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Implicit computational complexity

• From clocks to certificates:

vs.

• Ultimate goal: understanding why a program has a given complexity.

• E.g.: What does a polytime program look like?



An analogy: termination

• What does a terminating program look like?

• Subsumes an undecidable problem, OK, but it doesn’t mean we can’t:

1. non-trivially characterize termination (e.g. intersection types);
2. find decidable criteria isolating an interesting subset of terminating

programs (e.g. simple types, ML polymorphism);
3. find programming languages whose programs intrinsically terminate

and which nevertheless have reasonable expressive power (e.g. primitive
recursive functions).



The polytime side of the analogy

Some of the things we will see:

1. d`PCF by Dal Lago and Gaboardi (2011).

2. DLAL by Baillot and Terui (2004), STA (Gaboardi and Ronchi 2007),
quasi-interpretations (Bonfante, Marion, Moyen 2007), . . .

3. λ-calculi based on light logics (Girard 1998, Lafont 2003), ramification
and predicative recursion (Leivant 1991, Bellantoni and Cook 1992,
Leivant and Marion 1993, Bellantoni, Niggl, Schwichtenberg 2000, . . . )



Example: Leivant via Bellantoni-Cook

• Idea: strings are both data (safe) and recursion templates (normal).

• Basic functions:
cond

. . .

ε

. . .

proj succ0 succ1 pred

• Closed under (well-sorted) composition, lifting
f

and predicative
recursion on notation:

rec[f0, f1, g](ε, ~x;~a) = g(~x;~a)

rec[f0, f1, g](zi, ~x;~a) = fi(z, ~x;~a, rec[f0, f1, g](z, ~x;~a))

• Polytime functions: normal inputs to safe output.



A linear (and trivial) example: the affine λ-calculus

• Remember cut-elimination in multiplicative linear logic:

→
A

A

A⊥
ax

cut
A

B⊥ ` A⊥
cut

cut

B B⊥
A⊥A⊗ `

cut

A B B⊥ A⊥

A⊗ B

→

• Number of steps bounded by the size of the initial proof net.

• Affine λ-calculus: t, u ::= x | λx.t | tu s.t. fv(t) ∩ fv(u) = ∅.



A parenthesis: the complexity/ies of MLL

• Cut-elimination (i.e., given two MLL proof nets, do they have the same
cut-free form?) is P-complete (Mairson and Terui 2003). We have
basically seen that it is in P; hardness is shown by encoding Boolean
circuits in MLL proof nets.

• Interestingly, MLL cut-elimination with atomic axioms is in L. The
algorithm uses the geometry of interaction! What’s hiding behind η?

• Correctness (i.e., is an MLL proof structure a proof net?) is NL-
complete (de Naurois and Mogbil 2009). There is a correctness criterion
the verification of which subsumes reachability.

• Provability (i.e., is the MLL formula A provable?) is NP-complete.
Can you see why it is in NP?



Naive set theory

• Terms: t, u ::= x | {x | A}

• Formulas: A,B ::= t ∈ u | t 6∈ u | A ∧B | A ∨B | ∀x.A | ∃x.A

• One-sided classical sequent calculus (LK), plus

` Γ, A[t/x]
` Γ, t ∈ {x | A} ∈

` Γ,¬A[t/x]
` Γ, t 6∈ {x | A} 6∈

• Standard cut-elimination rules, plus the obvious one for membership.



Russel’s antinomy

• Define:

M := x 6∈ x,
r := {x |M},
R := ¬M [r/x] = r ∈ r

• We have
` ¬R,R
` ¬R,¬R 6∈
` ¬R

` ¬R,R
` R,R ∈
` R

`

• As a consequence, cut-elimination does not terminate.



Naive set theory in MLL

• Terms: t, u ::= x | {x | A}

• Formulas: A,B ::= t ∈ u | t 6∈ u | A⊗B | A `B | ∀x.A | ∃x.A

• Usual multiplicative proof nets (without units), plus

t 6∈ {x | A}
∈ 6∈
A[t/x] A[t/x]⊥

t ∈ {x | A}

• Usual multiplicative cut-elimination rules, plus

→
A[t/x] A[t/x]⊥

cut
∈ 6∈

A[t/x]⊥A[t/x]

t ∈ {x | A} cut t 6∈ {x | A}



No contraction, no contradiction

• Define M , r and R as before. It is still true that R is equivalent to R⊥

(i.e., (R( R⊥)⊗ (R⊥( R) is derivable).

• However, the empty sequent is no longer derivable!

Why?



No contraction, no contradiction

• Define M , r and R as before. It is still true that R is equivalent to R⊥

(i.e., (R( R⊥)⊗ (R⊥( R) is derivable).

• However, the empty sequent is no longer derivable!

• Because cut-elimination holds by the usual argument:

size-decrease + preservation of correctness

• Girard’s insight: the key is untyped cut-elimination, i.e., a cut-elimination
proof not relying on formulas.



Russel’s antinomy in MELL

• Remember the translation of classical negation in linear logic:
R is equivalent to !R⊥.

?R

ax

∈

?d

?c

!R⊥?R

R

cut

6∈

!

?R

?R

?R !R⊥

R⊥

ax

∈

?d

?c

!R⊥?R

R



Russel’s antinomy in MELL

• Remember the translation of classical negation in linear logic:
R is equivalent to !R⊥.

?R

cut?R

ax

∈

?d

?c

!R⊥?R

R

6∈

!

?R

?R

!R⊥

R⊥

ax

∈

?d

?c

!R⊥?R

R

6∈

!

?R

?R

R⊥

!R⊥cut

ax

∈

?d

!R⊥?R

R



Russel’s antinomy in MELL

• Remember the translation of classical negation in linear logic:
R is equivalent to !R⊥.

R

?R

ax

∈

?d

?c

!R⊥?R

R

6∈

?R

?R

R⊥

ax

∈

?d

?c

!R⊥?R

R

6∈

!

?R

?R

R⊥

!R⊥cut

cut

ax

∈

!R⊥?R



Russel’s antinomy in MELL

• Remember the translation of classical negation in linear logic:
R is equivalent to !R⊥.

?R

?R

ax

∈

?d

?c

!R⊥?R

R

?R

?R

ax

∈

?d

?c

!R⊥?R

R

6∈

!

?R

?R

R⊥

!R⊥cut

cut

ax !R⊥



Russel’s antinomy in MELL

• Remember the translation of classical negation in linear logic:
R is equivalent to !R⊥.

cut

ax

∈

?d

?c

!R⊥?R

R

?R

?R

ax

∈

?d

?c

!R⊥?R

R

6∈

!

?R

?R

R⊥

!R⊥



Opening boxes, boxing boxes
• Remember the depth of a proof net: it is the maximum number of boxes

nested one into the other. It is altered by two cut-elimination steps:

→

cut

pax pax !

π′

→

π

pax !

π

pax !

π′

!pax pax
cut

cut

ππ

pax ! ?d

cut

• Depth-changing is needed in Russel’s antinomy!



ELL: functorial boxes

• We eliminate ?d links, and replace boxes with functorial boxes:

?

π

?

?Cn

C1 Cn

?C1 !A

!

A

• Cut-elimination does not alter the depth:

?

→

π′π

cut

!

π′π

!
!

cut
? ? ?

?



Untyped cut-elimination
• We consider 3 cut-elimination steps: axiom, multiplicative, exponential

(contraction/weakening + functorial box).

• Let |π|i be the size of the proof net π at depth i ≥ 0, and let |π|i = 0
for all i < 0. If π has depth d, we define

απ : N → N
n 7→ |π|d−n

• We see απ as an ordinal < ωω and verify that

π → π′ implies απ > απ′.

• Correctness is preserved, so we have (untyped) cut-elimination!



Quantifying the runtime

• When we operate at depth i, nothing happens at depth j < i. So, if π
has depth d and normal form π′, we may go “depth by depth”:

π = π0 →∗ π1 →∗ π2 →∗ · · · →∗ πn →∗ πn+1 = π′, n ≤ d

– The length of πi →∗ πi+1 is bounded by |πi| (the size of πi);
– cut-elimination steps at most square the size of proof nets, so

|πi+1| ≤ |πi|2
|πi| ≤ 22

2|πi|
= 2
|πi|
3

• Therefore, the total runtime is bounded by

n∑
i=0

|πi| ≤
n∑
i=0

2
|π|
3i ≤ (n+ 1)2

|π|
3n ≤ (d+ 1)2

|π|
3d



Representing functions on strings

• A function f : {0, 1}∗ → {0, 1}∗ is representable in ELL if there are
k ≥ 0 and a proof net ϕ with two conclusions, i and o, such that

x =

0

⊗
ax

⊗
· · ·ax

`
ax

? ? !

ax

· · ·

︸ ︷︷ ︸
|x|

?c ?c
· · · · · ·

`
`
1

k

f(x)

...cut
→∗

i o

ϕx

!

!

• In fact, we are using Church strings: λf0.λf1.λz.fi1(. . . finz . . .).



A characterization of elementary functions

• Let π be the proof net obtained by cutting ϕ with x on i.

– |π| = Θ(|x|);
– the depth of π does not depend on x.

• Cut-elimination on Turing machines has only a polynomial slowdown.
Hence, all functions representable in ELL are elementary.

• Conversely, one may show that every elementary function may be
represented in ELL. Furthermore, we may restrict to intuitionistic
second-order typable proof nets, of type S ` !kS for some k ≥ 0, where

S := ∀X.!(X ( X) ( !(X ( X) ( !(X ( X),

which is a decoration of the system F type of Church binary strings.



LLL: forbidding exponential chains

• The exponential blow-up in the normalization of ELL is essentially due
to configurations such as the following:

· · ·

?

?c

? ! ?

?c

? !

cut cut cut

?

?c

? !

• LLL is defined by restricting to boxes with at most one auxiliary door.

• The total arity of contractions at depth i does not increase during
cut-elimination at depth i. Therefore, |πi+1| ≤ |πi|2, and we get

runtime ≤
n∑
i=0

|πi| ≤
n∑
i=0

|π|2
i
≤ (n+ 1)|π|2

n
≤ (d+ 1)|π|2

d



A problem of expressiveness

• Recall the representation of binary strings in ELL:

0

⊗
ax

⊗
· · ·ax

`
ax

? ? !

ax

· · ·

︸ ︷︷ ︸
|x|

?c ?c
· · · · · ·

`
`
1

• In LLL, this only works for strings of length at most 1. . .



The paragraph

• We re-introduce ?d links, plus a new unary link §.

• We define balanced cycles (ignoring switches!!!) by counting the number
of ?d and § links crossed going “up” and “down”:

unbalanced

?d
§

?d

?d

§

balanced

• A proof net with § links is balanced if all of its cycles are balanced (cycles
are allowed to jump between conclusions).



Levels

• A proof net is balanced iff there exists a labelling of its links in N s.t.

i + 1

? ! ?d ?c
i i

ii

?w

ax

`⊗
i i ii

i i

i i
i i

cut

ii i
§
i

i + 1 i + 1 i + 1

and all conclusions have the same label (Baillot and M. 2010, Boudes,
M. and Tortora de Falco 2013).

• This integer is the level of a link. It behaves very much like the depth.



Representing functions in LLL

• A function f : {0, 1}∗ → {0, 1}∗ is representable in LLL if there are
k ≥ 0 and a proof net ϕ with two conclusions, i and o, such that

x =

︸ ︷︷ ︸
|x|

?c ?c
· · · · · ·

`
`
10

⊗
ax

⊗
· · ·ax

`
ax

?d ?d §

ax

· · ·
k

f(x)

...cut
→∗

i o

ϕx

§

§

• We are using again Church strings, but with a different decoration.



A characterization of polytime functions

• Let π be the proof net obtained by cutting ϕ with x on i.

– |π| = Θ(|x|);
– the level of π does not depend on x.

• Cut-elimination on Turing machines has only a polynomial slowdown.
Hence, all functions representable in LLL are polytime.

• Conversely, one may show that every polytime function may be
represented in LLL. Furthermore, we may restrict to intuitionistic
second-order typable proof nets, of type S′ ` §kS′ for some k ≥ 0, where

S′ := ∀X.!(X ( X) ( !(X ( X) ( §(X ( X),

which is another decoration of the system F type of Church binary strings.



A word on the completeness proofs

• For ELL, it is possible to use recursive-theoretic characterizations
of elementary functions (e.g. Danos and Joinet (2003) use
Kalmar’s: elementary functions contain constants, projections, addition,
multiplication, equality test and are closed under composition, bounded
sums and bounded products).

• For LLL, it would be nice to use Bellantoni and Cook’s characterization,
but it doesn’t work. So we do things “manually” (Girard 1998):

– we show that LLL can encode one step of computation of arbitrary
Turing machines;

– we show that polynomials (on unary integers) are representable in
LLL;

– so we have Turing machines with polynomial clocks, and we are done.



A word on representations

• Observe that the type of binary strings, both in ELL and LLL, is
not what you would obtain by applying Girard’s (CbN) translation of
intuitionistic logic into linear logic:

∀X.!(!X ( X) ( !(!X ( X) ( !X ( X.

• In fact, let PNλ denote the set of all MELL proof nets which are CbN
translations of some λ-term, and let PNELL be the set of ELL proof
nets (embedded in MELL in the obvious way). Then

PNλ ∩PNELL = ∅.

• Moreover, there is no such thing as polarized ELL, LLL, etc.



Soft linear logic

• Replace the usual exponential rules of sequent LL calculus

` ?Γ, A
` ?Γ, !A

` Γ, A
` Γ, ?A

` Γ
` Γ, ?A

` Γ, ?A, ?A
` Γ, ?A

with

` Γ, A
` ?Γ, !A

functorial promotion
` Γ,

n︷ ︸︸ ︷
A, . . . , A
` Γ, ?A

multiplexing

• Untyped cut-elimination in O(sd) steps (size s, depth d), with a
marvelously simple proof. Entails polytime soundness.

• By contrast, proving polytime completeness is tricky. As a programming
language, SLL is far from user friendly. . .



A word on diagonalization

• How do we separate primitive recursive sets from recursive sets?
Diagonalization, of course:

{x ∈ {0, 1}∗ | ∃P prim. rec. x = pPq and P (x) = false} ∈ R \PR

• What happens if we diagonalize P? The set{
x ∈ {0, 1}∗ | ∃π ∈ SLL. x = pπq and

f

cut
→∗

πx

BS⊥S

}

cannot be in P by construction. Can you show an upper bound to
its complexity? (Following the recursion-theory analogy, it should be in
NP ∩ coNP, but probably it is not even in PSPACE. . . ).



Dual light affine logic

• Recall how, in LLL, we may actually restrict to intuitionistic, second-
order typed proof nets, i.e., λ-terms. The following type system is due
to Baillot and Terui (2004), using Barber and Plotkin (1997):

Θ;x : A ` x : A

Θ; Γ, x : A ` t : B
Θ; Γ ` λx.t : A( B

Θ; Γ ` t : A( B Θ; ∆ ` u : A
Θ; Γ,∆ ` tu : B

Θ, z : A; Γ ` t : B
Θ; Γ ` λx.t : A⇒ B

Θ; Γ ` t : A⇒ B ;x : C ` u : A
Θ ∪ z : C; Γ ` tu : B

; Γ,∆ ` t : A
Γ; §∆ ` t : §A

Θ; ∆ ` u : §A Θ; Γ, x : §A ` t : B
Θ; Γ,∆ ` t[u/x] : B



Dual light affine logic

Θ; Γ ` t : A
Θ; Γ ` t : ∀X.A

Θ; Γ ` t : ∀X.A
Θ; Γ ` t : A[B/X]

Theorem. The functions definable by λ-terms of type S′( §kS′ in DLAL
are exactly the polytime functions.

• However, there’s an issue of intensional expressiveness: although every
polytime function f : {0, 1}∗ → {0, 1}∗ admits a DLAL-typable λ-term
t computing it, t is most likely to be very contrived, i.e., it may look
nothing like the λ-term you would write to compute f .

• A system with similar properties, STA (Soft Type Assignment), based
on affine SLL instead of LLL, was introduced by Gaboardi and Ronchi
Della Rocca (2007). It suffers from a similar problem.



The sub-elementary hierarchy within ELL

• Baillot (2011) has shown how, using fixpoints in (affine) ELL types, one
may obtain the following characterization (we stipulate 0-EXP=P):

Theorem. n-EXP (with n ≥ 0) is the class of languages decidable by
ELL proof nets of type !S ` !2+nB, where B = ∀X.X ( X ( X.

• Later, Laurent has shown how to obtain the same characterization in the
untyped framework (which was our choice in this lecture).

• The idea is that, to know the value of a Boolean (the “answer”) one
may stop normalizing at the depth where the Boolean is.



The categorical perspective

• Quick recap on categorical models of MELL:

– a ∗-autonomous category (L,⊗, 1,⊥);
– a monoidal comonad (!, dig, der) on L. . .
– . . . such that every !A is a commutative comonoid;
– (and the free !-coalgebra and the comonoid structure interact nicely).

• A model of ELL drops the condition that ! is a comonad. The ! functor
of LLL further drops the monoidality requirement.

• Paradox: although being a model of ELL is “easier”, in practice it is hard
to find a strict one! In fact, the simplest way to model exponentials is
to construct !A as the free commutative comonoid, which automatically
yields a model of MELL (a Lafont category, as most practical models).



Objects with involutions

• Let C be your favorite category. An object with involutions is a pair
(A, s) such that A is an object of C and s = (sk)k∈Z is a family of
involutions of A (i.e., sk ◦ sk = idA for all k ∈ Z).

• A morphism between objects with involutions (A, s), (B, t) is a morphism
f : A→ B of C such that tk ◦ f ◦ sk = f for all k ∈ Z.

• Objects with involutions of C and their morphisms form a category InvC.
Moreover, if C is a model of MELL, then so is InvC.

• Define an endofunctor of InvC by §(A, s) = (A, (sk−1)k∈Z), and acting
as the identity on morphisms. If we define !′ = ! ◦ §, we obtain a strict
model of ELL (plus paragraph): !′ is a monoidal functor which is not a
comonad but such that !′A is a commutative comonoid.



Further reading

• Characterization of space classes: PSPACE (Gaboardi, Marion, Ronchi
2008), L (Schöpp 2007). The classes L and coNL have also being
characterized using GoI5 (von Neumann algebras) by Girard (2010) and
Aubert and Seiller (2013).

• Systems related to bounded linear logic (Dal Lago and Hofmann 2010,
Dal Lago and Gabardi 2011).

• Sematic proofs of soundness, via intuitionistic realizability (Dal Lago
and Hofmann 2008) or classical (Krivine’s) realizability/forcing (Brunel
2013).

• Tons of other stuff, just ask me.


