 79 are two trees with resp. n; and ng leaves, then we can define a
tree 7 with ny + ng leaves as

v

where a € {7,d}. This tree is denoted a(7y, T2).
5
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It is not hard to verify that any net p with n free ports and k active pairs and/or
vicious circles can be decomposed (although not uniquely) in terms of trees, wirings,
and e-wirings as follows:

lj/ = ! !
T1 Tn 1 Tok
E—

The wiring w accounts for the active pairs and vicious circles of the net; therefore,
a cut-free net v with n free ports admits the following decomposition, which this
time is unique:

o ]

T1 Tn
o

Any tree can be annihilated my means of another tree:

Definition 2.4 (Cotree) If 7 is a tree, we define its cotree 71 by induction on 7:

o 17 =1;

We remark in passing that the co-cotree of 7 is 7 itself.

Lemma 2.5 (Cotree) For any tree T, the net obtained by plugging together T and
71 through their roots reduces to a wiring.

Proof. By induction on 7, using the annihilation rules for v and § cells. a

If we call o, the wiring of Lemma 2.5, we can define a net 7" which annihilates
with 7 in the simplest way:

We shall say that any “tree plus permutation” 7/ annihilating with 7 as above is an
anti-tree of 7. The net 7 just defined is called the canonical anti-tree of .

Principal nets, packages, and tests. A principal net of arity n is either a single
wire (in which case n = 1), or a cut-free net with n free auxiliary ports and 1 free
principal port. If n = 0, we say that the net is a package. Principal nets can be
seen as “compound” cells, and will be drawn just like ordinary cells.

Notice that trees are particular examples of principal nets. Other examples of
principal nets are what we call n-tests. An n-test is a tree with n + m leaves such

6
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that m leaves are connected to principal ports of € cells. Both m and n can be zero,
but not at the same time (we have not defined trees with zero leaves). This means
that trees with n leaves are special cases of n-tests. Of particular interest to us will
be 0-tests, 1-tests, and 2-tests, which will be called resp. e-packages, filiform trees,
and simply tests.

2.8 Termination

In this section we give a sufficient condition for a net to be total, formulated in
terms of straight paths (Definition 2.2).

Definition 2.6 (Maximal path) A mazimal path in a net p is a straight path
ending into a free port of u or into the principal port of an € cell of p.

In the following, if 1 is a net and « a cell of y, we say that a straight path ¢ starts
from a if ¢ = px¢’, where p is the principal port of o, and z is not an auxiliary
port of a.

Definition 2.7 (Well-founded net) A net p is well-founded iff for each cell « of
1, there is a finite non-null number of maximal paths starting from «.

Basically, the definition above assures that in a well-founded net there are no
infinite straight paths.

Lemma 2.8 (Stability of well-foundedness under reduction) Let u be a net
such that p — . If p is well-founded, then so is .

Proof. By simple inspection of the reduction rules. a
Proposition 2.9 If a net is well-founded, then it is total.

Proof. Let u be a well-founded net. First of all observe that if x4 contains a vicious
circle, then by definition there is a cell of p (maybe a “virtual cell”, in the case
of a cyclic wire) admitting no maximal path starting from it. Therefore, the well-
foundedness of 1 implies the absence of vicious circles in y, and by Lemma 2.8 also
in any reduct of u.

We need only show then that the reduction of y terminates. For this, let g be
a generic well-founded net, and let o be a cell of pg. We define the weight of «,
denoted f(«), as the sum of the lengths of all maximal paths starting from « and
crossing at least one active pair, i.e., containing a sequence pq where p and ¢ are
the principal ports of two cells of ug. By definition of well-founded net, this is a
non-negative integer. Then, we define the weight of pg, still denoted #(10), as

8(1o) = > (e,

where the sum is taken over all cells of pg; this too is clearly a non-negative integer.
We now prove termination by induction on #(u):

e #(p) = 0. This is equivalent to saying that p contains no active pair. In fact, the
presence of an active pair immediately yields two cells «, ' such that §(a), §(o’) >
0; for the converse, by definition the absence of active pairs implies f(a) = 0 for
all a.
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e #(u) > 0. By the previous remark, p contains an active pair. We reduce it, ob-
taining 4/, and we show that #(u') < #(u) (remember that, thanks to Lemma 2.8,
the weight of 4/ is defined). Then we apply the induction hypothesis: since y' is
a reduct of pu, if y' is total then so is p.

Proving that the weight strictly decreases is done by a case-by-case analysis of
the six reduction rules. The only interesting case is that of the vd rule, since in
all other cases the number of cells strictly decreases, and the paths involved in
the rules are shortened.

So let « be one of the two cells involved in a ~¢§ active pair. The rule being
perfectly symmetrical, we can consider only « and one its two copies after the
application of the rule, which we call oy and ai. To make the situation even more
symmetrical, it does not harm to assume that both cells involved in the active pair
have weight #(«), so that §(u) = m—+2-#(«) and (') =m' +2- (1) + 2 - f(a2),
where m and m’ are suitable integers.

First of all, observe that for each straight path ¢ “passing through” the active
pair in pu, there is a straight path ¢’ of the same length in i/, and vice versa. This
means that m’ = m.

Now, any maximal path starting from « must pass through one of the two
auxiliary ports of the cell that « is interacting with. This means that the set of
maximal paths starting from « can be partitioned into two. Moreover, in any
case a maximal path starting from a has length at least 2. Therefore, f(a) =
S (w} +2)+ > (w? 4 2), where the w! are suitable non-negative integers, and the
sums are taken over the paths in each element of the partition.

If we turn to «q, we see that all maximal paths starting from it “come from”
the maximal paths starting from « of one of the two components of the partition
considered above. The same holds for as, so we can write, for j € {1,2}, that
fay) = 2wy

Now clearly Y w! + > w? < > (w} +2) + Y (w? + 2), so we are done.

(]

We observe that well-foundedness is not a necessary condition for a net to be
total. To see why, it is enough to consider the net

N/
/o

This net is not well-founded, since there is an infinite number of maximal paths
starting from both of the cells it contains. And yet, the net is total, because it
reduces in one step to a wire. This shows in particular that well-foundedness is not
stable under anti-reduction.

The reader acquainted to the Geometry of Interaction (Gol) may see that well-
foundedness is indeed a stronger version of nilpotency [4,7]. In the Gol semantics,
fewer straight paths are taken into consideration, namely those that have a non-null
weight in the dynamic algebra, or reqular paths in Danos-Regnier terminology. It

8



Mazza

is possible to show that well-foundedness formulated in terms of maximal regular
paths, i.e., finiteness of regular paths, becomes also a necessary condition for a net
to be total, and thus nilpotency characterizes total nets.

Although weaker, Proposition 2.9 is however enough for our present purposes;
in fact, it suffices to prove the following result, which will be constantly (and often
silently) used in the rest of the paper.

Lemma 2.10 Let v be a reduced net with k > 0 free ports, and let 01,...,0; be
n;-tests (with i € {1,...,k}). Then, the net

s total.

Proof. It is not hard to check that the above net is well-founded, therefore total
by Proposition 2.9. O

In particular, Lemma 2.10 shows that the net obtained by plugging any two
trees by their roots is total.

3 Observational equivalence

The system of interaction combinators can be seen as an abstract programming
language, in which total nets are deadlock-free and terminating programs/data. As
such, it may be of interest to define on it a notion of observational equivalence. In
this paper, we shall restrict our attention to total nets with one free port, although
everything we shall say can be generalized to total nets with arbitrary interfaces.
Therefore, unless otherwise stated, in the sequel “net” will mean “net with one free
port”.

Let pu be a total net, and 6 a test. If we plug the free port of p to the principal
free port of 6, we obtain a net with two free ports, which we call #[u]. Notice that,
by Lemma 2.10, 0[u] is always total.

In the following, if i has n free ports, the notation pf} means that p reduces to
a net consisting of n e-packages.

Definition 3.1 (Observational equivalence) Let p,u' be two total nets. We
say that p is observationally equivalent to p’, notation p ~ y/, iff for any test 6,

O[plf HE O[p'T

Theorem 3.2 (Maximality) ~ is the greatest non-trivial congruence on total
nets containing ~g, i.e., if = is a congruence on total nets such that ~g C =,
then either ~ C ~, or =~y for all p, .

The above proposition can be proved independently of what we shall do in the
sequel, but the proof is rather tedious, so we prefer to state it as a corollary of
Theorem 4.1, Section 4. As a matter of fact, we shall prove that ~ can actually be

9
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defined in a much more concrete way, indeed as an equivalence relation generated
by ~3 plus the following equalities:

X
A

The top-right and bottom equations, which we call resp. e (or de) and v equations,
were already considered by Lafont [7]; in particular, the ve and de equations state
the n-equivalence of all e-packages to the € combinator. On the other hand, the
top-left equations, which we refer to as vy and dd equations, can be found in the
work of Fernandez and Mackie as part of a larger study on operational equivalence
for interaction nets [3].

Definition 3.3 (f8n-equivalence) Two nets pu,p’ are n-equivalent, notation
p =y i, iff they can be rewritten one into the other by means of the above equal-
ities. We write ~g, for the transitive closure of ~g U ~,, and if u ~g, ', we say
that p and u' are Bn-equivalent.

We point out that there is no reasonable orientation for the equations defining
n-equivalence, so there are no canonical representatives for the equivalence classes
of ~g, on total nets (as opposed to 3n-normal forms in the A-calculus).

As to the relationship between observational equivalence and #n-equivalence, we
start by proving the following:

Proposition 3.4 Let p, i’ be total nets. Then, p ~gy, ' implies p >~ 11/

In fact, as shown by Ferndndez and Mackie [3], the configurations related by the
equations defining ~,, are operationally equivalent, i.e., no cell interacting with the
configurations will ever be able to distinguish between the two. We shall analyze
the case of the vd equation, leaving the other cases to the reader.

Consider the two trees (plus wiring) of the vd equation. The only way a cell can
interact with these two nets is through their principal port, i.e., the root of the tree.
If it is an € cell, it is easy to see that after three rewriting steps both nets reduce
to four ¢ cells; if it is a v cell, we have

10
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9
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The interaction with a § cell is similar, so in all cases the two configurations of the

~vd equation behave in the same way, and there is no hope to distinguish them.
More generally, it is possible to prove the following:

Lemma 3.5 Let py, p2 be two n-equivalent nets such that py — py. Then, there
exists a net py such that ps —* phy and phy =~ 1.

So let i, i’ be two total nets of resp. cut-free form v, 2/, such that p ~g, 1. By
definition, v ~g, v/, but since v, ' contain no active pair, we actually have v ~, v/.
Now let 6 be a test, and suppose that [u]ft. Clearly we also have 6[v]f. But
O[u'] —* 0[] ~, 0[v], so applying Lemma 3.5, we have that there exists a cut-free
net v” such that 6[u/] —* ", and v is n-equivalent to two e-packages. It is not
hard to see that a package is n-equivalent to an e-package iff it is itself an e-package,
so O[], Tterating the argument for the symmetrical case yields p ~ i/, as required
by Proposition 3.4.

3.1 Some lemmas about eta equivalence

We prove here a few results concerning or making use of n-equivalence, which will
be used in the proof of the Separation Theorem 4.1. The reader may safely skip
this section and come back to it when these lemmas are invoked in Section 4.

Lemma 3.6 Anti-trees are unique up to n-equivalence, i.e., if 7' is an anti-tree of
T, then 7' >, 7*.

Proof. We shall prove the following implication:

11
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where o is a generic wiring. The statement of the lemma is obviously a special case
of it.

We reason by induction on 7. If 7 = 1, the result is obvious. Let then 7 =
0(11,72). The key observation is that

e
/@57{\ NI
[T T-T T T
o./

T T LT T

where 7, is the maximal subtree of 7/ containing no ¢ cell. In fact, all leaves of 7,
must be connected to a d cell; if it were otherwise, a leaf of 7, would be free, so that
7 and 7/ would not reduce to a wiring. Hence we have

and if we absorb ¢/ and the other wirings into a wiring called ¢, we obtain

[ T2 | ‘ ‘ ‘
> Y -
o T
|
[

T1
T

0,// ’ "

N N

where 01 and o9 must be wirings because by hypothesis ¢ is a wiring. Now we can

12
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apply the induction hypothesis as follows:

for i € {1,2}. We shall not do it explicitly here, but using the vd equation, it is
possible to prove by induction on 7, that

from which we obtain

which proves what we wanted (see the definition of canonical anti-tree, Section 2.2).
A similar argument can be given for the case 7 = (711, 72); the details are left to
the reader. O

Lemma 3.7 (Wire characterization) Let v be a cut-free net with two free ports.
Then, v is n-equivalent to a wire iff it has the following shape:

)
\VAY

where 7' is an anti-tree of T.

Proof. The “only if” part is proved by induction on the number of n-equations

13
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applied to “expand” the wire. The cases of the equations vy and §J are easy; for
the case of the vd equation, an argument similar to that given in the discussion of
Proposition 3.4 is used (notice that no equation involving € can ever be applied).
For what concerns the “if” part, by Lemma 3.6 we have 7" ~, 7*. It is then not

hard to prove that
VAVZAERA

by induction on 7. The details are left to the reader. |

Consider now the principal nets =1, s, 01, 02 defined as follows:

where a € {,J}. These nets can be seen as cells behaving according to the following
interaction rules:

iti#j ifi=j

N/

— —

N/
ANING N

ifi=j ifi#j

@
VA
N

Now, if ¢ is a filiform tree, using the two equations of n-equivalence concerning the
€ combinator, one can see that, for some n, we have

where o/ € {v,6} and i; € {1,2}. For this reason, we shall identify filiform trees
14
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with finite words over the alphabet {v1,72,01,d2}; the example above corresponds
to the word a}l ~--a;' . We can thus show the following:

Lemma 3.8 Let ¢ be a filiform tree such that

where we have numbered the leaves of T from 1 to n and we have supposed that the
only one not connected to an € cell is the ith one. Let now ¢' be another filiform
tree, and call p the net obtained by plugging ¢ and ¢' together by means of their
roots. Then

(i) w reduces to a wire iff

where j =n —1+ 1;

(ii) if p does not reduce to a wire, then its cut-free form contains € cells.

Proof. We start by proving part (ii). Considering that any filiform tree is
n-equivalent to a sequence of cells interacting as described above, the reader will
easily convince him/herself that the cut-free form of y must be n-equivalent to one
of the following nets:

DO -

where ¢1, ¢ are themselves filiform trees (Lemma 3.5 is used here). In any case,
if one of ¢1, ¢ is different from 1 (i.e., the cut-free form of p is not a single wire),
then the cut-free form of p contains € cells, because the presence/absence of € cells
is preserved under n-equivalence.

Let us turn to part (i). The “if” direction is a direct consequence of the property
defining anti-trees (see Section 2.2). For the converse, suppose that p reduces to
a wire. By the above remark, we know that ¢ ~, ¢o = a1y, and ¢ >, ¢ =
af---al,, where the oy and «j, are elements of {y1,72,61,02}. Call pg the net
obtained by plugging ¢y and ¢{, together by means of their roots. Clearly o >, p;
hence, by Lemma 3.5, g reduces to a net wg which is n-equivalent to a wire. It is
enough to inspect the interaction rules introduced in Section 3.1 for the ~; and &;
nets to see that the “filiform structure” is preserved under reduction, i.e., no reduct
of pop has more than two auxiliary ports connected together by a wire. But then,
by Lemma 3.7, wy must be a single wire as well.

Now, since cells annihilate in pairs, if ;¢ reduces to a wire we must have m’ = m;
additionally, for each aj = 71 (resp. ai = 72), there must be exactly one o) = 72
(resp. a; = 1), and for each o = 81 (resp. ap = J2), there must be exactly one

15
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042 = 41 (resp. a; = 02), and no y; must “meet” a 1, or a 7, “meet” a 79, etc. In
other words, we must have ¢, ~, aF - - - a,, where we put 7§ = 2, 73 = 71, 07 = 91,
and 05 = do. It is not hard to see that this corresponds to the canonical antitree of
T. =

4 Internal separation

In what follows, we write E for the net with two free ports consisting of two &
combinators, and W for the net consisting of a single wire.

Theorem 4.1 (Separation) Let p, ' be two total nets such that p #g, /. Then,
there exists a test 6 such that O[u] —* E and 0[u'] —* W, or vice versa.

Combined with Proposition 3.4, the above result proves in particular that, on
total nets, ~g, coincides with ~. It also gives us a quick argument to prove Theo-
rem 3.2. In fact, if ~ is a congruence such that ~3 C ~, and if u ~ p’ for two total
nets such that pu % u/, by Proposition 3.4 and by Theorem 4.1 we have a test 6 such
that, for example, O[u] —* E and 6[/] —* W. Now put

0 =

N/

where 7 is any package. It is not hard to verify that plugging i into the free principal
port of 6, yields a net which reduces to € (i.e., the € combinator), while doing the
same with y’ yields a net reducing to m. But &~ is a congruence and is preserved
through reduction, so pu &~ p’ implies € ~ 7, for all 7. By transitivity of ~, and by
its stability under reduction, we conclude that it must identify all total nets.

The rest of the section is devoted to the proof of Theorem 4.1. A few intermediate
results are needed, which we go through in the sequel.

4.1 Main lemmas

In the following, if v is a net with two free ports, we use the notation (¢1, ¢2)[v] to
denote the result of plugging the roots of two filiform trees ¢1, ¢ into the free ports
of v.

Lemma 4.2 (Wire separation) Let v be a cut-free net with two free ports, such
that v %2, W. Then, there exist two filiform trees ¢1, a2 such that (¢1, p2)[W] =W
and (@1, ¢2)[v] = E, or (¢1,92)[W] = E and (¢1, ¢2)[v] = W.

Proof. Since v %, W, by Lemma 3.7 we have three possibilities:

e v contains at least one ¢ cell. In this case, we will show how to send v to E, and
W to itself. First of all, we can assume w.l.o.g. that v has the following shape:
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where vy is a reduced net. Now, consider an anti-tree 7* with ¢ cells plugged
on every leaf except the one corresponding to the e cell present in v. What we
obtain is a filiform tree, and the same happens if we repeat the construction on
7. We then have

5063 168

for a suitable reduced net v, and package w. Notice that, on the other hand,
when the same two filiform trees are plugged to the two extremities of the wire
v/, they annihilate and we obtain again a wire.

If m = ¢, we are done; otherwise, w.l.o.g. ™ can be assumed to be of the form

where wg is W if 7 is not an e-package, or E otherwise. Hence, we can consider
two more filiform trees as in the following net, the reduction of which gives

AR B
500l 1660

regardless of the nature of @Wy. When plugged together through a wire, these two
new filiform trees yield once again a wire. We have thus realized our goal by using

a context consisting of two trees which are in turn compositions of two filiform
trees, and are therefore themselves filiform.

v contains no € cell, and there is a maximal path starting from one of the free
ports of v and ending into the same free port; in this case too we show how to
send v to E and W to itself. W.l.o.g., we can assume

for a suitable reduced net 1. Then, we consider two filiform trees which yield
(for some package 7) the following reduction:

17
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> . GP
Now we are back to a situation already met in the first case, which we know how

to handle.

v contains no ¢ cell, and all maximal paths starting from a free port lead to the
other. This time we show how to send v to W and W to E. The situation is the
following:

Suppose first that 72 and oy form an anti-tree 7 of 71; by Lemma 3.6, it does
not harm to suppose that 7{ = 71". Then, by Lemma 3.7 and by our assumption
that v %, W, o1 must contain a crossing of wires, so that there exists a leaf of 7;
and a leaf of 7{" which are not “symmetrical” but are connected by a wire. More
precisely, if we number the leaves of 71 and 7| from 1 to n, there is a connection
between a leaf ¢ of 7 and a leaf j of 7{ such that j # n — i+ 1. Then, we can
extract this connection using two filiform trees as follows:

By Lemma 3.8, when the same two filiform trees interact with each other through
W, they yield a net containing € cells. But then we can stop here, since we are
back to our first case.

In case 19 and o9 do not form an antitree of 7 (and 71 and o7 do not form an
anti-tree of 1), the situation is simpler; we can assume w.l.o.g. that there is a
wire linking the “rightmost” leaf of 71 to the “leftmost” leaf of 7o, which can be
extracted using two filiform trees as follows:

18
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561 168

Now by Lemma 3.6 7 and 75 are certainly not anti-trees of each other, so by
Lemma 3.8 their interaction through W produces a net which always contains at
least an ¢ cell, just as before.

a

Lemma 4.3 (Equivalence lemma) Let 7w be a package. Then, for any tree T
with n leaves, there exists a cut-free net v with n free ports such that

[ ]
Trz@n

Proof. Applying in the order Lemmas 3.7 and 2.10, we have

$

for a suitable cut-free net v. O

4.2 Proof of the Separation Theorem

First of all, if i is a total net with one free port and = its cut-free form, by confluence
we have that for any test 0, 0u] and 6[r] have the same cut-free form, therefore it
is enough to prove our result for packages.

So let m, 7" be two packages such that 7 %, 7. Suppose that

By the Equivalence Lemma 4.3, there exists a cut-free net v such that

19
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so it does not harm to assume that 7 and 7’ “end” with the same tree.
Now, at least one of the following two situations must apply:

(a) there exists a leaf of 7 which is connected to an e combinator of @, but is
connected to something not n-equivalent to ¢ in v;

(b) there exist two leaves of 7 which are connected by a wire of @, whereas in v the
same two leaves are either not connected, or their connection is not n-equivalent
to a wire.

As a matter of fact, if neither (a) nor (b) applied, we would have proved that
7 ~, 7', against our hypothesis.

Suppose that situation (a) applies, and suppose w.l.0.g. that the leaf in question
is the “leftmost” one, i.e., we have

By hypothesis, the “leftmost” free port of v, let us call it x, is connected to some-
thing not n-equivalent to ¢; this means that if we “go up” the tree rooted at x in v,
let us call it 79, we must find a leaf of 79 connected by a wire to some other tree of
v. It may happen that all connections are within 7y itself, i.e., we have

(for graphical convenience, we have assumed w.l.0.g. that there is a direct connection
between the “leftmost” two leaves of 7p). Under such assumptions, one can verify
that the test

is such that [7'] —* W, whereas 0[] —* E. Suppose instead that 7y is connected
to some other tree of v, and suppose w.l.o.g. that this tree is the one immediately
“to the right” of 7g, let us call it 7:

20
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(again, in the picture we have made a convenient assumption about the connection
between 7y and 71, without affecting the generality of our argument). In this case,

one may check that the test
PO~ g7
5 _
\_/

is such that 0[7'] —=* W and 6[x] —* E.

Let us now consider situation (b), i.e., 7 has a direct connection for 7 which 7’
is missing. Then, we can use an anti-tree 7* and isolate the two leaves involved in
the connection:

(as usual, for graphical purposes we have supposed w.l.o.g. that the two leaves
in question are the “leftmost” ones). It is not too hard to show that, under the
hypotheses we have, 1y cannot be n-equivalent to a wire. In fact, there are two
cases, depending on the shape of v. The trivial case is when

fr Ry

in which vg %, W by hypothesis. The other case is that in which the two trees
“above” the two “leftmost” free ports of v are connected to the rest of the net, i.e.,
we have

| 2 |
NN,
L \T/\T%\T% ™

and in wy there at least one wire connecting a leaf of 7 or 7 to a leaf of one of the
7;, for ¢ > 3. In this case, we have

21



Mazza

in which, thanks to the supposed connection, we see that there is at least one leaf
of 71 or ™ connected to an ¢ cell. But this means that 1y contains at least one ¢
cell, which by Lemma 3.7 entails v %, W.

Hence, the Wire Separation Lemma 4.2 applies, giving us two filiform trees ¢
and ¢o which are able to distinguish between the wire and vy. Therefore, if we

IV Y

we have 0[r] —* E and 0[n'] —* W, or viceversa, which completes the proof.

Notice that the canonical anti-tree of 7 contains v or ¢ cells only if 7 does; since
the filiform trees of Lemma 4.2 are also built out of canonical anti-trees, we get the
following for free:

Theorem 4.4 (Internal separation for fragments) Theorem 4.1 holds also for
the fragments ve and de of the interaction combinators.

5 Concluding remarks

5.1 Alternative formulation of observational equivalence

If 1 is a total net, instead of plugging a test into its free port, we can use a package
m. We thus obtain a net with an empty interface, which is either total (in which
case the only possibility is that it reduces to the empty net), or not. In the first
case, we write < p | m >= U, in the second < p | 7 >= Q.

Consider now the following alternative definition of observational equivalence:

Definition 5.1 Let u, ¢’ be two total nets. We write p ~° p/ iff, for any package
mLp|lr>=<y|7m>.

It is immediate that ~° C ~g,. To see this, suppose u %3, ;t'. By Theorem 4.1,
we have a test § such that, for example, 0[u] —* E and 0[] —* W. Then, by
connecting the two free auxiliary ports of  with a wire, we clearly obtain a package
7 such that < pu | 7 >= U while < ¢/ | 7 >= Q. Moreover, by a similar argument
to that given for Proposition 3.4, we can prove that, on total nets, ~g, C ~°.
Therefore ~, ~°, and ~g, coincide on total nets.

This alternative formulation of observational equivalence is much more elegant

22



Mazza

and flexible than that of Definition 3.1; for example, it can be extendend straight-
forwardly to all nets, with arbitrary interfaces and without hypothesis of being
total (if a net u, total or not, has n free ports, we can consider its “closures” by
means of n packages 71, ..., T,; then if u, 4’ have both n free ports, we say pu ~° y/
iff, for all p, ..., 7, < p| 71, ., > =<y | m,..., 7, >, with the obvious
extension of the notations introduced above). It is also reminiscent of the definition
of observational equivalence in Girard’s ludics [5]. However, there is something fishy
about it, because it is based on the fundamental assumption that the empty net is
different from all other nets with an empty interface. Interactively speaking, this
is far from being clear: all nets without interface cannot interact, and would thus
seem indistinguishable.

5.2 Internal separation and topology

Following Girard [5], we can give a topological interpretation to the Separation
Theorem 4.1. Call IT the quotient of the set of packages under ~g,. For, 7, 7" € II,
define 7 <X 7" iff, for all p € I, < 7 | p>>=0U implies < 7’ | p>>= 0. The set
IT can be endowed with the Alexandrov topology associated to <: a set O C Il is
Alexandrov open iff it is upper-closed, i.e., if ¥ € O and m < 7/, then ©’ € O.

The Separation Theorem states that the Alexandrov topology on II is Ty. To
see why, consider the following. Given X C II, define

~X={rell|VreX,<n |7 >= U}.

It is not hard to convince oneself that all sets of the form ~X are Alexandrov open.
Now take any two distinct 7, 7" in II. This means that m %4, 7’; Theorem 4.1 then
gives us a package p such that ~{p} is a neighborhood of 7 not containing 7', or
vice versa.

In some cases, the or wvice versa can be replaced by an and vice versa, (see
Section 5.3 below), which means that there exist pairs of packages which are
T)-separable. Nevertheless, there is no hope to achieve T (Hausdorff) separation
for the Alexandrov topology: for all m, m < ¢, so the package ¢ belongs to all open
sets, and the intersection of two neighborhoods can never be empty. It is interesting
to remark in this respect the similarity between the € combinator and the daimon
of ludics.

5.3  On the strength of separation

We have already remarked in the introduction that the separation achieved by
Theorem 4.1 is in some sense “weaker” than that of Bohm’s Theorem, because of
its asymmetry: the or vice versa in the statement of the theorem is necessary, and
cannot be controlled, i.e., there are pair of nets that “force” a certain separation,
refusing the symmetrical one (think of the ¢ package paired with any other non-3n-
equivalent package).

In spite of this, there are nets that can be separated in a “stronger” way. For
example, if we call v (resp. d) the package consisting of a single 7y (resp. §) cell with
its auxiliary ports connected by a wire, there exist total nets u,u’ such that, by
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plugging a principal net of arity 1 to their free ports, after reduction one obtains in
one case 7, in the other case §. It is not hard to see that there exists a principal
net of arity 1 which can interactively “exchange” ~ and d; therefore, this kind of
separation is symmetrical.

There are also “intermediate” situations, in which, although Theorem 4.1 holds
with an and vice versa, there is no principal net of arity 1 achieving “strong” sepa-
ration, i.e., sending one net to v and the other to é.
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