
Séminaire Lotharingien de Combinatoire 54A (2006), Article B54Ah

THE HIVE MODEL AND THE

FACTORISATION OF KOSTKA COEFFICIENTS

R.C. KING, C. TOLLU, AND F. TOUMAZET

Abstract. The hive model is used to explore the properties of both Kostka coefficients
and stretched Kostka coefficient polynomials. It is shown that both of these may factorise,
and that they can then be expressed as products of certain primitive coefficients and
polynomials, respectively. It is further shown how to determine a sequence of linear
factors (t+m) of the primitive polynomials, where t is the stretching parameter, as well
as a bound on their degree in the form of a simple formula which is conjectured to be
exact.

Résumé. Nous utilisons le modèle des ruches pour étudier les propriétés des cœfficients de
Kostka et des polynômes associés aux cœfficients de Kostka dilatés. Nous montrons que
les uns et les autres peuvent se factoriser : ils s’écrivent comme des produits de cœfficients
(respectivement polynômes) primitifs. En outre, nous montrons comment établir une suite
de facteurs linéaires (t+m) des polynômes primitifs (t est le paramètre de dilatation), et
proposons une formule simple donnant une borne supérieure de leur degré.

1. Introduction

There is no doubt that Kostka coefficients, Kλµ are interesting combinatorial objects.
They are indexed by pairs of partitions λ and µ, and are non-zero if and only if these
partitions have the same weight and λ precedes µ with respect to the dominance partial
order on partitions [JK]. They count the number of semistandard Young tableaux of shape
determined by λ and of weight determined by µ, see for example [L, M, S2]. They also
count Gelfand-Tsetlin patterns, as described for example in [GT, S2]. These patterns are in
bijective correspondence with semistandard Young tableaux and also with certain K-hives,
introduced comparatively recently [KTT1] as a variation on the hives used to calculate
Littlewood-Richardson coefficients [KT, KTW, B]. These K-hives are triangular arrays of
non-negative integers with borders of length n labelled by the parts of the partitions 0, λ
and µ, where 0 = (0, 0, . . . , 0). Counting such K-hives gives Kλµ.

Multiplying all the parts of the partitions λ and µ by a stretching parameter t, with t a
positive integer, gives new partitions tλ and tµ. Since the weights of tλ and tµ are simply
those of λ and µ multiplied by t, and this scaling preserves dominance partial ordering, it
follows that Ktλ,tµ is non-zero if and only if Kλµ is non-zero.

By way of a non-trivial example, for n = 9, λ = (9, 5, 2, 2, 2, 2, 1) and µ = (5, 5, 5, 3, 1, 1, 1,
1, 1) it is found quite typically that

(1.1) Ktλ,tµ =
1

24
(t+ 1)2(t+ 2)(5t+ 2)(t2 + 3t+ 6)
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These functionsKtλ,tµ are necessarily quasi-polynomials in t since they enumerate integer
points of rational polytopes subject to a scaling by t [E, S1]. However, contrary to initial
expectations [BK], these rational polytopes may, and indeed sometimes do, possess non-
integral vertices [KTT1, DeLM]. Despite this, it has been proved [KR, K1, BGR] that
Pλµ(t) = Ktλ,tµ is always a polynomial in t.

A study of such K-polynomials has revealed a number of interesting features that are
illustrated in the above example. In particular, it appears that the coefficients in the
expansion of Pλµ(t) are all positive rational numbers. This remains a conjecture [KTT1].

Secondly, Pλµ(t) often contains a sequence of factors (t +m) for m = 1, 2, . . . ,M , with
M some non-negative integer. In the above example M = 2. More generally, both the
value of M and the degree, d of the K-polynomial appear to be difficult to predict from
a knowledge of n, λ and µ. Although the hive model does give an immediate bound,
d ≤ (n − 1)(n − 2)/2, on the degree, it can be seen in the above n = 9 example that we
have d = 6, so that the bound is far from being saturated.

It is also found that under certain circumstances there exists a factorisation of the form

(1.2) Pλµ(t) = Pσζ(t) Pτη(t)

for some σ, τ , ζ and η such that λ = (σ, τ) and µ = (ζ, η), where the notation is intended to
signify that the list of parts of λ are simply those of σ followed by those of τ , and similarly
for µ. In the above example we have P9522221,555311111(t) = P9522,5553(t) P221,11111(t) with

(1.3) P9522,5553(t) =
1

2
(t+ 1)(5t+ 2) and P221,11111(t) =

1

12
(t+ 1)(t+ 2)(t2 + 3t+ 6).

In this presentation, our intention is to exploit the hive model to study the properties
of stretched Kostka coefficient polynomials. We first derive combinatorially the precise
conditions under which such K-polynomials factorise as products of certain primitive K-
polynomials. In the case of any primitive K-polynomial we then show how to determine the
precise range of values, 1 ≤ m ≤M , such that the K-polynomial contains a factor (t+m).
This is done by giving an interpretation of Pλµ(t) for negative integer values of t. Finally,
we obtain a formula for an explicit bound on the degree d of a primitive K-polynomial
which we conjecture is always saturated.

Our analysis covers not only the Kostka coefficients Kλµ and the K-polynomials Pλµ(t) in
which µ is a partition, but also Kλβ and Pλβ(t) in which β is, more generally, a weight. The
combinatorial proof of the factorisation theorem in this case is presented in an Appendix.

2. Kostka coefficients

Let n be a fixed positive integer. For any α = (α1, . . . , αn) ∈ Zn let |α| = α1 + · · · + αn

be the weight of α, let #α = n be the number of components of α and let the symmetric
group Sn act naturally on the components of α. Let λ = (λ1, . . . , λn) be a partition of
length ℓ(λ) ≤ n and weight |λ| with λ1 ≥ · · · ≥ λn ≥ 0. Then |λ| = λ1 + · · · + λn with
λi > 0 for i ≤ ℓ(λ) and λi = 0 for i > ℓ(λ). It is sometimes convenient to write λ in terms
of its distinct parts, that is to set λ = (κv1

1 , . . . , κ
vm
m ) with κ1 > · · · > κm ≥ 0 and vj > 0
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for j = 1, . . . , m. Then |λ| = v1κ1 + · · · + vmκm with v1 + · · · + vm = n, and ℓ(λ) = n if
κm > 0 and ℓ(λ) = n− vm if κm = 0.

Definition 2.1. Let x = (x1, . . . , xn). Then to each partition λ with ℓ(λ) ≤ n there
corresponds a Schur function sλ(x) defined by

(2.1) sλ(x) =

∣

∣

∣
x

n+λj−j

i

∣

∣

∣

1≤i,j≤n
∣

∣xn−j
i

∣

∣

1≤i,j≤n

.

Since sλ(x) is a ratio of two alternants, it is a symmetric polynomial in the components
x1, . . . , xn of x. Indeed, the Schur functions {sλ(x) | ℓ(λ) ≤ n} constitute a linear basis of
the algebra of symmetric polynomials in the set of variables {x1, . . . , xn}.

Definition 2.2. The expansion of each Schur function in terms of monomials takes the
form

(2.2) sλ(x) =
∑

β

Kλβx
β ,

where the summation is over all β = (β1, . . . , βn) and xβ = xβ1

1 · · ·xβn
n . The coefficients

Kλβ are known as Kostka coefficients.

The Schur functions defined by (2.1) also have a combinatorial interpretation from which
it is possible to evaluate the Kostka coefficients.

Each partition λ with ℓ(λ) ≤ n specifies a corresponding Young diagram F λ of shape
λ. This consists of |λ| boxes arranged in ℓ(λ) left-adjusted rows of lengths λ1, λ2, . . . , λℓ(λ).
Furthermore, there exists a set, T λ(n), of semistandard tableaux T . Each such T is a
numbering of the boxes of F λ with entries from {1, 2, . . . , n} such that they are weakly
increasing across rows and strictly increasing down columns. Any such T ∈ T λ(n) is said
to have weight wgt (T ) = (#1′s ∈ T,#2′s ∈ T, . . . ,#n′s ∈ T ) where #k′s ∈ T is the
number of entries k in T for k = 1, 2, . . . , n.

Typically, for n = 3 and λ = (3, 2, 0) we have

F 32 = T 32(3) ∋ T = 1 1 3

2 3

with wgt (T ) = (2, 1, 2).
It can be shown from the definition (2.1) that

(2.3) sλ(x) =
∑

T∈T λ(n)

xwgt (T ).

It then follows that we have:
Property 2.3. (see for example [L, p. 191], [M, p. 101].) Kλβ is the number of distinctly
labelled semistandard tableaux T ∈ T λ(n) of shape F λ and weight wgt (T ) = β, that is to
say with βk entries k for k = 1, 2, . . . , n.

The fact that sλ(x) is symmetric implies that the coefficients Kλβ are insensitive to the
permutations of the components of β, that is they possess:
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Property 2.4. For all w ∈ Sn we have Kλ,w(β) = Kλβ, and there must exist a partition µ
such that w(β) = µ for some w ∈ Sn, in which case Kλβ = Kλµ.

To specify those partitions λ and weights β for which Kλβ is non-zero it is convenient
to introduce the notion of partial sums of the parts of partitions and weights, and the
dominance partial order.

Definition 2.5. For any partition ν = (ν1, ν2, . . . , νn) and any weight α = (α1, α2, . . . , αn),
their partial sums are defined by

(2.4) ps(ν)i = ν1 + ν2 + · · ·+ νi and ps(α)i = α1 + α2 + · · ·+ αi for all i = 1, 2, . . . , n.

More generally, for any subset I = {i1, i2, . . . , ir} of N = {1, 2, . . . , n} of cardinality #I = r
with 1 ≤ r ≤ n let

(2.5) ps(ν)I = νi1 + νi2 + · · ·+ νir and ps(α)I = αi1 + αi2 + · · ·+ αir .

Definition 2.6. Given partitions λ and µ of lengths ℓ(λ), ℓ(µ) ≤ n, then λ is said to
dominate µ, and we write λ � µ, or more precisely λ �n µ, if

(2.6) ps(λ)i ≥ ps(µ)i for all i = 1, 2, . . . , n and |λ| = |µ|.

Moreover, λ is said to strongly dominate µ, and we write λ ≻ µ, or more precisely λ ≻n µ,
if

(2.7) ps(λ)i > ps(µ)i for all i = 1, 2, . . . , n− 1 and |λ| = |µ|.

We now have the following important condition for the non-vanishing of Kostka coeffi-
cients:

Theorem 2.7. Let λ and µ be partitions of lengths ℓ(λ), ℓ(µ) ≤ n, and let N = {1, 2,
. . . , n}. Then

(2.8) Kλµ > 0 ⇐⇒ λ �n µ

More generally, let λ be a partition of length ℓ(λ) ≤ n and let β be a weight with #β = n.
Then

(2.9) Kλβ > 0 ⇐⇒ |λ| = |β| and ps(λ)i ≥ ps(β)I for all I ⊆ N with i = #I > 0.

The first set of conditions (2.8) is well-known (see for example [JK, p. 44]), and the
second set of conditions (2.9) is a simple corollary following from the fact that if µ = w(β)
for some w ∈ Sn then ps(µ)i = ps(β)I for some I ⊆ N with i = #I, and ps(µ)i ≥ ps(β)J

for all J ⊆ N with i = #J .
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3. The hive model

An n-hive is an array of numbers aij with 0 ≤ i, j, i+ j ≤ n placed at the vertices of an
equilateral triangular graph. Typically, for n = 4 their arrangement is as shown below:

a13

a22

a00 a10 a20 a30
a40

a31

a03

a02

a01

a04

a12

a11 a21

Such an n-hive is said to be an integer hive if all of its entries are non-negative integers.
Neighbouring entries define three distinct types of rhombus, each with its own constraint
condition.

α

δ

ba α

c

δ

γ β

b d

c

δ

γ

γ d

R1: R2: R3:

a

a

β

αβ b

d

c

In each case, with the labelling as shown, the hive condition takes the form:

(3.1) b+ c ≥ a+ d

In what follows we make use of edge labels more often than vertex labels. Each edge in
the hive is labelled by means of the difference, ǫ = q − p, between the labels, p and q, on
the two vertices connected by this edge, with q always to the right of p. In all the above
cases, with this convention, we have α+ δ = β + γ, and the hive conditions take the form:

(3.2) α ≥ γ and β ≥ δ,

where, of course, either one of the conditions α ≥ γ or β ≥ δ is sufficient to imply the
other.

Although, for completeness, we have included hive conditions for all three types of
rhombus that appear in a general hive, it is only the type R1 and R2 hive conditions
that apply to what we call K-hives. For such K-hives the type R3 hive conditions will, in
general, be violated.

Definition 3.1. A K-hive is an integer hive satisfying the hive conditions (3.1), or equiv-
alently (3.2) for all its constituent rhombi of type R1 and R2 (but not R3), with border
labels determined by the zero partition or weight 0 = (0, 0, . . . , 0) with #0 = n, a partition
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λ with ℓ(λ) ≤ n and a weight β with #β = n, satisfying the constraint |λ| = |β|, in such a
way that a0i = 0 for i = 0, 1, . . . , n, aj,n−j = ps(λ)j = λ1 + λ2 + · · ·+ λj for j = 1, 2, . . . , n,
ak,0 = ps(β)k = β1 + β2 + · · ·+ βk for k = 1, 2, . . . , n.

Schematically, we have
0

0

0

0

|β| = |λ|

· · ·· · ·

β1 β1 + β2

λ1 + λ2

λ1

Alternatively, in terms of edge labels we have:

· · ·

0

0

0

βn· · ·β2β1

λ1

λ2

· · ·

λn

With this definition, we then have:

Proposition 3.2. [KTT1] The Kostka coefficient Kλβ is the number of K-hives with border
labels determined as above by λ and β.

Proof. Thanks to Property 2.3, it is only necessary to establish a bijection between the
set of all semistandard tableaux T ∈ T λ(n) of weight wgt (T ) = β and the set of all K-
hives with boundary specified as in Definition 3.1. This bijection comes about through the
existence of a sequence of maps exemplified as shown below.

T = 1 1 3

2 3
⇐⇒ G =

3 2 0
2 1

2

⇐⇒ Z =

0 3 5 5
0 2 3

0 2
0

⇐⇒ H =

0
0 3

0 2 5
0 2 3 5
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Each step from the semistandard tableau T to the K-hive H is a bijection. G is just the
Gelfand-Tsetlin pattern corresponding to T whose top row is the partition specifying the
shape of T , and whose successive rows thereafter are the partitions specifying the shape
of the sub-diagrams obtained from T by deleting all boxes containing the entries n, then
n − 1, and so on. The array Z is then formed by adding a diagonal of 0’s and forming
the cumulative rows sums of the entries in G. Finally, H is just a re-orientation of Z, and
corresponds to a K-hive, with all edges removed for the sake of clarity.

The upshot, quite generally, is that for all (i, j) with 0 ≤ i, j, i+ j ≤ n the entries of the
K-hive H are given by

(3.3) aij = # of entries ≤ (i+ j) in first i rows of T .

The fact that a0j = 0 follows immediately. Since the entries of T are strictly increasing
down each column, it follows that no entry i may lie below the ith row, and thus (3.3)
implies that ai0 = ps (β)i with βi = wgt (T )i = #i′s ∈ T , as required. Similarly, since all
entries of T are no larger than n, it follows that (3.3) implies that ai,n−i = ps (λ)i where λ
is the shape of T .

Again using (3.3), the hive decrements ∆ = b+ c− a− d = α− γ = β − δ arising from
rhombi of type R1 and R2 with a in the position (i, j) are given by:

R1 : ∆ = # of entries ≤ (i+ j) in row i+ 1 − # of entries ≤ (i+ j + 1) in row i+ 2 ;

R2 : ∆ = # of entries equal to (i+ j) in row i+ 1 .

The fact that numbers of entries k in each row r of T are non-negative, ensures that ∆ ≥ 0
in the R2 case, while the fact that they are weakly increasing across rows and strictly
increasing down columns ensures that ∆ ≥ 0 in the R1 case. Thus if T is semistandard,
then the map to H yields a K-hive.

Conversely, the map from any K-hive H to a tableau T always yields a semistandard
tableau, as can be seen by reversing the above arguments. The fact that ∆ ≥ 0 in the R2
case ensures that each row of T contains non-negative numbers of each distinct entry. If
these are arranged in weakly decreasing order across each row, then the fact that ∆ ≥ 0
in the R1 case implies that all the entries in row i + 1 immediately above the k’s in row
i+ 2 are less than k, that is the entries are strictly increasing down columns.

Thus the maps described above are bijective, and the Proposition 3.2 follows. �

As an example of the application of this Proposition, if n = 3, λ = (3, 2, 0) and β =
(2, 1, 2) then the corresponding K-hives take the form:

(3.4)

0
0 3

0 a 5
0 2 3 5

where once again for the sake of clarity all the hive edges have been omitted. Since the
only integer values of a satisfying the hive conditions (3.1) for all the constituent rhombi
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of type R1 and R2 are a = 3 and a = 2, it follows that K32,212 = 2. The corresponding
semistandard tableaux are, of course, given by:

(3.5) 1 1 2

3 3

1 1 3

2 3

It might be pointed out that when expressed in terms of edge labels, the hive conditions
(3.2) for all constituent rhombi of types R1 and R2 imply that in every K-hive the edge
labels along any line parallel to the right-hand edge of the hive are weakly decreasing from
top left to bottom right. This can be seen from the following 5-vertex sub-diagram.

α

β
γ

The edge conditions on the rhombi of type R1 and R2 in the above diagram give β ≥ γ
and α ≥ β, respectively, so that α ≥ γ, as claimed. This is of course consistent with the
edges of the right-hand boundary of each K-hive being specified by a partition λ.

4. Stretched coefficients

4.1. Polynomial conjectures. Now we are in a position to define and evaluate stretched
Kostka coefficients. The partition obtained from λ = (λ1, λ2, . . . , λp) by multiplying all of
its parts by the same positive integer, t, is denoted by tλ = (tλ1, tλ2, . . . , tλp). With
this notation, we refer to Ktλ,tβ as stretched Kostka coefficients, where t is said to be the
stretching parameter. It is not difficult to evaluate these stretched coefficients, particularly
through the use of the hive model, for a range of positive integer values of t.

For example, for λ = (3, 2) and µ = (1, 1, 1, 1, 1) the corresponding stretched Kostka
coefficients are given by

(4.1) Ktλ,tµ =
1

2
(t+ 1)(t2 + 2t+ 2).

The generating function for these coefficients takes the form:

(4.2) Fλµ(z) =
∞

∑

t=0

Ktλ,tµ z
t =

1 + z + z2

(1 − z)4
.

On the basis of this and many other examples we were led to the following:
Conjecture 4.1. [KTT1] For all partitions λ and µ such that Kλµ > 0 there exists a
polynomial Pλµ(t) in t with positive rational coefficients such that Pλµ(0) = 1 and Pλµ(t) =
Ktλ,tµ for all positive integers t.
Conjecture 4.2. [KTT1] Given that the degree of the polynomial Ktλ,tµ is d, the generat-
ing function for Ktλ,tµ takes the form Fλµ(z) = Gλµ(z)/(1−z)d+1, with Gλµ(z) a polynomial
of degree ≤ d having non-negative integer coefficients.

Much of these conjectures has now been proved. In particular the fact that Pλµ(t) is
polynomial appears to have been proved first by Kirillov and Reshetikhin [KR], with a more
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recent proof provided by Billey, Guillemin and Rassart [BGR]. In fact all that remains to
be answered are the questions of the positivity of the coefficients in Pλµ(t) and Gλµ(z).

Before looking in more detail at the nature of the polynomials Pλµ(t) we note:
Saturation Condition 4.3. [KTT1]

(4.3) Ktλ,tµ > 0 ⇐⇒ Kλµ > 0.

Proof. This can be seen immediately from Theorem 2.7 by noting that |tλ| = t |λ| and
ps(tλ)r = t ps(λ)r for all partitions λ and all r. It follows that

(4.4) Kλµ > 0 ⇐⇒ |λ| = |µ| and λ � µ ⇐⇒ |tλ| = |tµ| and tλ � tµ ⇐⇒ Ktλ,tµ > 0,

as required. �

Turning to the Conjecture 4.1 itself, the following key component has been established:
Theorem 4.4. [K1, BGR] Let λ and µ be partitions of lengths ℓ(λ), ℓ(µ) ≤ n such that
Kλµ > 0. Then Pλµ(t) = Ktλ,tµ is a polynomial of degree at most (n− 1)(n− 2)/2 in t.

Clearly, Property 2.4 then implies as a corollary of Theorem 4.4 that if Kλβ > 0 then
Pλβ(t) = Ktλ,tβ is also a polynomial in t with the same upper bound on its degree.

5. Factorisation

Berenstein and Zelevinsky [BZ] introduced the notion of primitive Kostka coefficients
and pointed out that every Kostka coefficient may be expressed as a product of primitive
Kostka coefficients. First we deal with the case Kλµ where λ and µ are both partitions.
Following Berenstein and Zelevinsky, we make the following definition.

Definition 5.1. Let λ and µ be partitions such that |λ| = |µ|, ℓ(λ), ℓ(µ) ≤ n and λ �n µ,
so that Kλµ > 0. Then Kλµ is said to be primitive if λ ≻n µ, that is ps (λ)r > ps (µ)r for
all r = 1, 2, . . . , n − 1. Conversely, if Kλµ is not primitive then there exists at least one
value of r, with 1 ≤ r < n, such that ps (λ)r = ps(µ)r.

If Kλµ > 0 but Kλµ is not primitive then Kλµ factorises in accordance with the following
theorem.

Theorem 5.2. Let λ, µ be partitions such that |λ| = |µ| and ℓ(λ), ℓ(µ) ≤ n, with λ �n µ
and ps(λ)r = ps(µ)r for some r such that 1 ≤ r < n. Let λ = (σ, τ) and µ = (ζ, η), with σ =
(λ1, λ2, . . . , λr), τ = (λr+1, λr+2, . . . , λn), ζ = (µ1, µ2, . . . , µr) and η = (µr+1, µr+2, . . . , µn),
then

(5.1) Kλµ = Kσζ Kτη.

We first give a combinatorial proof based on the use of semistandard tableaux, and then
a second combinatorial proof based on the use of K-hives.
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Proof 1. It follows from the definition of semistandard tableaux that no entry k of T ∈
T λ(n) may appear lower than the kth row of T . If ps (λ)r = ps (µ)r then all entries
1, 2, . . . , r completely fill the first r rows of T . This means that all the remaining entries
r+1, r+2, . . . , nmust fill the rows of T below the rth. Thus the top r rows of T constitute a
semistandard tableau Tr ∈ T σ(r) of shape F σ with entries taken from the set {1, 2, . . . , r},
while the bottom (n−r) rows of T constitute a second semistandard tableau T ∈ T τ (n−r)
of shape F τ with entries taken from the set {r + 1, r + 2, . . . , n}. Moreover, if any such
semistandard tableaux Tr of shape F σ and Tn−r of shape F τ are joined together to create
a tableau T of shape F λ with λ = (σ, τ), then T is itself semistandard since all the entries
in the bottom row of Tr, which are necessarily ≤ r, are strictly less than all the entries in
the top row of Tn−r, which are necessarily ≥ (r + 1).

Setting, x = y z with y = (x1, x2, . . . , xr) and z = (xr+1, xr+2, . . . , xn) it follows from
(2.3) that

sλ(x) =
∑

T∈T λ(n)

xwgt (T ) =
∑

Tr∈T σ(r)

∑

Tn−r∈T τ (n−r)

ywgt (Tr) zwgt (Tn−r).

It then follows from Property 2.3 that

Kλµ = #T ∈ T λ(n) with wgt (T ) = µ

= (#Tr ∈ T σ(r) with wgt (Tr) = ζ) · (#Tn−r ∈ T τ (n− r) with wgt (Tn−r) = η)

= Kσζ Kτη ,

as required. �

Proof 2. First it should be noted that the hypothesis λ �n µ implies that Kλµ > 0.
Moreover, we have ps(σ)i = ps(λ)i ≥ ps(µ)i = ps(ζ)i for i = 1, 2, . . . , r − 1 and |σ| =
ps(σ)r = ps(λ)r = ps(µ)r = ps(ζ)r = |ζ |. Thus σ �r ζ and hence Kσζ > 0. In addition we
have ps(τ)i = ps(λ)r+i−ps(λ)r = ps(λ)r+i−|σ| ≥ ps(µ)r+i−|ζ | = ps(µ)r+i−ps(µ)r = ps(η)i

for i = 1, 2, . . . , n − r, and |τ | = |λ| − |σ| = |µ| − |ζ | = |η|. Thus τ �n−r η and hence
Kτ,η > 0.

Now consider the K-hive with boundary determined by λ = (σ, τ)
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X

A

0

0

0

ζ η

τ

T

σ

0

0 ρ

The rules about edge sums are such that on the boundary of the triangular region T we
have |ζ | = |0| + |ρ| = |ρ|. Since |ζ | = |σ| we have |ρ| = |σ|. The same rules applied to the
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parallelogram X then imply that the sum of the edge lengths on the boundary between
X and A must be |0| + |σ| − |ρ| = 0. Since X can be viewed as a collection of rhombi of
type R2, applying the hive condition β ≥ δ to each of these rhombi implies that the edge
lengths on the lower right boundary of X must be non-negative. Since their sum is zero,
they must all be zero, as indicated in the diagram. The α ≥ γ hive condition for R2 may
then be applied to these same rhombi constituting X, yielding the constraints ρi ≤ σi for
i = 1, 2, . . . , r. Since |ρ| = |σ|, we must have ρi = σi for i = 1, 2, . . . , r, that is ρ = σ.

Thus each K-hive H with boundary λ and µ consists of a parallelogram X in which all
edge lengths are fixed, together with a K-hive T with boundary σ and ζ , and a second
K-hive A with boundary τ and η. The hive conditions for H imply those appropriate to
T and A.

In order to prove the required factorisation (5.1) it only remains to show that combining
all possible hives T and A with a parallelogram X of the appropriate boundary gives a
hive H in which all the hive conditions corresponding to rhombi crossing the boundaries
of T with X, and A with X, are automatically satisfied. Since, for K-hives we only use the
rhombi of type R1 and R2, it is clear that no such rhombus crosses the boundary between
T and X, while only rhombi of type R1 cross the boundary between A and X. One such
rhombus has been shown above.

We may look in more detail at such a rhombus by means of the following diagram which
shows a strip one edge length wide on either side of the A−X boundary.

0

0

0

0α

β
δ

γ

σr

ρr

A

X
τ1

With the edge labels as shown, the R2 rhombus condition applied in the region A just
below the A − X boundary gives δ ≤ τ1, while the same rhombus condition applied in
the region X just above the A − X boundary gives ρr ≤ β ≤ σr. Since ρr = σr and
τ1 = λr+1 ≤ λr = σr, we have δ ≤ τ1 ≤ σr = β. However, this is just what is required to
satisfy the R1 condition (3.2).

This completes the proof of the K-hive factorisation theorem. �

Repeated use of this theorem allows any non-primitive Kostka coefficient Kλµ to be
expressed as a unique product of primitive Kostka coefficients Kσζ . It is only necessary at
each stage to factor out the term meeting the hypotheses of the above Theorem 5.2 with
the smallest possible value of r.
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Applying the above argument to stretched Kostka coefficients immediately gives the
following:

Theorem 5.3. Let λ, µ be partitions such that |λ| = |µ| and ℓ(λ), ℓ(µ) ≤ n, with λ �n µ
and ps(λ)r = ps(µ)r for some r for which 1 ≤ r < n. Let λ = (σ, τ) and µ =
(ζ, η), with σ = (λ1, λ2, . . . , λr), τ = (λr+1, λr+2, . . . , λn), ζ = (µ1, µ2, . . . , µr) and η =
(µr+1, µr+2, . . . , µn), then for all positive integers t we have

(5.2) Pλµ(t) = Pσζ(t) Pτ,η(t).

An example of this type of factorisation has been provided in the introduction in (1.3).
It is quite instructive from a combinatorial point of view, although not strictly necessary

by virtue of Property 2.4, to extend the above analysis to the case of Kostka coefficients
Kλβ for which the weight β is not necessarily a partition. In this case Kλβ is said to be
primitive if |λ| = |β| and ps(λ)r ≥ ps(β)I for any proper subset I of N = {1, 2, . . . , n}
with r = #I.

In the non-primitive case, we have:

Theorem 5.4. Let λ be a partition with ℓ(λ) ≤ n, and let β = (β1, β2, . . . , βn) be a weight
such that |λ| = |β| and ps(λ)i ≥ ps(β)I for any I ⊂ N , with i = #I. Then Kλβ is not
primitive if there exists a proper subset I = {i1, i2, . . . , ir} of N such that ps(λ)r = ps(β)I

with r = #I for some r for which 1 ≤ r < n. Let the complement of I in N be denoted by
I = {j1, j2, . . . , jn−r}. In such a case let σ = (λ1, λ2, . . . , λr), τ = (λr+1, λr+2, . . . , λn), ζ =
(βi1 , βi2, . . . , βir) and η = (βj1 , βj2, . . . , βjn−r

), so that λ = (σ, τ), with σ and τ partitions,
and β = ζ ∪ η, with ζ and η weights, not necessarily partitions, satisfying the partial sum
constraints |ζ | = |σ| and |η| = |τ |. Then

(5.3) Kλβ = Kσζ Kτη.

A complete combinatorial proof of this theorem, based on the use of hives, is presented
in an Appendix below.

Once again scaling everything by t is straightforward. If Kλβ is primitive then so is Ktλ,tβ

since all the partial sum conditions are scaled by the same factor t. By the same token the
factorisation occurs in the stretched non-primitive case just as it does in the unstretched
non-primitive case – all boundary edges are simply scaled by t, and as we have shown,
it is these boundary edges that completely determine the factorisation. Thus under the
hypotheses of Theorem 5.4 we have

(5.4) Pλβ(t) = Pσζ(t) Pτη(t).

This is illustrated for n = 6 and r = 3 by λ = (9, 6, 4, 4, 2, 0) and β = (2, 6, 3, 7, 6, 1),
for which ps(λ)3 = 19 = ps(β)I with I = {2, 4, 5}. In this case σ = (9, 6, 4), τ = (4, 2, 0),
ζ = (6, 7, 6) and η = (2, 3, 1). Correspondingly we find

(5.5) P96442,263761 = (t+ 1)(2t+ 1), P964,676 = (2t+ 1), P42,231 = (t+ 1),

thereby exemplifying the factorisation (5.4).
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It is interesting to note that the above factorisation of Kostka coefficients can be extended
to the case of q-dependent Kostka–Foulkes polynomials, Kλµ(q). These have a combinato-
rial definition in terms of the charge statistic on semistandard Young tableaux [M, p. 242].
By way of illustration, in the case of the above example we find

Kt(96442),t(766321)(q) = q3t q
t+1 − 1

q − 1

q2t+1 − 1

q − 1

Kt(964),t(766)(q) = q2t q
2t+1 − 1

q − 1

Kt(42),t(321)(q) = qt q
t+1 − 1

q − 1
.

6. The zeros of stretched Kostka polynomials

As has been noted the stretched Kostka polynomials Pλµ(t) contain factors (t +m) for
some sequence of values m = 1, 2, . . . ,M for some positive integer M . This is no accident.
In this section we describe a method of determining M for stretched Kostka polynomials.
It will be recalled that the Kostka coefficients are defined in terms of Schur functions by
(2.2). It then follows from (2.1) that Pλµ(t) = Ktλ,tµ is the coefficient of xtµ1

1 xtµ2

2 · · ·xtµn
n in

the expansion of

(6.1) stλ(x) =

∣

∣

∣
x

tλj+n−j

i

∣

∣

∣

∣

∣xn−j
i

∣

∣

This may be readily extended to the case t = −m with m a positive integer. Then
Pλµ(−m) = K−mλ,−mµ is the coefficient of x−mµ1

1 x−mµ2

2 · · ·x−mµn
n in the expansion of

s−mλ(x). However

(6.2) s−mλ(x) =

∣

∣

∣
x
−mλj+n−j

i

∣

∣

∣

∣

∣xn−j
i

∣

∣

=

∣

∣

∣
x
−mλn−k+1−n+k

i

∣

∣

∣

∣

∣x−n+k
i

∣

∣

,

where first xn−1
i has been extracted as a common factor from the ith row of each deter-

minant for i = 1, 2, . . . , n and cancelled from numerator and denominator, and then j
replaced by k = n − j + 1 with an appropriate reversal of order of the columns in both
determinants. If we now set xi = x−1

i for i = 1, 2, . . . , n and x = (x1, x2, . . . , xn), this gives

(6.3) s−mλ(x1, x2, . . . , xn) =

∣

∣

∣
x

mλn−k+1+n−k

i

∣

∣

∣

∣

∣xn−k
i

∣

∣

= smλn,...,mλ2,mλ1
(x).

Since x−mµ1

1 x−mµ2

2 · · ·x−mµn
n = xmµ1

1 xmµ2

2 · · ·xmµn
n it follows that Pλµ(−m) = K−mλ,−mµ is

the coefficient of xmµ1

1 xmµ2

2 · · ·xmµn
n in the expansion of the right hand side. It then follows,

replacing the dummy variables xi by xi for i = 1, 2, . . . , n, that Pλµ(−m) = K−mλ,−mµ is

the coefficient of xmµ1

1 xmµ2

2 · · ·xmµn
n in the expansion of smλ̃(x), where λ̃ = (λn, . . . , λ2, λ1)
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is the weight obtained by reversing the order of the parts of λ, including any trailing zeros.
Then to exploit the above it is only necessary to standardise

(6.4) smλ̃(x) = smλn,...,mλ2,mλ1
(x1, x2, . . . , xn) =

∣

∣

∣
x

mλn−k+1+n−k

i

∣

∣

∣

∣

∣xn−k
i

∣

∣

.

This is carried out in the usual way [L] by reordering the columns of the numerator deter-
minant. However there are two quite different possible outcomes:

(6.5) smλ̃(x) =

{

0 case (i);

ηρ sρ(x) with ηρ = ±1 case (ii).

For example, in the case n = 5 and λ = (4, 2, 1, 0, 0) we have λ̃ = (0, 0, 1, 2, 4). For m = 1
this gives smλ̃(x) = s0,0,1,2,4(x) = 0. Similarly for m = 2 we have smλ̃(x) = s0,0,2,4,8(x) = 0.
However, for m = 3 we obtain smλ̃(x) = s0,0,3,6,12(x) = −s8,4,3,3,3(x), while for m = 5 we
have smλ̃(x) = s0,0,4,8,16(x) = −s12,6,4,3,3(x).

More generally, the case (i) result 0 arises if and only if

(6.6) mλn−k+1 + n− k = mλn−l+1 + n− l

for some k and l such that 1 ≤ l < k ≤ n. In all other cases the formula given in case (ii)
applies for some partition ρ of length at most n and weight m|λ|, and ηρ = ±1 is a sign
factor recording the number of transpositions of columns of the numerator determinant of
(6.4) required to standardise the Schur function.

It follows that we can expect there to be a possibility of two types of zero of Pλµ(t) for
t = −m: type (i) associated with case (i) of (6.5), and type (ii) associated under certain
conditions on ρ and mµ with case (ii). Indeed adopting the notation of (6.5) we have the
following:

Proposition 6.1. Let λ and µ be such that Kλµ is primitive. Then Pλµ(t) = Ktλ,tµ contains
a factor (t+m) if and only if either case (i) applies and

(6.7) m = (j − i)/(λi − λj)

for some i and j such that 1 ≤ i < j ≤ n, or case (ii) applies and

(6.8) ps(ρ)k < mps(µ)k

for some k such that 1 ≤ k < n.

Proof. We have already noted that Pλµ(−m) = K−mλ,−mµ is the coefficient of
xmµ1

1 xmµ2

2 · · ·xmµn
n in smλ̃(x) = smλn,...,mλ2,mλ1

(x1, x2, . . . , xn). Thus if case (i) of (6.5) ap-
plies then Pλµ(−m) = 0, while if case (ii) applies then Pλµ(−m) = ηρKρ,mµ. The conditions
for case (i) to apply are given in (6.6). However, setting i = n − k + 1 and j = n − l + 1
leads immediately to the required case (i) conditions (6.7) for Pλµ(−m) = 0. Turning to
case (ii) of (6.5) Pλµ(−m) = ηρKρ,mµ will be zero by virtue of Theorem 2.7 if any one
of the partial sum conditions ps(ρ)k ≥ mps(µ)k for all k = 1, 2, . . . , n is violated. Since
|ρ| = m |µ| this leaves precisely the required case (ii) conditions (6.8) for Pλµ(−m) = 0. �
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We may extend our earlier example with n = 5 and λ = (4, 2, 1, 0, 0) by taking µ =
(3, 1, 1, 1, 1) for illustrative purposes. We have already seen that there are type (i) zeros,
independent of µ that arise for m = 1 and m = 2. These arise from (6.7) for the pairs
(i, j) = (3, 4) and (3, 5), respectively, leading to (j − i)/(λi − λj) = (4 − 3)/(1 − 0) = 1
and (5 − 3)/(1 − 0) = 2. For m = 3 we have a type (ii) zero since Pλµ(−3) = ηρKρ,mµ =
−K84333,93333 = 0 by virtue of the fact that ps(ρ)1 = 8 < 9 = ps(mµ)1. On the other hand
for m = 4 we have Pλµ(−4) = ηρKρ,mµ = −K12 6433,12 4444 = −3 which is non-zero, and the
same will be true for all m ≥ 4.

In view of our earlier remarks about the sequence of zeros of Pλµ(t) for t = −m with
m = 1, 2, . . . ,M , it comes as no surprise that we are able to elaborate on the above and
establish that the zeros are indeed consecutive and that for any primitive Kλµ we can
always find a finite M > 0 such that Pλµ(−m) = 0 for all m = 1, 2, . . . ,M , but thereafter
Pλµ(−m) 6= 0 for all m > M .

All this is borne out in our example with n = 5, λ = (4, 2, 1, 0, 0) and µ = (3, 1, 1, 1, 1)
for which

(6.9) Pλµ(t) = Ktλ,tµ =
1

60
(t+ 1)(t+ 2)(t+ 3)(3t2 + 7t+ 10),

for which M = 3 and we have consecutive zeros at t = −m with m = 1, 2, 3. Of these, as
we have seen, the first two are type (i) and the third is type (ii). The first non-zero case
occurs with t = −4 and we obtain from the explicit formula (6.9) the result Pλµ(−4) = −3
that we had found earlier. In fact for t = −m it is clear that (6.9) gives Pλµ(−m) < 0 for
all m > M = 3.

7. The degrees of stretched Kostka polynomials

As we have seen the calculation of stretched Kostka polynomials may be reduced to
that of calculating these polynomials in primitive cases only. Even so the task may be
combinatorially formidable. In any given case a knowledge of the degree of the polynomial
would be extremely advantageous. Here we establish an upper bound on this degree by
means of the following rather innocuous looking result. Let the edge labelling of a particular
5-vertex subset of a K-hive be as shown below in the left hand diagram, with two identical
labels α.

α

α

β

This diagram contains rhombi of type R1 and R2. The hive conditions (3.2) for the
former imply α ≤ β, while those for the latter give β ≤ α. It follows that β = α. This
result is displayed more simply by deleting all the edges except those sharing the same label
α, and suppressing the label itself. This gives the right hand diagram where the equality
of a pair of edge labels in a linear sequence forces an identical edge label in a neighbouring
line.
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Applying these notions to the case of K-hives with boundaries of length n and with
border labels determined by 0, λ and µ, it follows from the above that any equalities of
successive parts of λ propagate as equalities of edge labels within each possible K-hive. To
be more precise let all the λ-boundary edges be labelled by the parts of λ. If any sequence
of parts of λ share the same value, say α, then we can identify an equilateral sub-hive
having the sequence of equally labelled edges as one boundary, with its other boundaries
parallel to the 0 and µ-boundaries of the original hive. Within this sub-hive all the vertices
along lines parallel to the λ-boundary are to be connected by edges indicating that in any
K-hive the differences in values between neighbouring entries along these lines are all α.

This process is to be repeated for all sequences of equal edge labels along the λ-boundary.
Finally, all neighbouring vertices on all three boundaries are to be connected by edges. In
this way we arrive at a graph Gn;λ that depends only upon n and λ.

For example, for n = 6 and λ = (4, 2, 2, 0, 0, 0) the graph Gn;λ takes the form:

4

2

2

0

0

0

With this notation we have:

Proposition 7.1. Let λ and µ be partitions of lengths ℓ(λ), ℓ(µ) ≤ n such that Kλµ > 0.
Let deg(Pλµ(t)) be the degree of the corresponding stretched K-polynomial Pλµ(t) = Ktλ,tµ.
Let d(Gn;λ) be the number of connected components of the graph Gn;λ that are not connected
to the boundary. Then

(7.1) deg(Pλµ(t)) ≤ d(Gn;λ).

Moreover, if λ = (wv1

1 , w
v2

2 , . . . , w
vr
r ), with w1 > w2 > · · · > wr ≥ 0, vs ≥ 1 for all

s = 1, 2 . . . , r, with r ≥ 2, and v1 + v2 + · · ·+ vr = n, then

(7.2) d(Gn;λ) =
1

2
(n− 1)(n− 2) −

r
∑

s=1

1

2
vs(vs − 1).

Proof. Any labelling of the vertices of the hive must be such that the difference α in values
along each interior edge of the graph Gn;λ is, by construction of those edges, equal to a
corresponding edge value on the parallel λ-boundary, that is α = λi = ws for some i and a
corresponding s. For each connected component this fixes the values of all vertex labels in
terms of that of any one vertex of that component. In the case of a component connected
to the boundary, the value at the boundary vertex fixes all the others in that component.
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The maximum number of degrees of freedom in assigning entries to the corresponding set
of K-hives with given boundary is then d(Gn;λ).

The application of the stretching parameter t leaves Gn;λ unaltered, that is Gn;tλ = Gn;λ,
so that the number of degrees of freedom in assigning entries to the stretched K-hives is
still d(Gn;λ). For each connected component of Gn;λ that is not connected to the boundary
we may select any one convenient vertex. The values of its label are not fixed by the hive
constraints. They must satisfy a set of linear inequalities that are all scaled by t as both
the boundary vertex and edge labels are scaled by the stretching parameter t. It follows
that the range of allowed values of the label must be either independent of t or linear in
t, thereby giving rise to a corresponding contribution to Pλµ(t) that is at most linear in
t. The number of degrees of freedom, d(Gn;λ), that we have identified therefore gives an
upper bound on the degree of the corresponding stretched K-polynomial in t.

The number of internal vertices of Gn;λ is (n − 1)(n − 2)/2. For given n and arbitrary
λ this provides a preliminary upper bound on the degree of Pλµ(t). However, for λ =
(wv1

1 , w
v2

2 , . . . , w
vr
r ), each s such that vs > 1 specifies a sequence of components of λ having

the same value, namely ws. There is a corresponding set of vs(vs − 1)/2 interior edges
within Gn;λ. Whether or not these interior edges reach the boundary, as they do in the two
cases s = 1 and s = r, their introduction reduces the number of connected components
not linked to the boundary by vs(vs − 1)/2. The result (7.2) then follows by noting that
for different s the sets of vertices linked by the interior edges are disjoint, so that their
contributions to the reduction of d(Gn;λ) are independent. �

In the case of our example with n = 6 and λ = (4, 2, 2, 0, 0, 0) = (4, 22, 03) we can see
from the graph of Gn;λ that d(Gn;λ) = 6, in agreement with the formula (7.2) that gives
d(Gn;λ) = 5 · 4/2 − 2 · 1/2 − 3 · 2/2 = 6. Hence for all µ the degree of the corresponding
stretched Kostka coefficient polynomial Pλµ(t) must satisfy

(7.3) deg(Pλµ(t)) ≤ 6.

By way of example, for µ = (3, 1, 1, 1, 1, 1) we find

(7.4) Pλµ(t) =
1

72
(t+1)(t+2)(t+3)(t+4)(t2+2t+3) so that Fλµ(z) =

1 + 3z + 6z2

(1 − z)7
,

while for µ = (2, 2, 1, 1, 1, 1) we have
(7.5)

Pλµ(t) =
1

60
(t+1)(t+2)(t+3)(3t+5)(t2+2t+2) so that Fλµ(z) =

1 + 9z + 19z2 + 7z3

(1 − z)7
.

On the other hand if µ = (3, 2, 1, 1, 1, 0) we find

(7.6) Pλµ(t) =
1

24
(t+ 1)(t+ 2)(t+ 3)(t+ 4) so that Fλµ(z) =

1

(1 − z)5
.

The third case in which deg(Pλµ(t)) = 4 < 6 is one for which Kλµ is not primitive. In both
the other cases Kλµ is primitive, and we have deg(Pλµ(t)) = 6 so that the bound (7.1) is
saturated.
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On the basis of very many calculations of this type we are led to the following:

Conjecture 7.2. Let λ and µ be partitions of lengths ℓ(λ), ℓ(µ) ≤ n such that Kλµ > 0.
Let Pλµ(t) = Ktλ,tµ, then deg(Pλµ(t)) = d(Gn;λ) for all µ such that Kλµ is primitive.

We might point out that a formula for the dimension d = dimG(λ, µ) of the convex
Gelfand-Tsetlin polytope G(λ, µ), which is nothing other than our deg(Pλµ(t)), has been
given in Section 7 Exercise 3.a. of [K1], and also quoted in Section 5.4 of [K2]. With the
summation upper limit extended appropriately, this formula coincides with our d(Gn;λ) if
we choose n = s = ℓ(µ). Thus if Kλµ is primitive, in which case it is necessarily true
that n = ℓ(µ), the above conjecture is equivalent to the claim made regarding the formula
given in [K1]. However, in non-primitive cases such as that exemplified in (1.1), the cited
formula in [K1] does not yield the correct value, 6, of deg(Pλµ(t)). Instead, the formula
yields the value d(G9;λ) = 21. To obtain the correct result one must first factorise the
non-primitive K-polynomial and then apply the above conjecture to each of the primitive
factors to give deg(Pλµ(t)) = 2 + 4 = 6, in accordance with (1.3).

Finally, we should note that the work of Kirillov [K2] includes a wealth of conjectures
concerning not just Kostka coefficients and polynomials, but also what he calls parabolic
Kostka polynomials and Littlewood-Richardson polynomials. The latter are also discussed
in [KTT2].

Note added in proof. The validity of the above Conjecture 7.2, including its restriction
to the primitive case, has recently been proved by McAllister [McA].
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Appendix

Here we present a proof of the following factorisation theorem for Kλβ in the case where
β is any weight, not necessarily a partition, such that Kλβ is not primitive. The approach
is instructive since it is indicative of the way in which our factorisation result may be
extended to the case of Littlewood-Richardson coefficients. An account of this is presented
elsewhere [KTT2].

Theorem 5.4. Let λ be a partition with ℓ(λ) ≤ n, and let β = (β1, β2, . . . , βn) be a weight
such that |λ| = |β| and ps(λ)i ≥ ps(β)I for any I ⊂ N = {1, 2, . . . , n}, with i = #I.
Then Kλβ is not primitive if there exists a proper subset I = {i1, i2, . . . , ir} of N such that
ps(λ)r = ps(β)I with r = #I for some r for which 1 ≤ r < n. Let the complement of
I in N be denoted by I = {j1, j2, . . . , jn−r}. In such a case let σ = (λ1, λ2, . . . , λr), τ =
(λr+1, λr+2, . . . , λn), ζ = (βi1 , βi2 , . . . , βir) and η = (βj1, βj2, . . . , βjn−r

), so that λ = (σ, τ),
with σ and τ partitions, and β = ζ ∪ η, with ζ and η weights, not necessarily partitions,
satisfying the partial sum constraints |ζ | = |σ| and |η| = |τ |. Then

(5.3) Kλβ = Kσζ Kτη.

Proof Consider first the special case for which β = (θ, ζ, φ) and η = (θ, φ) with #ζ = r and
#θ+ #φ = n− r. The hives H whose enumeration gives Kλβ are illustrated schematically
in the following diagram.
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T

A Y B

X

0

0

0

θ ζ

σ

τ

0

0

0

ρ

φ

κ ω

ξ χ ψ

As in our proof of (5.1), covering the parallelograms Y and X with rhombi of type R1
and R2, respectively, and applying the γ ≤ α hive conditions gives |ζ | ≤ |ξ| + |χ| + |ψ| ≤
|0| + |ρ| ≤ |σ|. Since |ζ | = |σ| the intervening inequalities must be equalities. Then as
before the constraint |ρ| = |σ| coupled with the R2 hive conditions ρi ≤ σi for i = 1, 2, . . . , r
implies that ρ = σ. In exactly the same way the constraint |ζ | = |ξ| + |χ| + |ψ| coupled
to the R1 hive conditions of the form ζj ≤ ξj, χk, ψl, as appropriate, gives ζ = (ξ, χ, ψ).
Since |ρ| = |σ| and the edge labels along the upper left boundary of X are all 0, it follows,
as indicated, that the same is true of the lower right boundary edges of X. We note also
that |κ|+ |ζ | = |ξ|+ |χ|+ |ψ|+ |ω|, so that |κ| = |ω|. Finally, it follows by using the β ≥ δ
hive condition for R1 that κj ≥ ωj for all j. Hence κ = ω so that the right-hand boundary
of A matches up exactly with the left-hand boundary of B. All this shows that each hive
H contributing to Kλβ consists of a subhive T contributing to Kσζ and a subhive formed
from the union of A and B contributing to Kτη with η = (θ, φ). The remaining portions
X and Y are completely constrained by the equality of edge labels across each of these
parallelograms in each direction.

In order to prove the validity of (5.3) it only remains to show that all cross boundary hive
conditions are automatically satisfied once the hives T and A ∪ B are specified. The only
cases of concern are R1 hives crossing the X −B boundary and the R2 hives crossing the
T−Y boundary. The former are covered by the argument used in the proof of Theorem 5.2.
The latter are dealt with in a precisely analogous way, through the consideration of a
subdiagram following the T − Y and X −B boundary of width equal to two edge lengths,
as shown below.

τ1

ρr

κ1

ξ χ ψ

αδ

γ β

σr

ω1

B

X

T

Y
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First of all in the portions of the strips overlapping the regions X and Y , we have ρr = σr

and κ1 ≥ γ ≥ ω1. However κ1 = ω1. In B and T the R2 and R1 hive conditions imply
ω1 ≤ τ1 and ρr ≤ α. Combining these we have γ = ω1 ≤ τ1 = λr+1 ≤ λr = σr = ρr ≤ α.
Hence the R2 hive condition γ ≤ α is automatically satisfied everywhere on the T − Y
boundary.

This completes the proof of (5.3) for one class of non-primitive cases. Generalising to
the case of any weight β such that Kλβ is not primitive, is now rather straightforward. The
most general type of case is illustrated below:
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Here, the pattern is clear. We have λ = (σ, τ) and β = ζ ∪ η with ζ = ∪iγi and
η = ∪jαj, where in general αi and γj are themselves weights with many parts, as are ζ and
η. The regions Xi and Yi are all parallelograms composed of rhombi if type R2 and R1,
respectively. The total number of edges specified by γi for all i is r, and the total number
of edges specified by αi for all i is n − r, thereby matching the number of parts of the
partitions σ and τ , including any trailing zeros. All edges along the Xi −Ai+1 boundaries
are 0, and all along the Yi − Ti boundaries are specified by the parts of γi. The right and
left-hand edges of Ai and Ai+1 match. The same is true of Ti and Ti+1. Juxtaposing these
edges creates subhives T = ∪iTi and A = ∪iAi appropriate to Kσζ and Kτη. All the hive
conditions are satisfied.

Conversely, reconstituting H by inserting fixed edge parallelograms Xi and Yi between
the various Ti and Ai corresponding to K-hives T and A, always gives rise to a K-hive,
as required. This is because the necessary hive conditions for all hives of type R1 and
R2 crossing Xi − Ai+1 and Ti − Yi boundaries, respectively, are once again automatically
satisfied. The argument is precisely the same as that given previously.

This completes the proof of Theorem 5.4. �
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