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Abstract

It is well known that the real numbers arise from the metric completion of
the rational numbers, with the metric induced by the usual absolute value.
We seek a computational version of this phenomenon, with the idea that
the role of the rationals should be played by the affine lambda-calculus,
whose dynamics is finitary; the full lambda-calculus should then appear
as a suitable metric completion of the affine lambda-calculus.

This paper proposes a technical realization of this idea: an affine
lambda-calculus is introduced, based on a fragment of intuitionistic mul-
tiplicative linear logic; the calculus is endowed with a notion of distance
making the set of terms an incomplete metric space; the completion of this
space is shown to yield an infinitary affine lambda-calculus, whose quotient
under a suitable partial equivalence relation is exactly the full (non-affine)
lambda-calculus. We also show how this construction brings interesting
insights on some standard rewriting properties of the lambda-calculus (fi-
nite developments, confluence, standardization, head normalization and
solvability).

1 Introduction

The notion of linearity in computer science, which corresponds to the opera-
tional constraint of forcing all arguments of a function to be used exactly once,
was brought forth about a quarter century ago by the introduction of linear
logic [Gir87]. Since then, it has influenced many aspects of the development
of the theory of functional languages: from denotational semantics, categori-
cal semantics, and computational interpretations of classical logic [CHKM10],
to higher-order languages for quantum computation [GM10], passing through
a number of important pragmatic aspects, such as optimal reduction [AG98],
constant-size programming [Hof03] and explicit substitutions [AK10].

From the perspective of the A-calculus, Girard’s translation of intuitionistic
logic into linear logic brings to light a decomposition of S-reduction into a purely
combinatorial part, in which the argument is simply fed to the function, and a
structural one, in which the argument is duplicated or erased as necessary. If we
abolish this latter part, we obtain a purely linear A-calculus; if we allow erasing
but not duplication, we obtain the affine A-calculus.



As a rewriting system, the affine (or linear) fragment of the A-calculus is
extremely simple: its theory of residues is almost trivial, so all the fundamen-
tal properties of S-reduction, such as finiteness of developments, confluence,
and standardization, become immediate to prove. Additionally, the calculus is
strongly normalizing even in absence of types. This is because, as mentioned
above, only the combinatorial part of [S-reduction is left, so that the affine
A-calculus is really just a calculus of permutations: all that we are allowed to
do with an atomic object (i.e., a variable) is displace it, or erase it. Obviously,
the expressive power of such a calculus is drastically reduced; that is why linear
logic comes with additional constructors which allow, albeit in a controlled way,
duplication of atomic objects, so that the full power of the A-calculus may be
recovered.

In this paper, we push forward the (per se rather obvious) idea that a non-
linear, duplicable object is equivalent to infinitely many linear, non-duplicable
objects, i.e., we replace potential (non-linear) infinity with actual (linear) in-
finity. Of course, the rigorous manipulation of infinity requires some form of
topology, and our idea will be satisfactorily realized only if non-linearity may be
shown to arise from linearity in a topologically natural manner.

We may draw here an analogy with Cantor’s definition of the real numbers
as equivalence classes of Cauchy sequences of rational numbers. This analogy
comes from an old remark of Girard [Gir87], who noticed how the purely linear
fragment of linear logic seems to be, at least morally, “dense” in full linear logic
(see Sect. 4.4). Our starting point will therefore be a A-calculus directly drawn
from linear logic. Technically, for the acquainted reader, we take a term calculus
corresponding to the proofs of the fragment of intuitionistic multiplicative linear
logic whose formulas are generated by A, B:=X | A; ®---® A, — B, n €N
(with 1 being the nullary tensor).

Such a calculus is polyadic, i.e., abstractions are of the form Ax.t, with x a
sequence of variables (each occurring at most once), and applications of the form
tu, with u a sequence of terms (all having disjoint free variables, also disjoint
from those of t). For defining reduction, we face the problem of matching the
arities of x and u in (Ax.t)u. This is usually solved by types, but we prefer to
develop an untyped theory, and we solve this issue by introducing a special term
L which is substituted to x(4) in case u(i) does not exist. Then, the definition
of our terms will be something like

tu= 1]z xt|tu,

where x ranges over a set of variables V, x is an injective function in VN, and u
is a function from N to terms which is almost everywhere L ; all this, of course,
with the restriction that every variable, free or bound, appears at most once.
Reduction is defined by the usual rule

(Ax.t)u = tu/x],

which now makes sense because the operation of substituting u(i) to the only
free occurrence (if any) of x(i) in ¢ is defined for all i € N. We denote by A3 the
calculus just introduced (the subscript p is for “polyadic”, and the superscript
reminds us that the calculus is affine). In the end, Agﬁ is very similar to Boudol’s
A-calculus with multiplicities [Bou93], with sequences instead of multisets.



The next step is turning Agﬁ into a metric space. Considering the fact
that we are manipulating sequences, using a metric of pointwise convergence
is the simplest choice. Actually, we slightly modify the metric so that only
terms whose height is the same may be “close”. The intuition behind the
definition of the metric may be given with an example. Consider the terms
A, = Axg...xp.2o{T1,...,2,), where we used the notation (...) to explicitly
denote sequences. These correspond to programs which take a list of terms, ex-
tract the head, and apply it to the rest of the list. Our metric, which is basically
pointwise convergence, will give us that the sequence (Ay,)nen is Cauchy. And
yet, no finite term may be the limit, because the length of the sequence given
in argument to z is unbounded. Clearly, the sequence is tending to the infinite
term A = Axoz1xs . ... .2o{x1,Ta,...).

We have just proved, informally, that the metric space Agff is not complete.
Its completion, which we denote by Agg , contains terms whose applications may
accept infinite arguments, i.e., the sequence u in tu is no longer forced to be
almost everywhere L. Of course, this also means that the abstraction Ax.t is
allowed to bind infinitely many variables.

Observe that A2 is still affine: every variable appears at most once. How-
ever, as expected, the calculus is no longer strongly normalizing: consider
Q = AAAJA, . ); the term A, described above, takes an infinite list, ex-
tracts the head, and applies it to the rest of the (infinite) list. Then, obviously,
Q reduces to itself.

We start recognizing Girard’s translation of intuitionistic logic in linear logic:
a non-linear argument becomes infinitely many linear arguments. However, A2
is still not the A-calculus; it is too big, it contains a continuum of terms. The
next step then is to restrict the behavior of infinitary application, so that, in tu,
all terms u(7) actually “look alike”. In the context of denotational semantics of
linear logic, this is called uniformity (see, for instance, [Gir01, Mel04]).

Just as in [Gir01], we introduce uniformity by means of a partial equivalence
relation (PER) on Agﬂ, called renaming equivalence and denoted by =; a term
t is deemed wuniform if ¢t ~ t. Intuitively, renaming equivalence relates terms
that “look alike” under any permutation of their application sequences. This is
why ~ is only partial: for example, if u is not a variable, then u % x and the
term t = z(x,u,u,...) will not be uniform because, for instance, z{u,x,u,...)
does not “look like” ¢. On the other hand, Azozixa....x1{xg,22,...) =~ A
(hence both are uniform). This makes sense because, in a “uniform world”,
the variables xo, 21 will be replaced by equivalent (“look-alike”) terms, so their
exchange has no consequence (consider, for instance, the definition of Q above).

The set AL, of uniform affine terms has a problem though: it is not stable
under reduction. Indeed, suppose u is a term s.t. v — u'. Then, z(u, u,u,...) —
z{u',u,u,...), which is no longer uniform, since «’ has no reason to “look like” w.
The obvious solution is to consider infinitary reduction, i.e., define the reduction
z{u,u,u, ...y = z{u',u',u’, .. .) as one step. This actually works quite smoothly,
without even needing the techniques developed in the context of infinitary term
rewriting [DKP91, KKSdV95]. It is easy to show that = is compatible with =,
i.e., equivalent terms reduce to equivalent terms. The set Al with the notion
of reduction = is thus a well defined calculus.

The final result may be stated as follows:

(A’ _>B) = (Aig/%a :>)a



that is, the usual, full A-calculus, with S-reduction, is isomorphic to the in-
finitary affine calculus, modulo =2, with infinitary reduction = (note that, by
definition, the quotient automatically discards non-uniform terms). The iso-
morphism must be understood in the Curry-Howard sense: there is a bijection
between A and A*f /a which preserves the basic constructions of the calculi (ab-
straction and application), and which commutes with their respective notions
of reduction.

The above result is probably not very surprising for the reader familiar with
linear logic (and especially with Ehrhard’s recent work on differential linear
logic and the Taylor expansion of A-terms [ER08]) or with Boudol’s work on
the A-calculus with multiplicities [Bou93]. Other readers may instead have
recognized the ideas developed here to be already present in games seman-
tics [AJMO00, Mel04]. However, we claim that the above isomorphism, when
technically formulated as we do in this paper, brings some interesting insights
and novel perspectives on well known properties of reduction in the A-calculus,
such as the finiteness of developments, confluence, standardization, solvability,
and head normalization. We discuss this in Sect. 4.

The rest of the paper is devoted to formally presenting these results. How-
ever, instead of starting from Agff and building its completion, we begin in
Sect. 2 with a much bigger calculus, named A, which is infinitary and not
affine. In fact, the definition of metric and the essential properties of complete-
ness and density do not need affinity, which would only be an unnecessary (and
annoying) technical restriction at this stage. Then, in Sect. 3, we define Agﬁ
and A as affine subcalculi of A, and verify that the latter is the metric
completion of the former. After that, we follow the pattern delineated in this
introduction.

2 A Polyadic Infinitary Lambda-Calculus

2.1 Terms and Reduction

Definition 1 (Terms) We fix a denumerably infinite set V of variables,
ranged over by x,y,z and not including L, and denote by VY. the subset of

inj
VN of functions which are injective. Then, we define

A% =V U{l},
AL =AM U x| te A x e VU

inj

U{tu|te AL, ue (AL)",

and let the set of terms be Aso = ey AL The height of a term t is the least
h such that t € A".. We denote by B(Awo) the subset of ALY of sequences of
bounded height, i.e., if u € B(Aw), then there exists h € N such that, for all
i € N, the height of u(i) is at most h.

The fact that terms, albeit infinitary, have a finite height allows us to manip-
ulate them using induction (on their height). Therefore, the standard notions
of free and bound variable, a-equivalence, and of capture-free substitution are
defined as usual. In particular, given s € Aw, u € B(Aw), and x € Vﬁj, we
define s[u/x] by induction:



[ u@) if Fie N.x(i) =
o zu/x| { r  ifVieN, x(i) #

o (Ay.t)[u/x] = A\y.tlu/x];

e (tv)[u/x] = t[u/x]|v’, where Vi € N, v/ (i) = v(i)[u/x].
Of course, this operation is not effective in general, as it may require an infinite
amount of work. We denote by fv(t) the set of free variables of t. As usual,
terms are always considered up to a-equivalence. A context is a function from

A to itself, defined inductively as follows: the identity function is a context;

if C' is a context, then:
e for all x € V., ¢+ Ax.C(t) is a context;

inj»

o for all u € B(Aw), t — C(t)u is a context;

o for all n € N, u,v9,...,9n-1 € Ao, and v € B(Ax), t — uvi[t] is a
context, where v4[t] € B(As) is defined as follows:
V; if 0 <i < n;
velt)(i) =< Ct) if i =n;

vii—n—1) ifi>n.
One-step reduction is defined by
1. (Ax.t)u = tfu/x];
2. if t > ¢/, then C(t) — C(t'), for every context C.

Reduction, denoted by —*, is its reflexive-transitive closure.

2.2 Infinitary Terms as the Metric Completion of Finite
Terms

In what follows, if X,Y are sets s.t. L € X, and if f € XY, we define the
support of f assupp f ={y €Y | f(y) # L}.

Definition 2 (Finite term) If S is a set s.t. L € S, we denote by S™ the
subset of SN of functions with finite support. The elements of SN are finite
sequences, and we denote them by (so,...,Sn—1), With Sp—1 # L and sp4p = L
for all p € N. Finite terms are generated by the following grammar:

tbun=L1|x|Axg...op_1.t | t{ug, ..., Up—1)-

We denote by A, the set of finite terms. Obviously, A, C Ao the embedding is
trivial for variables and applications; for abstractions, we embed Axg...xp_1.t
as Ax.t, with x(i) = z; for 0 < i < n, while the values for i > n are arbitrary
(and irrelevant by a-equivalence).

The calculus A, is nothing but a polyadic A-calculus (the subscript p is for
“polyadic”), with a special term L which behaves as a variable impervious to
substitution; a-equivalence, substitution, and reduction are all effective opera-
tions on A, as in the usual A-calculus. We shall see that this finite calculus is
actually enough to describe Ay, via a metric completion process.

The standard way of defining a distance between terms is to consider them
as trees [AN80, Cou83, DKP91,C090, KKSdV95, KKSdV97].



Definition 3 (Partial trees) A position is an element of P = N*, the set of
finite words over N; an alphabet is a set ¥ s.t. 1 € %, and a partial tree is an
element of T(X) = (XU {L}F. A partial tree is finite if its support is finite;
it has finite height if the words in its support have bounded length. We denote
by To(X) and Tr(X) the sets of all finite partial trees and of all partial trees of
finite height, resp., on the alphabet 3.

If weset Xy =VU{Ix|x¢€ Vﬁj} U {@}, terms may be injectively mapped
into Txr(X)) in the obvious way, so that we may speak of a position a within a
term ¢, and freely use the notation t(a) to denote the symbol present at that
position.

If we consider XU{ L} to be equipped with the discrete metric (as will always
be the case in this paper), the function space T(X) may be endowed with the
topology of simple (or pointwise) convergence, which is metrizable as follows.
Ifa=mn1-n; €P, weset a(a) =2""171...27%=1 and define

ds(t,t") = sup{a(a) | a € P, t(a) # t'(a)}.

It is immediate to see that ds is a bounded ultrametric, whose uniformity admits
as base of entourages the sets

Us = {(t,t') € T()* | Va € Ac, t(a) = t'(a)},

where 0 < ¢ < 1 and A. = {a € P | a(a) > ¢}. Note that A, grows bigger
as € becomes smaller, the extreme cases being A; = {e} (the empty word) and
Ap = P. Hence, closer and closer trees coincide on more and more positions,
which means that ds yields the topology of simple convergence (whence the
subscript s). It is not hard to see (¢f. [AN80, Cou83]) that (T(X),ds) is a
complete metric space, in which To(X) is dense, which means that the former
is the metric completion of the latter.

It is easy to modify the metric on ds so that the completion contains only
trees whose height is finite. Consider the trivial pseudometric p on To(3) such
that p(t,t') = 0 if ¢,¢ have the same height, and p(¢,t') = 1 otherwise. Then,
max(ds, p) is a bounded ultrametric, according to which a sequence (¢, )nen €
To(X) is Cauchy iff it is Cauchy for ds and, for n sufficiently large, every t,, has
the same height. Therefore, the completion of (To(X), max(ds, p)) is the space
Tx(2) of trees with finite height, but possibly infinite width.

The above metric immediately applies to terms, regarded as elements of
Tr(X)), provided we use the following version of Barendregt’s convention: we
partition V into two sets V, and V¢, and we fix an injective function v : Px N —
Vy; then, we stipulate that all bound (resp. free) variables in terms belong to
Vb (resp. Vy); furthermore, given a term t and a position a, we assume that,
whenever t(a) = Ax, we have, for all : € N, x(¢) = v(a,1).

Actually, we may directly define, by induction on terms, a closely related
family of ultrametrics:

Definition 4 (Inductive ultrametric on terms) We say that two terms are
isocephalous if they are either equal, or both abstractions, or both applications.
Then, given 0 < 1,72 < 1, we define an ultrametric d by induction on terms:
d is discrete on AY; given t,t' € A" d(t,t') = 1 as soon as t,t' are not



isocephalous, or have different heights; if they are isocephalous and of equal
height, we have two cases:

d(Ax.t1, Ax.t)) = yd(t1, 1)),

d(tyu, tju’) = v max <d(t1, 1), sup
ieN

d(u(i), U’(i))) .

9it1

Note that, in the abstraction case, we used a-equivalence to rewrite t and t' so
that the abstracted variables coincide. This, together with assuming the range
of x to be “fresh”, amounts to the Barendregt convention used above.t

It is not hard to see that, setting 1 = 72 = 1, one has d = max(ds, p).

Furthermore, all of the above metrics are uniformly equivalent, so the actual
value of v1,v2 does not matter. The interest is that the inductive definition is
sometimes more convenient than the definition on trees. In the following, we
shall use d to denote the inductive metric obtained by setting v; = v2 = 1.

Lemma 1 Regarded as a subset of (Tp(Xy), max(ds, p)), Moo is closed.

PROOF. Let t be a tree which is not a term. This means that ¢ contains an
“anomaly”, such as a node labelled by a variable which is not a leaf, or a node
labelled by Ax which has more than one sibling. This anomaly occurs at some
position a € P. Now, take any ¢ such that a € A, (this certainly exists); every
term in the open ball of radius € centered at ¢ contains the same anomaly, which
proves that Tp, (X)) \ A is open, hence A is closed. O

Lemma 2 (Approximations) For every t € As and n € N, there exists
[t]n € Ap such that
d([t]|n,t) <27

PROOF. We define |t],, by induction on ¢
o Ift € A%, |t], =t, for all n € N. Note that [t], is obviously finite.
e If t = Ax.t/, then |¢], = Ax.[t'|,. By induction, |t], is finite.

e If t = t'u, then |t], = [t']{(|u(0)]n,..., [u(n — 1)],), which, by induc-
tion, is obviously finite.

The inequality d([t]n,,t) < 27" may now be proved by a straightforward induc-
tion on t. 0

Proposition 3 (A, d) is the metric completion of (Ap,d).

ProOOF. We know that (Tx(X,), max(ds,p)) is complete; then, by Lemma 1,
and by the fact that d is uniformly equivalent to max(ds,p), (Ao, d) is itself
complete. Lemma 2 shows that A, is dense in A, so we conclude by uniqueness
of the completion. O

1These fastidious issues disappear if we consider so-called nameless terms, i.e., using de
Bruijn indices [dB72]. However, for the sake of readability, we chose to stick to the more
friendly “named” notation.



2.3 Cauchy-Continuity of Reduction

It is methodologically interesting to observe that the reduction relation on A,
which is not effective and may therefore have a dubious computational value,
may actually be inferred, in a unique way, from reduction in A.

Let a € P; we define a function R, : A, — A, as follows: Rg(t) = ¢’ if
there is a redex at position a in t (i.e., regarding t as a tree, t(a) = @ and
t(a0) = Ax), and we obtain ¢’ by reducing it; otherwise, R, (t) = t. We shall see
that each R, is Cauchy-continuous; then, by a standard result of analysis, each
R, uniquely extends to a continuous function on the completion A, i.e., the
Cauchy-continuity of reduction on A, automatically implies the existence of a
(unique) notion of reduction on A, (note that simple continuity would not be
enough).? Of course we already know this (we can define R, directly on As,),
but what we want to stress here is that, even if we were not able to explicitly
describe the terms of A, we would still know how to reduce them.

In the rest of this section, we shall concentrate on finite terms. Observe that
contexts (the definition of which may be adapted to the finite case in the obvious
way) are injective, so every context C establishes a bijection between A, and
C(Ap). This bijection may actually be seen to be a uniform homeomorphism,
when C(Ap) is considered as a metric subspace of A,. In other words, A, is
“isotropic”: its uniform structure does not change when we embed it in itself,
considering terms as subterms in any possible position.

Lemma 4 (Isotropy) FEvery context C' induces a uniform homeomorphism be-
tween Ap and C(Ap).

Proor. First, by a straightforward induction on C, using the inductive def-
inition of d, one can prove that contexts are short maps, i.e., for every t,t/,
d(C[t],C[t']) < d(t,t'). This shows that every C is a uniformly continuous
injection. We are therefore left with proving that the inverse function C~1 :
C(Ap) — A, is also uniformly continuous. This is done again by induction on
C'. The base case (the identity context) is trivial. For the inductive cases, we
only consider C' = wug(u1,...,ui—1,C" uiy1,...,uy,) for some context C’; the
other cases are analogous. Let € > 0; we must find a 6 > 0 such that, for all
t,t', d(C[t], C[t']) < ¢ implies d(t,t') < e. By induction hypothesis, we have a dy
such that d(C'[t],C"[t']) < 0o implies d(t,t") < e; but the inductive definition of
d gives us d(C[t], C[t']) = 27 1d(C"[t],C'[t']), so obviously § = 271§, yields
the desired property. (|

Observe how the metric d induces a metric on AéN), by setting d(u,u’) =
d(Lu, Lu’) (actually, L may be replaced by any other term, yielding the same
metric). Note that this is not equivalent to the metric yielding the topology
of pointwise convergence; in fact, this latter would admit Cauchy sequences
(un)nen in which the height of the terms in u,, is unbounded.

2Let X,Y be metric spaces. A function f : X — Y is Cauchy-continuous if it preserves
Cauchy sequences, i.e., whenever (n)nen is Cauchy in X, (f(2n))nen is Cauchy in Y. Uni-
form continuity implies Cauchy-continuity, which in turn implies continuity. The converse
implications fail in general; however, continuity implies Cauchy-continuity if X is complete,
while all three notions are equivalent if X is compact. Let X,Y denote the completions of
X.Y. A continuous function f : X — Y admits a continuous extension f : X — Y (by
“extension” we mean f(x) = f(z) for all € X) iff it is Cauchy-continuous. In that case, by
virtue of its continuity and of the density of X in X, f is a fortiori unique.



Lemma 5 (Application is a uniform homeomorphism) The application
map (t,u) — tu induces a uniform homeomorphism from the product of (A, d)

and (AéN), d) (with the product uniformity) to A;@, the subspace of terms which
are applications.

PRrROOF. Analogous to the the proof of Lemma 4. O

In the following, when we say that a certain property “eventually” holds for
a sequence (t,)nen, we mean that there exists n € N s.t. all ¢,4, have that
property, for all p € N.

Lemma 6 For every Cauchy sequence (tn)nen i (Ap,d), there exists h € N
such that eventually all t,, have height h and are isocephalous. Then, one of the
following holds:

1. eventually, t, = L, ort, = x for some x € V;

2. eventually, t, = Ax.t!,, and (t),)nen is Cauchy;

3. eventually, t, = t, uy, and both (t,)nen, (Un)nen are Cauchy.
Conversely, if (tn)nen and (uy)nen are Cauchy, then:
4) for all x € VY., (Ax.t,)nen is Cauchy;

inj’
5) (tnun)nen is Cauchy.

ProOOF. That a Cauchy sequence is eventually isocephalous is obvious; then,
point 1 is the case h = 0, and points 2 and 3 cover the case h > 0. Points 2 and
4 (resp. 3 and 5) are immediate consequences of Lemma 4 (resp. Lemma 5). O

Lemma 7 (Substitution is Cauchy-continuous) If (t,)nen and (u,)nen
are Cauchy sequences in (Ap,d) and (AéN),d), resp., then (tn[un/X])nen is
Cauchy in (Ap,d), for all x € Vilij.
PRrROOF. By Lemma 6, we may associate a height h with (¢,)nen; the result is
then proved by a straightforward induction on h, applying the various points of
Lemma 6. ([

Proposition 8 For every a € P, R, is Cauchy-continuous.

PROOF. By the Isotropy Lemma 4, it is enough to prove the result for R, (with
¢ denoting the empty word). Let (s,)nen be a Cauchy sequence. By Lemma 6,
either eventually all s,, contain a redex at position €, or eventually none of them
does. In the latter case, we may conclude; in the former, we have, eventually,
$n = (Ax.tp)uy, with (t,)neny and (uy,)nen both Cauchy, by Lemma 6. Then,
Re(sn) = tpuy/x], so we may conclude by Lemma 7. O

We remark that Proposition 8 cannot be improved, i.e., reduction is not
uniformly continuous. Indeed, define s, = (Axg...Zp—12n.2,) and uw, =
(L,...,L,y), with n occurrences of L; it is immediate to check that limu, =
() (whereas (sp)nen is not Cauchy). Then, if we let ¢, = s,u, and ¢, =
sn(), for every § > 0, there exists n € N such that d(¢,,t),) < J; and yet,
d(Re(tn), Re(ty,)) = d(y, L) = 1.

All the proofs of this section are still valid if we replace A, and Ag,N) with
A and B(As), resp., showing that reduction on infinitary terms as we naively
defined it in Sect. 2.1 is (Cauchy-)continuous. Therefore, if we demand topo-
logical compatibility with the usual, finitary reduction, that naive definition is
actually the only possible one.



3 The Affine Subcalculi

3.1 Affine Terms

Definition 5 (Affine terms) A term t € Ay is affine if every variable, free
or bound, appears at most once in t. We denote by A2F, Agff, and B(A2E) the
set of all affine terms, of all finite affine terms, and of all sequences of bounded

height of affine terms, resp.

Note that affinity is obviously preserved by reduction.
Proposition 9 (A2, d) is the metric completion of (AL, d).

PROOF. Observe that, whenever ¢t € AT the approximations ||, defined in
the proof of Lemma 2 are all affine. This shows that Agﬂ is dense in A*f. Then,
by completeness of A, it is enough to prove that A*T is a closed subset of
it. This may be done essentially by the same argument given in the proof of
Lemma 1. ([l

As a finite (polyadic) affine calculus, Agff enjoys strong normalization and
a strong form of confluence (the diamond property of —=, i.e., reduction in at
most one step). The former is proved by a size-decreasing argument; the latter
is a consequence of the absence of duplication.

Although infinitary, the calculus A2 is still affine, and enjoys the same
strong form of confluence (which is notoriously false in the A-calculus). As in
Sect. 2.3, we give a topological proof of this property, which does not suppose
we know how to explicitly describe infinitary affine terms (and their reduction).

Proposition 10 In A'gff, the relation —=, i.e., reduction in at most one step,
enjoys the diamond property.

PRrOOF. We start with a little analysis of how residues behave in Agff. Let 7/, r"
be distinct redexes at position a’,a” in the same term. We want to locate the
position af of the (at most unique) residue of r” after reducing r’. We say that
r’ contains v’ if a’ < a” in the prefix order. Assuming that r” does not contain
r’ (which, by symmetry, is a redundant situation), we have four possibilities:

i) 7' does not contain r”’; then, af = a”;
) a” = a’00b; then, af = a'b;
iii) a” = a’ib, with ¢ > 0, and r” has no residue at all;

a’ = a'ib, with i > 0, and " has a (unique) residue; then, af = a'b'b, for
some b’ € P which depends on the position of the substituted variable.

In all four cases, ' has exactly one residue after reducing r”’, and its position
is always a’.

Now, let t € AT be such that ¢ =< ¢t —= #". We may suppose that both
reductions are strict, otherwise confluence is immediate. With the notations of
Sect. 2.3, we have R,/ (t) =t/ and Ry (t) = t”, for some o’,a” € P. Of course
we may assume a’ # a’’, otherwise ¢ = t”. By Proposition 9, there is a sequence
of finite affine terms (¢,)nen such that limt¢,, = ¢; moreover, every t,, eventually
contains redexes at oa’,a”, and, if we let t|, = R, (t,) and t!! = R, (t,), by
continuity of reduction we have ¢’ = lim¢/, and ¢ = lim¢/.

10



Note that, in everyone of the four cases listed above, when we consider the
reduction t,, — ¢/ , for n sufficiently large the position in ¢/, of the residue (if any)
of the redex located at a” does not depend on n: for the first three cases, this
is evident; for the fourth case, the position depends on where the substituted
variable is, but this position will be the same for n sufficiently large (remember
that closer and closer terms coincide on more and more positions). Therefore,
for all n sufficiently large:

e if we arein casesi, ii, or iv, Ry (t),) = Rar(t),) = un, and we set u = lim u,;
e if we are in case iii, R/ (t])) =t),, and we set u =t'.

In both cases, t/ =~ u =« t”. O

On the other hand, strong normalization is a typical example of a “dis-
continuous” property, which does not extend to A2f. Indeed, the function
NF : Agff — Agff mapping each term to its unique normal form is not con-
tinuous, and has therefore no hope of being extended to A2f.

3.2 Uniformity

In what follows, we fix a denumerably infinite subset ¥ C Vﬁj, the elements of
which are called supervariables, such that the ranges of the functions in U form
a partition of V, i.e., for all x,y € U and 4,5 € N, x # y implies x(i) # y(j),
and for all z € V), there exist x € U and i € N such that x(i) = z, in which case

we say that x belongs to x.

Definition 6 (Uniformity) We define renaming equivalence, denoted by ==,
as the smallest partial equivalence relation on A such that:

o if x,x’ belong to the same supervariable, then x =~ x’;
o ift =1, then A\x.t = A\x.t' for every supervariable X;

o ift =1 and u,u’ are uniform sequences of terms such that u(0) = u’(0),
then tu ~ t'u’, where by uniform sequence we mean that, for all i,j € N,
u(i) = u(j) (and similarly for u’).

A term t is uniform if t =~ t. We denote by AL the set of uniform terms,
and by U(AL) the subset of B(AX) consisting of uniform sequences of uniform
terms. If u,u’ € U(AL) are such that u(0) ~ u'(0) (and hence, by symmetry
and transitiity, u(i) ~ u'(j) for all i,j € N), we write u = u’.

The finite term z(x() is not uniform, because, in the sequence (xg), z¢ % L
(indeed, L is not uniform). If the range of the supervariable x is xg, z1, z2, . . .,
the infinitary term u = z(xg,x1,x2,...) is uniform, whereas A\xoxozy ... .u is
not uniform, because the abstraction does not bind the whole range of the
supervariable; on the contrary, Ax.u is uniform.

Note that affine terms are obviously not closed under substitution, i.e., t €
A and u € B(AX) implies t[u/x] € A% only if the free variables of ¢ and u
do not intersect. In the following, we tacitly suppose this to be always the case.

Lemma 11 Let t,t' € A2 and u,u’ € U(AY) be s.t. t ~t' and u ~u’. Then,
for all x € G, tlu/x] ~ t'[u’/x].

11



PROOF. A straightforward induction on ¢. The case ¢ = z (which implies
t' = 2’) is the ounly interesting one. The hypothesis x ~ 2’ implies that either
none of x,z’ is in the range of x, in which case we conclude immediately, or
there exist i, € N s.t. x = x(4) and 2’ = x(¢'), in which case the hypothesis
that u = u’ allows us to conclude. (I

Lemma 12 For all t € A

o op)

ucU(AL), and x € U, tlu/x] € AL.

PROOF. We set ¢’ = t[u/x], and reason by induction on ¢. Let t = z. If 2 does
not belong to x, we conclude trivially; if © = x(i) for some i € N, ¢ = u(i),
which is uniform by hypothesis. The case t = Ay.t; is immediate. Suppose now
that ¢t = t1v; we have t’ = ¢]v’, where t| = t;[u/x] and v'(i) = v(i)[u/x] for all
i € N. The fact that #; and all the terms in v’ are uniform is a consequence of
the induction hypothesis, and the uniformity of v’ is an immediate consequence
of Lemma 11. O

In the following, we write t —, t' if t — ' by reducing the head redex (which
is defined as usual).

Lemma 13 Lett € AL . Then:
o t —p t' implies t' € AL ;
e furthermore, for allu~t, u —p u ~t'.

ProoF. Both points are by induction on ¢; point 1 uses Lemma 12, point 2
Lemma 11. (|

Lemma 13 does not extend to reduction in general; for instance, if u is a
closed uniform term s.t. u —, v/, then z(u, u,u,...) = z(u',u,u,...), which is
not uniform. However, we do know that z(u’,«’,«’, ...) is uniform; the idea then
is to define a notion of reduction which allows infinitely many parallel steps, so
as to preserve uniformity.

Definition 7 (Infinitary reduction) We define the relations =1 on Al
with k € N, as follows:

o (Ax.t)u = tlu/x];
o ift = t', then Ax.t =5, A\x.t';
o ift = t', then tu =, t'u;

o if u € UAL), and u(0) = uy, by uniformity the “same” reduction
may be performed in all u(i), i € N, obtaining the term uj. If we define
u'(7) =} for all i € N, we set tu =11 tu'.

We denote by = the union of all =, for k € N.

For instance, if I = Azoz122....20, and t = I[(I,1,1,...), we have

2{yo(t, ty .. )yt t, .., o) = 2(yolL, I, .. ), y1 (L, 1, ..., . .).

Note that = is infinitary iff £ > 0. Indeed, = is head reduction, which is not
infinitary.

Proposition 14 Lett € AL . Then:

12



o t =t implies t’ € AL ;
e furthermore, for allu~t, u = u ~t'.

PRrROOF. By definition, t = t' iff t =, ¢’ for some k € N. The proof is by
induction on k. Lemma 13 is the base case; the rest is straightforward. O

3.3 The Isomorphism with the Full Lambda-Calculus

In what follows, we denote by A the set of usual A-terms, ranged over by M, N, L.
We denote by —g usual S-reduction. The set of A-calculus variables is assumed
to be V.

We fix an injection ™-7: P — N. We also fix a bijection between A-calculus
variables and supervariables, and make the notational convention that the vari-
ables x,y, z are mapped to the supervariables x,y, z, resp. Then, for all a € P,
we define by induction the map [-]4 : A = A, as follows:

[z]a = x("a™)
M. M], = Ax.[M]a
[[MN]]a = [[M]]a0<[[Nﬂa1; [[N]]a2a [[Nﬂa?n .. >

Lemma 15 Let M € A and a,a’ € P.
1. [M], € A
2. [M]a = [M]a; in particular, [M]q € AL.

Proor. We claim that, given M, M’ € A and a,a’ € P, if a, a’ are incomparable
in the prefix order, then fv([M],)NEv([M']a) = §; by looking at how application
is treated in the definition of [-],, this is enough to prove point 1. Now, by
inspecting that same definition, we see that every variable in fv([M],) must be
of the form x("ab™), whereas every variable appearing in fv([M'],/) must be of
the form x'("a'd’7), for some x,x" € U and b,b’ € P. The fact that a,a’ are
incomparable means that, for all b,b’, ab # a’b’, so the claim follows from the
injectivity of T-7 and of supervariables (as functions from N to V), and the fact
that their ranges form a partition of V.

Now that we know that [M], is actually affine, point 2 may be proved by a
straightforward induction on M. O

We define a function () : AL — A, as follows:

) =2 (for all i € N)
(Ax.t) = Az.(¢t)
(ta) = () (u(0))

In the first case, we implicitly use that fact that the ranges of supervariables
form a partition of V, hence every variable is equal to x(i) for some x € ¥ and
1 €N

Lemma 16 For all t,t' € AL, t = t' implies (t) = (t)

PROOF. Immediate from the definition. O
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Lemma 17 Let (b;)ien be a sequence of positions which are pairwise in-

compatible in the prefix order. Given N € A, we define mbi =
(INTbo, [Ny, [Nbys - - -y € U(AL). Then, for all M, N € A, for every variable

x, for every a € P and every (b;)ien € P as above, [M[N/x]], = [[M]]a[mbi/x].

ProOF. By induction on M. If M = y # x, we conclude immediately; if
M = x, we use point 2 of Lemma 15. The case M = Ax.M; is immediate. Let
M = M; L. We have, using the induction hypothesis,

[M[N/a]la = [Mi[N/2]L[N/]L,
—  [MIN/allao LN a1y

[M1Lao [N o0 /5] ([Tt ([N T, /), [Eaa TN T, /),

—  [MilaolEagis ) [V]o: /%]

= ML ([N /)

Q

O

Lemma 18 For allt € AL, u e U(AL) and x € T, (t[u/x]) = (&) [(u(0))/x].

PROOF. By induction on ¢. Let t = y(i), for some y € U and i € N. If y # x,
we conclude immediately; otherwise, we use Lemma 16. The inductive cases are
straightforward. O

The applicative depth of a redex in the A-calculus is defined by induction:
(Ax.M)N is at applicative depth 0; if a redex is at applicative depth k in M,
then its applicative depth is k in A\z.M and M N, and k + 1 in NM. In the
following, we write M —gi M’ to denote the fact that M —3 M’ by reducing
a redex at applicative depth k (e.g., —go is head reduction).

Theorem 19 For all M € A, t € AL, and a € P:
1. ([M]a) = M;
2. [t)a ~ t;
3. M —pgr M’ implies [M], =5 t' = [M']q;
4. t = t' implies (t) —pr (t').

PRrROOF. All points are proved by straightforward inductions. Lemma 17 is used
in (3), and Lemma 18 in (4). O

Corollary 20 In the Curry-Howard sense, (A,—g) is isomorphic to (A )~
=)
4 Discussion and Perspectives

We shall now discuss some applications of the results presented above, along
with some comments on related work in the existing literature, and future per-
spectives.
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4.1 On Some Properties of Beta-Reduction

The isomorphism of Corollary 20 gives interesting insights on some well known
properties of reduction in the A-calculus.

Lemma 21 Let tg € A and suppose there is an infinite reduction sequence

to = t1 — to — --- such that every step reduces a residue of a redex of tg.
Then:

1. for every finite set of positions P C P, there exists n € N such that the
position of the redex reduced in t, — t,41 is not in P;

2. the height of all t,,, for n € N, is bounded.

Proor. Essentially, both points are consequences of the fact that, since the
height of ¢y is finite, no infinite chain of redexes successively containing another
may exist in tg.

For point 1, suppose, for the sake of contradiction, that the infinite reduction
does not fire redexes outside of a finite set P C P. Since the reduction is infinite,
we have that infinitely many redexes in the sequence have position a, for some
a € P, which we may choose of minimal length. Obviously, only one redex at
position a may exist in £y, so all the other redexes are residues of redexes of tg
that have “moved” during reduction. But, by considering the analysis of the
positions of residues made at the beginning of the proof of Proposition 10, which
applies without change to A we see that the only way of “moving” a redex
from position a” is by firing a redex at position a’ such that ¢’ < a”; moreover,
in that case, the position of the residue is still of the form a’b. Since a is of
minimal length, we have a redex which is fired at a and which “moves” another
redex from aa; to a, which in turn “moves” another redex from aas to a, and
so on. These redexes are all already present in ty, and their positions, which
are of the form aa; ...a, with ay,...,a, non-empty, contradict the fact that ¢y
is of finite height.

For point 2, let a; be the position of the redex fired in t; — ¢;11. Supposing
that the length of a; is large at will brings us to a contradiction, using similar
arguments as above. Then, the length of a; is bounded, and all a; (except
perhaps finitely many) are pairwise incomparable, which means that from some
t, onward the redexes are all independent, so the height is obviously bounded
(by twice the height of ¢,,). O

Theorem 22 (Complete developments) Let A be a set of redex positions
of a term t € A, Fizx a total ordering ag < ay < as < ... of A, of order type
at most w, and define the sequence (t,)nen by induction, as follows: ty = t;
tr, 1 is the reduct of t;, obtained by firing the only residue (if any) of ayn in t;,;
if there is no such residue, t;, | =t,,. Then:

1. the sequence (t))nen is Cauchy;
2. any ordering yields an equivalent Cauchy sequence.

PROOF. We may suppose (t),)nen to be non-stationary, otherwise it is trivially
Cauchy. Then, we may apply point 1 of Lemma 21: if we fix a finite P C P, forn
sufficiently large, the “activity” in the reduction sequence t;, —t;, | =t o —

- occurs all outside of P, which means that, for all p € N, ¢ (a) =t} ,(a)
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for all @ € P. Since P is large at will, ds(t),,t;,,,) is small at will. Point 2
of Lemma 21 guarantees that the height of the terms in (¢}, )nen is stationary,
which concludes the proof of point 1.

Take now a different total ordering of A, yielding the sequence (¢!),en. Since
this sequence too is Cauchy, for all € > 0, there exists n € N such that, for all
p € N, max(d(t;,, t;,,,),d(t,,t,,)) < e But both &}, ¢ are reducts of ¢, so by
Proposition 10, there exists w s.t. t}, =* u *« ¢/. Moreover, thanks to point 2
of Lemma 21, taking n sufficiently large guarantees us that all reducts of ¢/, and
t/' to obtain u have the same height (the height of u). Furthermore, observe
that these reductions do not alter !, and ¢!’ at positions within a certain finite
P C P, which is enough to guarantee that max(d(t),,u), d(u,t!)) < e. But d is
an ultrametric, so d(t),,t) < e, which proves the equivalence of the two Cauchy
sequences. (I

By Theorem 22, given t € A% and a set of redex positions A of ¢, me may
define ¢ — 4 t' by setting ¢’ = lim¢/, where (¢),)nen is any sequence induced
by a total ordering of A. Note that, for uniform terms, the reductions = of
Definition 7 are particular cases of this infinitary reduction.

The finiteness of developments, confluence, and standardization property
of the A-calculus may all be seen as consequences of Theorem 22. In fact,
Theorem 22 implies a strong form of the finite developments property (called
FD! by Barendregt [Bar84]); this, as is well known, may be used to prove the
Church-Rosser theorem and the standardization theorem (see Chapters 11.2 and

11.4 of [Bar84]).
Corollary 23 (FD!) Let M € A.

1. All developments of M are finite, and can be extended to a complete de-
velopment.

2. All complete developments of M end with the same term.

The result follows from Theorem 22 by considering the fact that a family
of redexes of M induces a (perhaps infinite) family of redexes of [M]. We
give a hopefully illustrating example. Consider M = (Az.zax)(II). The two
complete developments of its two redexes are M —g 2(II)(II) —3—p zII and
M —pg (Az.zzx)] —p zII. Translated in Al , using the notations x(i) = =;
and w = I{I,1,...), this gives t = (Ax.z{xo, x2,...){(x1,23,...)){u,u,...). Note
how, in the reduction t = z(u,u,...){u,u,...), no copy of any redex is made:
we have just distributed an infinite sequence of u’s to two infinite sequences.
Then, the two = reductions that lead to z(I, I,...)(I,I,...) are nothing but a
“splitting” of the infinite reduction t =1 (Ax.z{zo, x2,...){(z1,23,.. ), I,...)
which starts the other development. Theorem 22 says that the “splitting” is
always possible, and leads to the same result; indeed, the infinite reductions
may be performed sequentially, in any order (but the intermediate results are
not uniform).

In the end, Theorem 22 may be thought as saying that the A-calculus is
confluent because, morally, it is strongly confluent: the failure of the diamond
property is a sort of accident, caused by the fact that some reductions are
“split in two”. This idea is already present in Tait’s proof of the Church-Rosser
theorem, implicitly using the FD! property (Chapter 3.2 of [Bar84]).
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4.2 Head Normalization and Solvability

Another classic result of the A-calculus is the following:

Theorem 24 (Wadsworth [Wad71]) For every M € A, M is solvable iff M
has a hnf.

Once the standardization theorem is proved, this is an immediate corollary of
the fact that, if M N has a hnf, then M has a hnf. We shall sketch a proof of
this by a density argument.

First, let HNF : Agff — Agﬁ be the function assigning to each term its
normal form by head reduction (remember that A'gﬂ is strongly normalizing).
Then, define a hnf ¢t € A% to be proper if the head is a variable (and not L).

Lemma 25 In Agﬂ, HNF (tu) proper implies HNF (t) proper, and this latter hnf
is reached in at most as many steps as the former.

Proor. Immediate, by contraposition. (]
Now, looking at Theorem 19, we see that head reduction in A and AZ
perfectly match, i.e., no infinite reduction is needed in A% . So let M N have a
hnf P, and take (t,un)nen € AT s.t. lim¢, = [M] and limt,u, = [MN] (we
do not specify the parameter a € PP, since it is irrelevant). We have [MN] —7
[P] in k steps, which is a proper hnf, so HNF(¢,u,,) is eventually proper, so by
Lemma 25 HNF (¢,,) is eventually proper and is reached in at most k steps, which
means that [M] has a hnf, hence M also has a hnf, namely (lim HNF(¢,,)).

When we expand the details, the above proof cannot be claimed to be shorter
or simpler than Wadsworth’s original proof (see Chapter 8.3 of [Bar84]). How-
ever, we may say that it is conceptually simpler, in that it applies a general
strategy: prove a property in A'gﬂ, and verify that it “passes to the limit”.

As already noted above, not all properties of Agﬁ “pass to the limit”. In fact,
we have already mentioned at the end of Sect. 3.1 that the normal form map NF
is not continuous. The same may be said about the function HNF introduced
above. However, the continuity of a function depends on the topology we put on
its domain and codomain. We may then ask the following question: under what
conditions does HNF become Cauchy-continuous on A;ff, and hence uniquely
extendable to A*f? Under some reasonable assumptions about the uniform
structure of Agﬁ, we are able to give an exact answer.

Definition 8 (A-regular uniformity) Below, we denote by Ag (resp. Ag) the
set of finite terms which are abstractions (resp. applications), with the subspace
uniformity. A uniform structure on Ay is A-regular if it satisfies the following:

e for all x € Vﬁj, the injection Ax : A, — Ag mapping t to Ax.t, and its

inverse Az', are Cauchy-continuous;

X

e the injection Q : AprI(;,N) — A;@ mapping (t,u) to tu, and its inverse @1,

are Cauchy continuous, when we equip AéN) with the uniformity induced by

the injection u — Lu, and the product space with the product uniformity.

The uniform structure is furthermore said to be height-bounded if all Cauchy
sequences w.r.t. to it have bounded height.
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For instance, the uniformity induced by the metric d is A-regular, as shown
by Lemma 4, Lemma 5. It is also obviously height-bounded.

The fact that Agﬁ carries a A-regular, height-bounded uniformity is actually
equivalent to Lemma 6, if we further assume that VU{ L} is discrete. From that,
Lemma 7 can be proved, and the head reduction map H, sending each term to
its one-step head-reduct, may be shown to be Cauchy-continuous (however, we
do not believe this to be enough to show Proposition 8). Hence, we know how
to extend head-reduction to the metric completion Agﬁ, and we may therefore
speak of head-normalization for terms in the completed space.

Theorem 26 Suppose that Agﬂ 18 equipped with a A-regqular, height-bounded
uniform structure (as a subspace of Ap). Then, HNF is Cauchy-continuous on

Agff iff every term in the metric completion Agff is head-normalizing.

The backward implication is easy, and holds for every uniformity: by defi-
nition, one step of head-reduction H (¢) in Agﬂ is defined by taking a sequence
(tn)nen € AZT s.t. limt, = t, and setting H(t) = lim H(t,). Now, let (t,)nen
be a Cauchy sequence in A—gff; we have to show that (HNF(¢,))nen is Cauchy.
Since lim t,, head-normalizes in k steps, by the above definition every ¢,, head-
normalizes in at most k steps, so HNF(t,) = HF(t,), and we conclude by
stability of Cauchy-continuity under composition.

The proof of the forward implication is less trivial, and uses the following
program transformation:

.TT =2
Ox.t)T = Medx .t (k),
(tu)t = Me.tT (k())u',

where u' denotes the sequence obtained by applying (-)' to all terms of u. The
following fundamental properties may be proved by straightforward inductions:

Lemma 27 Lett € Agff.

1. t =y t' implies that t'(k) and t’T<k<>> head-reduce to the same term;
2. hence, t —3 HNF(t) in n steps implies
HNF (' (k)) = HNF(HNF(t) (k()™)),
where k()™ denotes the n-fold application k{)...();

3. if t is a hnf, then tT(k()") has a hnf whose height is at least n.

We reason by contraposition: we suppose the existence of t € Agff whose head
reduction does not terminate, and infer that HNF is not Cauchy-continuous.
Take a sequence (%, )nen such that lim¢,, = ¢, and consider (¢} (k))nen. By def-
inition of (-)' and A-regularity, this sequence in still Cauchy. Now, the lengths
of the reductions ¢, —} HNF(¢,) must be described by an unbounded func-
tion £ : N — N, for otherwise the head reduction of ¢t would terminate. By
point 2 of Lemma 27, HNF (¢} (k)) = HNF(HNF (¢,)t(k()*™)), so by point 3
of Lemma 27 the sequence (HNF(t! (k))),en has unbounded height, and, by
height-boundedness, cannot be Cauchy.
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Theorem 26 is a sort of “sanity check”: it would be embarrassing if HNF ()
were defined even if ¢ had no hnf. If the uniformity on Agﬁ is well behaved, this
cannot happen.

4.3 Comparison with Other Infinitary Lambda-Calculi

The investigation of infinitary rewriting was initiated by Dershowitz et al.
[DKPI1], and is still a growing research field. A survey on infinitary term
rewriting systems and infinitary A-calculi may be found in Chapter 12 of [Ter03].

The work which is most related to the present one is the paper by Ken-
neway, Klop, Sleep and de Vries (KKSV for short) on the infinitary A-calculus
[KKSAV97]. There, the authors define 8 different metrics on usual A-terms,
which may be referenced by a string abe with a,b,c € {0,1}. Each bit controls
whether the height of terms is allowed to grow indefinitely on one of the basic
constructors: a = 1 allows indefinite growth on abstractions; b = 1 (resp. ¢ = 1)
allows indefinite growth on applications in the function (resp. argument) posi-
tion. Each metric yields a different completion of the space of finite terms. For
instance, 000 is the discrete metric, 001 is a metric allowing Bohm-like trees in
the completion (terms which may be infinite on the argument side of applica-
tion, such as I(I(I...))), and the completion w.r.t. 111 contains terms whose
height is infinite in all possible ways.

This brief description highlights an immediate difference between KKSV’s
work and our own: we study terms which are possibly infinite in width, but finite
in height; KKSV’s focus is exactly dual. This is because KKSV are interested in
studying the notion of infinitary rewriting, namely reductions of possibly infinite
length, with no concern about affinity or duplication. On the other hand, our
aim is to describe finite reductions in the A-calculus in terms of non-duplicating
reductions. Of course, in order to do that, we too are led to consider reductions
of infinite length; but these are of a much simpler nature than the ones consid-
ered by KKSV. For instance, Theorem 22 is false in KKSV’s infinitary calculi,
where complete developments do not always exist (the infinite family of redexes
in the term I(I([...)) mentioned above has no complete development accord-
ing to KKSV’s notion of reduction). As a consequence, infinitary rewriting is
not confluent in general; in some cases, it is confluent up to a certain notion of
equivalence of meaningless terms. The main technical point is the absence, in
our calculus, of infinite chains of redex containment, which are possible if terms
are allowed to have infinite height.

Another interesting remark is that, by weakening our metric, we may easily
introduce terms with infinite height in the completion of Agﬂ. For instance, the
completion of (Agﬁ, ds) contains affine terms which are infinite in every way,
in height as in width, as in KKSV’s metric 111. Then, presumably, one might
be able to develop all of KKSV’s theory starting from A'gﬂ, instead of the full
A-calculus. More in general, studying terms of infinite width (as opposed to
height) seems to be a novelty in the context of infinitary rewriting, which may
be worth exploring.

4.4 The Proof-Theoretic Perspective

This work originated from the following result, first mentioned by Girard [Gir87],
and recently used as the underlying idea of a categorical construction for the
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free exponential comonad in models of linear logic [MTT09]. Given n € N
and a linear logic formula A, define |,A = (A& 1) ® - @ (A & 1), n times,
and 7,A = (!,AY)*. Let 014 denote a formula obtained from A by replacing
every occurrence of subformula of the form !B in A with !, B for some n (not
necessarily the same for every occurrence), and similarly for o A.

Theorem 28 (Approximation) Let A be a provable formula of propositional
linear logic. Then, for every oy, there exists o7 s.t. or01A is provable in the
multiplicative additive fragment.

In some sense, the Approximation Theorem says that multiplicative additive
propositional linear logic is “dense” in propositional linear logic. We remind that
the multiplicative additive fragment is the “purely linear” part of linear logic,
where structural rules are completely forbidden.

Our motivation was to give a formal status to the above intuition. The cur-
rent results concern untyped calculi, and are therefore not satisfactory from the
point of view of proof theory. However, the same ideas presented here may be ap-
plied, mutatis mutandis, to Girard’s ludics [Gir0l], an untyped, game-theoretic
framework from which multiplicative additive linear logic may be recovered.
Our preliminary results give a new solution to the question of modeling the
exponential modalities in ludics, alternative to the one proposed by Basaldella
and Faggian [BF09]. For the reader familiar with the terminology of ludics, our
solution is based on infinite ramifications, which are consistent with the fact
that, read bottom-up, an exponential rule creates unboundedly many loci for
unlimited (affine) use during the rest of the proof.

4.5 Other Directions for Future Work

Results like Theorem 26 open intriguing questions about the existence of other
metrics than the one considered here. For the time being, we have conducted a
preliminary attempt at classifying the metrics satisfying Definition 8, and none
of the metrics found so far has remarkable properties. However, we are nowhere
near a complete classification (if this is possible at all), so we have no conclusive
remark to make yet.

In general, there is a want of algebraic structure in the A-calculus, on which
the uniform structure may rest upon. This makes exploring the above question
even more difficult, and brings up a whole new direction of research, aiming at
formulating calculi with more structured algebraic properties.

An example might be Ehrhard and Regnier’s resource A-calculus (which
is strongly related to Boudol’s A-calculus with multiplicities). It is plausible
that our results may be reformulated using resource A-terms, but exactly how
remains to be seen. Likewise, the relationship between the Taylor expansion of
A-terms [ER08] and our work is still to be understood.
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