Separability, Expressiveness and Decidability in the Ambient Logic

AS mobilité - December 2002

Outline

1. From π to Mobile Ambients
2. Mobile Ambients Behaviour and Spatial Logics
3. Expressiveness of the Ambient Logic
4. Separability,Decidability

From the π-calculus to Mobile Ambients

A need for a new paradigm

- Scope extrusion expresses the evolving structure of network's topology...
- ...but is it realy enough for modelling notions like: ressources (servers, terminals, applets ...) network hierarchy (IP addresses, subnetworks, execution sites ...) realistic communication (packets, firewalls ...)
- to improve expressiveness, define another paradigm: Mobile Ambients

The Mobile Ambients paradigm [CarGor98]

- The basic notion is not names as in π anymore, but locations and sublocations (called ambients)

$$
a[b[] \mid c[]] \mid d[]
$$

The Mobile Ambients paradigm [CarGor98]

- The basic notion is not names as in π anymore, but locations and sublocations (called ambients)

$$
a[b[] \mid c[]] \mid d[]
$$

- The computation is not a name passing process anymore, but movement of locations

$$
a[\text { in } b] \mid b[] \rightarrow b[a[]]
$$

The Syntax

$$
\begin{aligned}
& \text { cap } \stackrel{\text { def }}{=} \text { in } n \mid \text { out } n \mid \text { open } n \mid(x) \\
& P \stackrel{\text { def }}{=} 0|n[P]| P_{1}\left|P_{2}\right|!P \mid(\nu n) P \\
& \mid \text { cap. } P \mid\langle n\rangle
\end{aligned}
$$

- spatial constructions: the process tree
- temporal constructions: evolution of trees

Semantics of the movement capabilities

$$
\begin{array}{clc}
\text { In rule: } & & \\
a\left[\text { in } b . P_{1} \mid P_{2}\right] \mid b\left[P_{3}\right] & \rightarrow & b\left[a\left[P_{1} \mid P_{2}\right] \mid P_{3}\right] \\
\text { Out rule: } & \\
b\left[a\left[\text { out } b . P_{1} \mid P_{2}\right] \mid P_{3}\right] & \rightarrow a\left[P_{1} \mid P_{2}\right] \mid b\left[P_{3}\right] \\
\text { Open rule: } & \\
\text { open } b . P_{1} \mid b\left[P_{2}\right] & \rightarrow & P_{1} \mid P_{2}
\end{array}
$$

Semantics of communication

Comm rule:

$$
(x) P \mid\langle n\rangle \quad \rightarrow \quad P\{n / x\}
$$

Scope extrusions:

$$
\begin{array}{clc}
(\nu n) P \mid Q & \equiv & (\nu n)(P \mid Q) \\
(\nu n) a[P] & \equiv & (n \notin \mathrm{fn}(Q)) \\
(\nu[(\nu n) P] & (a \neq n)
\end{array}
$$

Ambients Behaviour and Spatial Logic

Behaviour and Logic: the standard approach

- In the case of CCS or the π-calculus, we may define the semantics by means of a LTS

$$
P \xrightarrow{l} \quad Q
$$

Behaviour and Logic: the standard approach

- In the case of CCS or the π-calculus, we may define the semantics by means of a LTS

$$
P \xrightarrow{l} \quad Q
$$

- this allows one to define the behaviour of a process; bisimilarity relation: $P \approx Q$
relates processes having the same behaviour.

Behaviour and Logic: the standard approach

- In the case of CCS or the π-calculus, we may define the semantics by means of a LTS

$$
P \xrightarrow{l} Q
$$

- this allows one to define the behaviour of a process; bisimilarity relation:

```
    P \approx Q
```

relates processes having the same behaviour.

- Based on the LTS, we may introduce the Henessy-Milner logic with action modalities and fixpoint recursion:

$$
\begin{aligned}
& P \\
& P \\
& P
\end{aligned}=\langle\mathrm{a}\rangle . A \text { iff } \quad \exists P^{\prime} . P \xrightarrow{a} P^{\prime} \wedge P^{\prime}=A
$$

Behaviour and Logic: the standard approach

- In the case of CCS or the π-calculus, we may define the semantics by means of a LTS

$$
P \xrightarrow{l} Q
$$

- this allows one to define the behaviour of a process; bisimilarity relation:

$$
P \approx Q
$$

relates processes having the same behaviour.

- Based on the LTS, we may introduce the Henessy-Milner logic with action modalities and fixpoint recursion:

$$
\begin{array}{llll}
P & =\langle\mathrm{a}\rangle . A & \text { iff } & \exists P^{\prime} . P \xrightarrow{a} P^{\prime} \wedge P^{\prime}=A \\
P & =\mu X . A & \text { iff } & P \models A\{\mu X . A / X\}
\end{array}
$$

- Behaviour and logic coincide: $\quad=_{L}=\approx$

A behavioural semantics for Ambients?

- Some propositions of LTS have been introduced (Cardelli, Gordon, Henessy, Merro), but are not very natural. The problems are that reduction may operate at any nesting of ambients (and not at "top-level" like in π), and actions don't come with coactions (asynchrony).

A behavioural semantics for Ambients?

- Some propositions of LTS have been introduced (Cardelli, Gordon, Henessy, Merro), but are not very natural. The problems are that reduction may operate at any nesting of ambients (and not at "top-level" like in π), and actions don't come with coactions (asynchrony).
- Another notion of observational equivalence:
- A notion of barb: $P \Downarrow_{n}$ if $P \rightarrow{ }^{*} n\left[P_{1}\right] \mid P_{2}$

A behavioural semantics for Ambients?

- Some propositions of LTS have been introduced (Cardelli, Gordon, Henessy, Merro), but are not very natural. The problems are that reduction may operate at any nesting of ambients (and not at "top-level" like in π), and actions don't come with coactions (asynchrony).
- Another notion of observational equivalence:
- A notion of barb: $P \Downarrow_{n}$ if $P \rightarrow{ }^{*} n\left[P_{1}\right] \mid P_{2}$
-A barb congruence preorder: $P \sqsubseteq Q$ if for all C, n if $C\{P\} \Downarrow_{n}$, then $C\{Q\} \Downarrow_{n}$.
- $P \approx Q$ iff $P \sqsubseteq Q$ and $Q \sqsubseteq P$

How should we define behaviour for Ambients?

- Intersection types (Dezani, Coppo):

Types look like:

$$
T::=T|T| \operatorname{cap} . T\left|\left\langle T^{-}\right\rangle \cdot T\right|\left(T^{-}\right) . T|a[T]| T \wedge T \mid \omega
$$

- Description of the spatial behaviour using a spatial Iogic

The logical approach

- The behaviour is the evolution of space structure. The way HM-logic describes behaviour with action modalities, a logic for Ambients should describe behaviour by means of spatial connectives.

The logical approach

- The behaviour is the evolution of space structure. The way HM-logic describes behaviour with action modalities, a logic for Ambients should describe behaviour by means of spatial connectives.
- The Ambient Logic (AL) will reflect the spatial operators of the calculus: ex: $\quad a[T] \mid b[c[0]]$

The logical approach

- The behaviour is the evolution of space structure. The way HM-logic describes behaviour with action modalities, a logic for Ambients should describe behaviour by means of spatial connectives.
- The Ambient Logic (AL) will reflect the spatial operators of the calculus: ex: $\quad a[T] \mid b[c[0]]$
- AL includes classical logic:
ex: $\quad \exists n . ~ n[0] \mid(n[0] \vee \forall m . \neg m[0])$

The logical approach

- The behaviour is the evolution of space structure. The way HM-logic describes behaviour with action modalities, a logic for Ambients should describe behaviour by means of spatial connectives.
- The Ambient Logic (AL) will reflect the spatial operators of the calculus: ex: $\quad a[T] \mid b[c[0]]$
- AL includes classical logic:
ex: $\quad \exists n . n[0] \mid(n[0] \vee \forall m . \neg m[0])$
- AL should also express evolution of space structure: the \diamond modality

The logical approach

- The behaviour is the evolution of space structure. The way HM-logic describes behaviour with action modalities, a logic for Ambients should describe behaviour by means of spatial connectives.
- The Ambient Logic (AL) will reflect the spatial operators of the calculus: ex: $\quad a[T] \mid b[c[0]]$
- AL includes classical logic:
ex: $\quad \exists n . n[0] \mid(n[0] \vee \forall m . \neg m[0])$
- AL should also express evolution of space structure: the \diamond modality
- AL also has adjunct connectives:
- .D. for .|.
- .@n for $n[$.

The satisfaction relation
Classical Logic
$P \vDash \mathcal{A} \wedge \mathcal{B}, \neg \mathcal{A}, \forall x . \mathcal{A}, \top$ as usual

The satisfaction relation
Classical Logic
$P \vDash \mathcal{A} \wedge \mathcal{B}, \neg \mathcal{A}, \forall x . \mathcal{A}, \top$ as usual
Intensional spatial connectives
$P \equiv \mathcal{A}_{1} \mid \mathcal{A}_{2} \quad$ iff $\exists P_{1}, P_{2}$ s.t. $P \equiv P_{1} \mid P_{2}$ and $P_{i} \models \mathcal{A}$ ($\equiv:$ structural congruence, almost syntactic equality)

The satisfaction relation
Classical Logic
$P \models \mathcal{A} \wedge \mathcal{B}, \neg \mathcal{A}, \forall x . \mathcal{A}, \top$ as usual
Intensional spatial connectives
$P \models \mathcal{A}_{1} \mid \mathcal{A}_{2} \quad$ iff $\exists P_{1}, P_{2}$ s.t. $P \equiv P_{1} \mid P_{2}$ and $P_{i} \models \mathcal{A}$
(\equiv : structural congruence, almost syntactic equality)
$P \vDash n[\mathcal{A}] \quad$ iff $\exists P^{\prime}$ s.t. $P \equiv n\left[P^{\prime}\right]$ and $P^{\prime} \vDash \mathcal{A}$
$P \models 0 \quad$ iff $P \equiv 0$

The satisfaction relation

Classical Logic

$P \equiv \mathcal{A} \wedge \mathcal{B}, \neg \mathcal{A}, \forall x . \mathcal{A}, \top$ as usual
Intensional spatial connectives

```
\(P \vDash \mathcal{A}_{1} \mid \mathcal{A}_{2} \quad\) iff \(\exists P_{1}, P_{2}\) s.t. \(P \equiv P_{1} \mid P_{2}\) and \(P_{i} \models \mathcal{A}\)
    ( \(\equiv\) : structural congruence, almost syntactic equality)
\(P \vDash n[\mathcal{A}] \quad\) iff \(\exists P^{\prime}\) s.t. \(P \equiv n\left[P^{\prime}\right]\) and \(P^{\prime} \vDash \mathcal{A}\)
\(P \equiv 0 \quad\) iff \(P \equiv \mathbf{0}\)
```

Adjunct connectives
$P \vDash \mathcal{A} \triangleright \mathcal{B} \quad$ iff $\forall Q$ s.t. $Q \models \mathcal{A}$, we have $P \mid Q \vDash \mathcal{B}$
$P \models \mathcal{A} @ n \quad$ iff $n[P] \models \mathcal{A}$

The satisfaction relation
Classical Logic
$P \models \mathcal{A} \wedge \mathcal{B}, \neg \mathcal{A}, \forall x . \mathcal{A}, \top$ as usual
Intensional spatial connectives
$P \models \mathcal{A}_{1} \mid \mathcal{A}_{2} \quad$ iff $\exists P_{1}, P_{2}$ s.t. $P \equiv P_{1} \mid P_{2}$ and $P_{i} \models \mathcal{A}$
(\equiv : structural congruence, almost syntactic equality)
$P \vDash n[\mathcal{A}] \quad$ iff $\exists P^{\prime}$ s.t. $P \equiv n\left[P^{\prime}\right]$ and $P^{\prime} \vDash \mathcal{A}$
$P \models 0 \quad$ iff $P \equiv \mathbf{0}$
Adjunct connectives
$P \vDash \mathcal{A} \triangleright \mathcal{B} \quad$ iff $\forall Q$ s.t. $Q \models \mathcal{A}$, we have $P \mid Q \vDash \mathcal{B}$
$P \models \mathcal{A} @ n \quad$ iff $n[P] \models \mathcal{A}$
Temporal connective
$P \models \diamond \mathcal{A} \quad$ iff $\exists P^{\prime}$ s.t. $P \rightarrow^{*} P^{\prime}$ and $P^{\prime} \models \mathcal{A}$

Expressiveness of the Ambient Logic

What does the Ambient Logic speak about?

To which extent does AL talk about syntax?

This is not clear because:

- some elements of the syntax are present in the logic, but not all of them (capabilities, replication)
- evolution of processes: only the "sometime" modality $(\diamond \mathcal{A})$
- unusual adjunct connectives $(\mathcal{A} @ n, \mathcal{A} \triangleright \mathcal{B})$

Expressing capabilities

Formulas for possibility (intensional): [San01]

$$
P \models\langle\text { cap }\rangle . \mathcal{A} \quad \text { iff } \quad \exists P_{1}, P_{2} . P \equiv \text { cap. } P_{1}, P_{1} \xrightarrow{\langle\text { cap }} P_{2} \text { and } P_{2} \models \mathcal{A}
$$

Expressing capabilities

Formulas for possibility (intensional): [San01]

$$
P \equiv\langle\text { cap }\rangle . \mathcal{A} \quad \text { iff } \quad \exists P_{1}, P_{2} . P \equiv \text { cap. } P_{1}, P_{1} \stackrel{\text { cap }\rangle}{\Longrightarrow} P_{2} \text { and } P_{2} \models \mathcal{A}
$$

Formulas for necessity (intensional):

$$
((c a p)) . \mathcal{A} \stackrel{\text { def }}{=}\langle c a p\rangle . \mathcal{A} \wedge \neg\langle c a p\rangle . \neg \mathcal{A}
$$

Using this, $P \models((c a p)) . \mathcal{A}$ iff

$$
\exists P_{1}, \quad P \equiv \text { cap. } P_{1}, \text { and whenever } P_{1} \xrightarrow{\stackrel{\text { cap }}{\Longrightarrow}} P_{2}, P_{2} \vDash \mathcal{A}
$$

Expressing capabilities - an example

$$
\begin{array}{lll}
P \models\langle\text { cap }\rangle . \mathcal{A} & \text { iff } \quad \exists P_{1}, P_{2} . P \equiv \text { cap. } P_{1}, P_{1} \stackrel{\text { cap }\rangle}{\Longrightarrow} P_{2} \text { and } P_{2} \models \mathcal{A} \\
P \models((\text { cap })) . \mathcal{A} & \text { iff } \quad \exists P_{1}, \quad P \equiv \text { cap. } P_{1}, \text { and whenever } P_{1} \stackrel{\langle\text { cap }\rangle}{\Longrightarrow} P_{2}, P_{2} \models \mathcal{A}
\end{array}
$$

ex:

$$
\langle\text { open } n\rangle . \mathcal{A} \stackrel{\text { def }}{=} \text { 1Cap } \wedge \forall m .(n[m[0]] \triangleright \diamond(\mathcal{A} \mid m[0]))
$$

Expressing capabilities - an example

$$
\begin{array}{lll}
P \models\langle\text { cap }\rangle . \mathcal{A} & \text { iff } \quad \exists P_{1}, P_{2} . P \equiv \text { cap. } P_{1}, P_{1} \stackrel{\text { cap }\rangle}{\Longrightarrow} P_{2} \text { and } P_{2} \models \mathcal{A} \\
P \models((\text { cap })) . \mathcal{A} & \text { iff } \quad \exists P_{1}, \quad P \equiv \text { cap. } P_{1}, \text { and whenever } P_{1} \stackrel{\langle\text { cap }\rangle}{\Longrightarrow} P_{2}, P_{2} \models \mathcal{A}
\end{array}
$$

ex:

$$
\begin{gathered}
\langle\text { open } n\rangle . \mathcal{A} \\
P
\end{gathered}
$$

Expressing capabilities - an example

$$
\begin{array}{lll}
P & =\langle\text { cap }\rangle . \mathcal{A} & \text { iff } \quad \exists P_{1}, P_{2} \cdot P \equiv \text { cap. } P_{1}, P_{1} \stackrel{\langle\text { cap }\rangle}{\Longrightarrow} P_{2} \text { and } P_{2} \models \mathcal{A} \\
P \models((\text { cap })) \cdot \mathcal{A} & \text { iff } \quad \exists P_{1}, \quad P \equiv \text { cap. } P_{1}, \text { and whenever } P_{1} \stackrel{\langle\text { cap }\rangle}{\Longrightarrow} P_{2}, P_{2} \models \mathcal{A}
\end{array}
$$

ex:

$$
\begin{gathered}
\langle\text { open } n\rangle . \mathcal{A} \stackrel{\text { def }}{=} 1 \text { Cap } \wedge \forall m .(n[m[0]] \triangleright \diamond(\mathcal{A} \mid m[0])) \\
P \mid n[m[0]]
\end{gathered}
$$

Expressing capabilities - an example

$$
\begin{array}{lll}
P \models\langle\text { cap }\rangle . \mathcal{A} & \text { iff } \quad \exists P_{1}, P_{2} . P \equiv \text { cap. } P_{1}, P_{1} \stackrel{\text { cap }\rangle}{\Longrightarrow} P_{2} \text { and } P_{2} \models \mathcal{A} \\
P \models((\text { cap })) . \mathcal{A} & \text { iff } \quad \exists P_{1}, \quad P \equiv \text { cap. } P_{1}, \text { and whenever } P_{1} \stackrel{\langle\text { cap }\rangle}{\Longrightarrow} P_{2}, P_{2} \models \mathcal{A}
\end{array}
$$

ex:

$$
\begin{gathered}
\langle\text { open } n\rangle . \mathcal{A} \stackrel{\text { def }}{=} 1 \text { Cap } \wedge \forall m .(n[m[0]] \triangleright \diamond(\mathcal{A} \mid m[0])) \\
P\left|n[m[0]] \rightarrow^{*} \quad P^{\prime}\right| m[0] \quad \text { and } P^{\prime}=\mathcal{A}
\end{gathered}
$$

Expressing replication

Given a formula \mathcal{A} "expressive enough", we may define a formula ! \mathcal{A} s.t. $P \models!\mathcal{A}$ iff

$$
\begin{array}{ll}
& \exists P_{1}, \ldots, P_{r} . \quad P \equiv!P_{1}\left|(!) P_{2}\right| \ldots \mid(!) P_{r} \\
\text { and } \quad & P_{i} \models \mathcal{A}, i=1 \ldots r
\end{array}
$$

N.B.: no infinitary construct available, instead we rely on \diamond

Expressing replication
Given a formula \mathcal{A} "expressive enough", we may define a formula ! \mathcal{A} s.t. $P \vDash!\mathcal{A}$ iff

$$
\begin{aligned}
& \quad \exists P_{1}, \ldots, P_{r} . \quad P \equiv!P_{1}\left|(!) P_{2}\right| \ldots \mid(!) P_{r} \\
& \text { and } \quad P_{i} \models \mathcal{A}, i=1 \ldots r
\end{aligned}
$$

N.B.: no infinitary construct available, instead we rely on \diamond

The encoding (rather tedious):

$$
!\mathcal{A} \quad ، \stackrel{\text { def }}{=}, \quad \mathcal{A}^{\omega} \wedge \mathcal{A}^{\text {pers }}
$$

\mathcal{A}^{ω} : there are only copies of \mathcal{A} at toplevel
$\mathcal{A}^{\text {pers }}$: there are infinitely many of them

Characteristic formulas

We may express all connectives of the calculus, so we may hope to be able to define characteristic formulas:

$$
\begin{aligned}
Q \models & \mathcal{F}_{P} \quad \text { iff } \quad Q={ }_{L} P \\
& Q={ }_{L} P \text { iff } P \text { and } Q \text { satisfy the same formulas }
\end{aligned}
$$

We actually need an image-finiteness hypothesis:
\rightarrow subcalculus $\mathrm{MA}_{\text {IF }}$: in any subterm cap. P, P is image-finite
Characteristic formulas can be defined on $\mathrm{MA}_{\text {IF }}$

Separability, Decidability

A coinductive characterisation
$={ }_{L}$ coincides with intensional bisimilarity, $\simeq_{i n t}$: whenever $P \simeq_{\text {int }} Q$,
$P \equiv \mathbf{0} \quad$ implies $Q \equiv \mathbf{0}$
$P \equiv P_{1} \mid P_{2}$ implies $Q \equiv Q_{1} \mid Q_{2}$ with $P_{i} \simeq_{i n t} Q_{i} \quad(i=1,2)$
$P \equiv n\left[P_{1}\right]$ implies $Q \equiv n\left[Q_{1}\right]$
$P \xrightarrow{\text { cap }} P_{1} \quad$ implies $Q \xrightarrow{\text { cap }} \xrightarrow{\langle\text { cap }\rangle} Q_{1}$ with $P_{1} \simeq_{\text {int }} Q_{1}$

A coinductive characterisation
$=L_{L}$ coincides with intensional bisimilarity, $\simeq_{i n t}$: whenever $P \simeq_{\text {int }} Q$,
$P \equiv \mathbf{0} \quad$ implies $Q \equiv \mathbf{0}$
$P \equiv P_{1} \mid P_{2}$ implies $Q \equiv Q_{1} \mid Q_{2}$ with $P_{i} \simeq_{i n t} Q_{i}(i=1,2)$
$P \equiv n\left[P_{1}\right]$ implies $Q \equiv n\left[Q_{1}\right]$
$P \xrightarrow{\text { cap }} P_{1}$ implies $Q \xrightarrow{\text { cap }} \xrightarrow{\stackrel{\text { cap }}{\longrightarrow}} Q_{1}$ with $P_{1} \simeq_{\text {int }} Q_{1}$

- correction $\left(\simeq_{i n t} \subseteq=_{L}\right)$: follows from congruence

A coinductive characterisation
$=L_{L}$ coincides with intensional bisimilarity, $\simeq_{i n t}$: whenever $P \simeq_{\text {int }} Q$,
$P \equiv \mathbf{0} \quad$ implies $Q \equiv \mathbf{0}$
$P \equiv P_{1} \mid P_{2}$ implies $Q \equiv Q_{1} \mid Q_{2}$ with $P_{i} \simeq_{\text {int }} Q_{i} \quad(i=1,2)$
$P \equiv n\left[P_{1}\right]$ implies $Q \equiv n\left[Q_{1}\right]$
$P \xrightarrow{\text { cap }} P_{1}$ implies $Q \xrightarrow{\text { cap }} \xrightarrow{\langle\text { cap }\rangle} Q_{1}$ with $P_{1} \simeq_{\text {int }} Q_{1}$

- correction ($\simeq_{i n t} \subseteq=_{L}$): follows from congruence
- completeness $\left(=_{L} \subseteq \simeq_{\text {int }}\right)$:
holds without image-finiteness hypothesis (on full MA)

Stuttering - imprecise capabilities

When $P \vDash\langle$ in $n\rangle . \mathcal{A}$, there exist $P^{\prime}, P^{\prime \prime}$ s.t. $P \equiv$ in n. P^{\prime} and

$$
P^{\prime} \xrightarrow{(\text { out } n, \text { in } n)^{*}} P^{\prime \prime} \quad(\text { stuttering }) \quad \text { and } P^{\prime \prime}=\mathcal{A}
$$

Stuttering - imprecise capabilities

When $P \vDash\langle$ in $n\rangle . \mathcal{A}$, there exist $P^{\prime}, P^{\prime \prime}$ s.t. $P \equiv$ in $n . P^{\prime}$ and

$$
P^{\prime} \xrightarrow{(\text { out } n, \text { in } n)^{*}} P^{\prime \prime} \quad(\text { stuttering }) \quad \text { and } P^{\prime \prime} \models \mathcal{A}
$$

Consequence:
$P_{1} \xrightarrow{\text { (out } n, \text { in } n)^{*}} P_{2} \xrightarrow{\text { (out } n, \text { in } n)^{*}} P_{1} \quad$ iff \quad in $n \cdot P_{1}={ }_{L}$ in $n \cdot P_{2}$

Stuttering - imprecise capabilities

When $P \vDash\langle$ in $n\rangle . \mathcal{A}$, there exist $P^{\prime}, P^{\prime \prime}$ s.t. $P \equiv$ in $n . P^{\prime}$ and

$$
P^{\prime} \xrightarrow{(\text { out } n, \text { in } n)^{*}} P^{\prime \prime} \quad(\text { stuttering }) \quad \text { and } P^{\prime \prime} \vDash \mathcal{A}
$$

Consequence:
$P_{1} \xrightarrow{\text { (out } n, \text { in } n)^{*}} P_{2} \xrightarrow{\text { (out } n, \text { in } n)^{*}} P_{1} \quad$ iff \quad in $n \cdot P_{1}={ }_{L}$ in $n \cdot P_{2}$

Another subcalculus, $\mathrm{MA}_{\mathrm{IF}}^{\mathrm{syn}}$: in any subterm cap. P, P is finite

Stuttering - imprecise capabilities

When $P \vDash\langle$ in $n\rangle . \mathcal{A}$, there exist $P^{\prime}, P^{\prime \prime}$ s.t. $P \equiv$ in $n . P^{\prime}$ and

$$
P^{\prime} \xrightarrow{(\text { out } n, \text { in } n)^{*}} P^{\prime \prime} \quad(\text { stuttering }) \quad \text { and } P^{\prime \prime} \mid=\mathcal{A}
$$

Consequence:
$P_{1} \xrightarrow{\text { (out } n, \text { in } n)^{*}} P_{2} \xrightarrow{\text { (out } n, \text { in } n)^{*}} P_{1} \quad$ iff \quad in $n \cdot P_{1}={ }_{L}$ in $n \cdot P_{2}$

Another subcalculus, $M A_{\mathrm{IF}}^{\mathrm{Syn}}$: in any subterm cap. P, P is finite

- $M A_{I F}^{\text {syn }} \subset M A_{I F}$ (finite, hence image-finite)
- On MA $\mathrm{IF}_{\mathrm{IF}}^{\mathrm{Syn}}, \quad$ in $n . P_{1}={ }_{L}$ in $n . P_{2} \quad$ iff $\quad P_{1}={ }_{L} P_{2}$

The spectrum of separation of AL

- on $\mathrm{MA}_{\mathrm{IF}}^{\mathrm{syn}}, \quad={ }_{L}=\equiv$

The spectrum of separation of AL

- on $\mathrm{MA}_{\mathrm{IF}}^{\mathrm{syn}}, \quad={ }_{L}=\equiv$
- this does not hold on $\mathrm{MA}_{\text {IF }}$

The spectrum of separation of AL

- on $\mathrm{MA}_{\mathrm{IF}}^{\mathrm{syn}}, \quad={ }_{L}=\equiv$
- this does not hold on $\mathrm{MA}_{\text {IF }}$

```
            \(P_{0} \stackrel{\text { def }}{=}\) !open \(n\).in \(n\).out \(n . n[0] \mid n[0]\)
    \(P_{1} \stackrel{\text { def }}{=}\) !open \(n\).in \(n\).out \(n . n[0] \mid\) in \(n\).out \(n . n[0]\)
then
out \(n . P_{0}={ }_{L}\) out \(n . P_{1}\)
```

The spectrum of separation of AL

- on $\mathrm{MA}_{\mathrm{IF}}^{\mathrm{syn}}, \quad={ }_{L}=\equiv$
- this does not hold on $\mathrm{MA}_{\text {IF }}$

```
            \(P_{0} \stackrel{\text { def }}{=}\) !open \(n\).in \(n\).out \(n . n[0] \mid n[0]\)
    \(P_{1} \stackrel{\text { def }}{=}\) !open \(n\).in \(n\).out \(n . n[0] \mid\) in \(n\).out \(n . n[0]\)
then
    out \(n \cdot P_{0}={ }_{L}\) out \(n \cdot P_{1}\)
```

- without image-finiteness, $={ }_{L}$ is undecidable

The spectrum of separation of AL

- on $\mathrm{MA}_{\mathrm{IF}}^{\mathrm{syn}}, \quad={ }_{L}=\equiv$
- this does not hold on $\mathrm{MA}_{\text {IF }}$

- without image-finiteness, $={ }_{L}$ is undecidable
proof: we define $P_{1}, P_{2} \in \mathrm{MA}_{\mathrm{IF}}^{\text {syn }}$ such that $P_{1} \rightarrow P_{2}$, but $P_{2} \rightarrow{ }^{*} P_{1}$ is undecidable.
Then open $n \cdot P_{1} \stackrel{?}{=}_{L}$ open $n \cdot P_{2}$ is undecidable.

Completeness: key ideas
We may capture the first layer of capabilities in a process (active context):
in $n . a[b[0]] \mid!b[$ open n.out $n] \rightsquigarrow$ in $n .[]_{1} \mid!b\left[\right.$ open $\left.n .[]_{2}\right]$
the rest of the term (continuations) is preserved under reduction:

$$
P \rightarrow Q \Rightarrow \operatorname{cont}(Q) \subseteq \operatorname{cont}(P)
$$

Lemma (Partial characteristic formulas)
For all P, Q, there is $F_{P, Q}$ such that $P \vDash F_{P, Q}$ and for all Q^{\prime} such that $Q \rightarrow^{*} Q^{\prime}$,

$$
Q^{\prime} \models F_{P, Q} \quad \text { iff } \quad Q^{\prime} \simeq \text { int } P
$$

Theorem (Completeness) $=_{L} \subseteq \simeq_{i n t}$.

Conclusion: Separability of AL

- AL expresses more than behaviour ($=_{L} \subsetneq \approx$); for most of processes,

$$
P={ }_{L} Q \quad \text { iff } \quad P \equiv Q
$$

- However, for some extreme processes, the result fails because the \diamond has a weak semantic (\rightarrow^{*} instead of \rightarrow).
- The imprecisions due to the many-steps semantics:
- η-convertibility: $(x)(\langle x\rangle \mid(y) P)==_{L}(y) P$
- stuttering: in $n . P=_{L}$ in $n . Q$ iff $P \xrightarrow{(\text { out } n, \text { in } n)^{*}} Q \xrightarrow{(\text { out } n, \text { in } n)^{*}} P$

Decidability issues in AL

- Model-checking and validity are mutually dependent ($\left.\triangleright, F_{P}\right)$
- In the general case, both are undecidable (Talbot, Charatonik) A short proof: $P \models F_{Q} \wedge \diamond F_{R}$ and $\vdash F_{Q} \rightarrow \diamond F_{R}$ boils down to decide wether $Q \rightarrow{ }^{*} R$.
- Some cases where decidability has been obtained:
- finite control Ambients, logic without \triangleright [ChaGorTal02]
- static trees, logic without \forall and \diamond [CaICarGor02]
- Logical equivalence $\left(=_{L}\right)$ is not decidable
in the general case, because of stuttering [HirLozSan02], while still being "very close" to \equiv which is decidable (DalZilio)

Extensions

Adding communication

$$
\langle n\rangle \mid(x) . P \quad \rightarrow \quad P_{\{x:=n\}}
$$

Adding communication

$$
\langle n\rangle \mid(x) \cdot P \quad \longrightarrow \quad P_{\{x:=n\}}
$$

- messages and receptions may be captured using formulas

Adding communication

$$
\langle n\rangle \mid(x) \cdot P \quad \longrightarrow \quad P_{\{x:=n\}}
$$

- messages and receptions may be captured using formulas
- as before:
\triangleright image-finiteness \Rightarrow characteristic formulas
\triangleright completeness: no need of image-finiteness

Adding communication

$$
\langle n\rangle \mid(x) \cdot P \quad \longrightarrow \quad P_{\{x:=n\}}
$$

- messages and receptions may be captured using formulas
- as before:
\triangleright image-finiteness \Rightarrow characteristic formulas
\triangleright completeness: no need of image-finiteness
- $\mathrm{MA}_{\mathrm{IF}}^{\mathrm{syn}}:={ }_{L}$ coincides with $\equiv{ }_{\eta}$, i.e. \equiv on η-normal terms

$$
(x) \cdot(\langle x\rangle \mid(y) \cdot P) \rightarrow_{\eta} \quad(y) \cdot P
$$

Adding name restriction

- this extension is less clear
- new logical connectives $n ®(\mathcal{A}$ and Иn. \mathcal{A}
[CarGor01]
- we believe that:
\triangleright logical equivalence is still \equiv on $\mathrm{MA}_{\mathrm{IF}}^{\mathrm{Syn}}$ for η-normalized terms
\triangleright characteristic formulas exist
\triangleright completeness only holds under image-finiteness

Conclusion

Main contributions

- evidence of the strong expressiveness of AL
- adjuncts are important in this setting
- characterisations of $={ }_{L}$ (coinductive and inductive)
- connections with other works about decidability in AL
\rightarrow to what extend do our technical developments (encoding of persistence, completeness proof) depend on the specific calculus of Mobile Ambients?

Current investigations

- Decidability with \triangleright : what is tractable?
- The π-calculus logic: what about encoding capabilities?
(We have results)
- Less intensionnal logics: is there a way to define a "more behavioural" $={ }_{L}$?

Annex

Capability formulas

| 1 Comp | $\stackrel{\text { def }}{=} \neg 0 \wedge 0 \\| 0$ |
| :--- | :--- | :--- |
| 1 Cap | $\stackrel{\text { def }}{=} 1 C o m p \wedge \neg \exists x \cdot x[\top]$ |
| \langle in $n\rangle . \mathcal{A}$ | $\stackrel{\text { def }}{=} 1 C a p \wedge \forall x .(n[0] \triangleright \diamond n[x[\mathcal{A}]]) @ x$ |
| \langle out $n\rangle . \mathcal{A}$ | $\stackrel{\text { def }}{=} 1 C a p \wedge \forall m .((\diamond m[\mathcal{A}] \mid n[0]) @ n) @ m$ |
| \langle open $n\rangle . \mathcal{A}$ | $\stackrel{\text { def }}{=} 1 C a p \wedge \forall m .(n[m[0]] \triangleright \diamond m[0] \mid \mathcal{A})$ |
| $(($ cap $)) . \mathcal{A}$ | $\stackrel{\text { def }}{=}\langle$ cap $\rangle . \top \wedge \neg\langle$ cap $\rangle . \neg \mathcal{A} \quad$ for any capability cap |

Characteristic formulas

