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From the π-calculus to Mobile Ambients
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A need for a new paradigm

• Scope extrusion expresses the evolving structure of

network’s topology...

• ...but is it realy enough for modelling notions like:

ressources (servers, terminals, applets ...)

network hierarchy (IP addresses, subnetworks, execution sites ...)

realistic communication (packets, firewalls ...)

• to improve expressiveness, define another paradigm:

Mobile Ambients
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The Mobile Ambients paradigm [CarGor98]

• The basic notion is not names as in π anymore, but locations

and sublocations (called ambients)

a[ b[]|c[] ] | d[ ]

.
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The Mobile Ambients paradigm [CarGor98]

• The basic notion is not names as in π anymore, but locations

and sublocations (called ambients)

a[ b[]|c[] ] | d[ ]

• The computation is not a name passing process anymore,

but movement of locations

. a[in b] | b[ ] → b[a[ ]]
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The Syntax

cap
def
= in n | out n | open n | (x) capabilities

P
def
= 0 | n[P ] | P1|P2 | !P | (νn)P spatial constructions

| cap.P | 〈n〉 temporal constructions

• spatial constructions : the process tree

• temporal constructions: evolution of trees
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Semantics of the movement capabilities

In rule:
a[in b.P1|P2]|b[P3] → b[a[P1|P2]|P3]

Out rule:
b[a[out b.P1|P2]|P3] → a[P1|P2] | b[P3]

Open rule:
open b.P1|b[P2] → P1 | P2
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Semantics of communication

Comm rule:
(x)P | 〈n〉 → P{n/x}

Scope extrusions:
(νn)P | Q ≡ (νn)(P |Q) (n /∈ fn(Q))
(νn)a[P ] ≡ a[(νn)P ] (a 6= n)

8



Ambients Behaviour and Spatial Logic
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Behaviour and Logic: the standard approach

• In the case of CCS or the π-calculus, we may define the semantics by
means of a LTS

P
l−→ Q
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Behaviour and Logic: the standard approach

• In the case of CCS or the π-calculus, we may define the semantics by
means of a LTS

P
l−→ Q

• this allows one to define the behaviour of a process; bisimilarity relation:
. P ≈ Q
relates processes having the same behaviour.

• Based on the LTS, we may introduce the Henessy-Milner logic
with action modalities and fixpoint recursion:

. P |= 〈a〉.A iff ∃P ′. P
a−→ P ′ ∧ P ′|=A

P |= µX.A iff P |=A{µX.A /X}

• Behaviour and logic coincide: =L = ≈
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A behavioural semantics for Ambients?

• Some propositions of LTS have been introduced (Cardelli,

Gordon, Henessy, Merro), but are not very natural. The problems

are that reduction may operate at any nesting of ambients (and

not at “top-level” like in π), and actions don’t come with coactions

(asynchrony).
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A behavioural semantics for Ambients?

• Some propositions of LTS have been introduced (Cardelli,

Gordon, Henessy, Merro), but are not very natural. The problems

are that reduction may operate at any nesting of ambients (and

not at “top-level” like in π), and actions don’t come with coactions

(asynchrony).

• Another notion of observational equivalence:

- A notion of barb: P ⇓n if P →∗n[P1]|P2

-A barb congruence preorder: P v Q if for all C, n if C{P} ⇓n, then C{Q} ⇓n.

- P ≈ Q iff P v Q and Q v P
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How should we define behaviour for Ambients?

• Intersection types (Dezani,Coppo):

Types look like:

T ::= T |T
∣∣∣ cap.T

∣∣∣ 〈T−〉.T ∣∣∣ (T−).T
∣∣∣ a[T ]

∣∣∣ T ∧ T
∣∣∣ ω

• Description of the spatial behaviour using a spatial logic
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The logical approach

• The behaviour is the evolution of space structure. The way HM-logic de-
scribes behaviour with action modalities, a logic for Ambients should describe
behaviour by means of spatial connectives.
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The logical approach

• The behaviour is the evolution of space structure. The way HM-logic de-
scribes behaviour with action modalities, a logic for Ambients should describe
behaviour by means of spatial connectives.

• The Ambient Logic (AL) will reflect the spatial operators of the calculus:
ex: a[>] | b[c[0]]

• AL includes classical logic:
ex: ∃n. n[0] | (n[0] ∨ ∀m.¬m[0])

• AL should also express evolution of space structure: the ♦ modality

• AL also has adjunct connectives:
- ... for .|.
- .@n for n[.]
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The satisfaction relation

Classical Logic
P |= A ∧ B, ¬ A, ∀x.A, > as usual
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The satisfaction relation

Classical Logic
P |= A ∧ B, ¬ A, ∀x.A, > as usual

Intensional spatial connectives
P |= A1 | A2 iff ∃ P1, P2 s.t. P ≡ P1|P2 and Pi |= A

(≡: structural congruence, almost syntactic equality)
P |= n[A] iff ∃ P ′ s.t. P ≡ n[P ′] and P ′ |= A
P |= 0 iff P ≡ 0

Adjunct connectives
P |= A . B iff ∀ Q s.t. Q |= A , we have P | Q |= B
P |= A @ n iff n[P ] |= A

Temporal connective
P |= ♦ A iff ∃ P ′ s.t. P →∗ P ′ and P ′ |= A
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Expressiveness of the Ambient Logic
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What does the Ambient Logic speak about?

To which extent does AL talk about syntax?

This is not clear because:

• some elements of the syntax are present in the logic, but

not all of them (capabilities, replication)

• evolution of processes: only the “sometime” modality (♦A)

• unusual adjunct connectives (A@n , A . B)
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Expressing capabilities

Formulas for possibility (intensional): [San01]

P |= 〈cap〉.A iff ∃P1, P2. P ≡ cap.P1, P1
〈cap〉
=⇒ P2 and P2 |= A

17



Expressing capabilities

Formulas for possibility (intensional): [San01]

P |= 〈cap〉.A iff ∃P1, P2. P ≡ cap.P1, P1
〈cap〉
=⇒ P2 and P2 |= A

Formulas for necessity (intensional):

((cap)).A
def
= 〈cap〉.A ∧ ¬〈cap〉.¬A

Using this, P |= ((cap)).A iff

∃P1, P ≡ cap.P1, and whenever P1
〈cap〉
=⇒ P2, P2 |= A
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Expressing capabilities – an example

P |= 〈cap〉.A iff ∃P1, P2. P ≡ cap.P1, P1
〈cap〉
=⇒ P2 and P2 |= A

P |= ((cap)).A iff ∃P1, P ≡ cap.P1, and whenever P1
〈cap〉
=⇒ P2, P2 |= A

ex:

〈open n〉.A
def
= 1Cap ∧ ∀m.

(
n[m[0]] . ♦ (A|m[0])

)
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Expressing capabilities – an example

P |= 〈cap〉.A iff ∃P1, P2. P ≡ cap.P1, P1
〈cap〉
=⇒ P2 and P2 |= A

P |= ((cap)).A iff ∃P1, P ≡ cap.P1, and whenever P1
〈cap〉
=⇒ P2, P2 |= A

ex:

〈open n〉.A
def
= 1Cap ∧ ∀m.

(
n[m[0]] . ♦ (A|m[0])

)
P | n[m[0]] →∗ P ′ | m[0] and P ′ |=A
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Expressing replication

Given a formula A “expressive enough”, we may define a formula !A s.t.
P |= !A iff

∃P1, . . . , Pr. P ≡ !P1| (!)P2| . . . |(!)Pr

and Pi |= A, i = 1 . . . r

N.B.: no infinitary construct available, instead we rely on ♦
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Expressing replication

Given a formula A “expressive enough”, we may define a formula !A s.t.
P |= !A iff

∃P1, . . . , Pr. P ≡ !P1| (!)P2| . . . |(!)Pr

and Pi |= A, i = 1 . . . r

N.B.: no infinitary construct available, instead we rely on ♦

The encoding (rather tedious):

!A “
def
=” Aω ∧ Apers

Aω: there are only copies of A at toplevel

Apers: there are infinitely many of them
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Characteristic formulas

We may express all connectives of the calculus, so we may hope

to be able to define characteristic formulas:

Q |= FP iff Q =L P

Q=LP iff P and Q satisfy the same formulas

We actually need an image-finiteness hypothesis:

→ subcalculus MAIF: in any subterm cap.P , P is image-finite

Characteristic formulas can be defined on MAIF
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Separability, Decidability
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A coinductive characterisation

=L coincides with intensional bisimilarity, 'int:
whenever P 'int Q,

P ≡ 0 implies Q ≡ 0
P ≡ P1|P2 implies Q ≡ Q1|Q2 with Pi 'int Qi (i = 1,2)
P ≡ n[P1] implies Q ≡ n[Q1]

P
cap→ P1 implies Q

cap→
〈cap〉
=⇒ Q1 with P1 'int Q1
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A coinductive characterisation

=L coincides with intensional bisimilarity, 'int:
whenever P 'int Q,

P ≡ 0 implies Q ≡ 0
P ≡ P1|P2 implies Q ≡ Q1|Q2 with Pi 'int Qi (i = 1,2)
P ≡ n[P1] implies Q ≡ n[Q1]

P
cap→ P1 implies Q

cap→
〈cap〉
=⇒ Q1 with P1 'int Q1

• correction ('int ⊆ =L): follows from congruence

• completeness (=L ⊆ 'int):
holds without image-finiteness hypothesis (on full MA)
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Stuttering – imprecise capabilities

When P |= 〈in n〉.A, there exist P ′, P ′′ s.t. P ≡ in n.P ′ and

P ′ (out n,in n)∗−−−−−−−−−−→ P ′′ (stuttering) and P ′′ |=A
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When P |= 〈in n〉.A, there exist P ′, P ′′ s.t. P ≡ in n.P ′ and

P ′ (out n,in n)∗−−−−−−−−−−→ P ′′ (stuttering) and P ′′ |=A

Consequence:

P1
(out n,in n)∗−−−−−−−−−−→ P2

(out n,in n)∗−−−−−−−−−−→ P1 iff in n.P1 =L in n.P2

Another subcalculus, MAsyn
IF : in any subterm cap.P , P is finite

• MAsyn
IF ⊂ MAIF (finite, hence image-finite)

• On MAsyn
IF , in n.P1 =L in n.P2 iff P1 =L P2
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The spectrum of separation of AL

• on MAsyn
IF , =L = ≡
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The spectrum of separation of AL

• on MAsyn
IF , =L = ≡

• this does not hold on MAIF

P0
def
= !open n.in n.out n.n[0] | n[0]

P1
def
= !open n.in n.out n.n[0] | in n.out n.n[0]

then out n.P0 =L out n.P1

• without image-finiteness, =L is undecidable

proof: we define P1, P2 ∈ MAsyn
IF such that P1→P2,

but P2→∗P1 is undecidable.

Then open n.P1
?
=L open n.P2 is undecidable.
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Completeness: key ideas

We may capture the first layer of capabilities in a process (active
context):
in n.a[b[0]] | !b[open n.out n]  in n.[]1 | !b[open n.[]2]

the rest of the term (continuations) is preserved under reduction:

P → Q ⇒ cont(Q) ⊆ cont(P )

Lemma (Partial characteristic formulas)
For all P, Q, there is FP,Q such that P |= FP,Q and for all Q′ such
that Q →∗ Q′,

Q′ |= FP,Q iff Q′ 'int P

Theorem (Completeness) =L ⊆ 'int.
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Conclusion: Separability of AL

• AL expresses more than behaviour (=L (≈); for most of

processes,

P =L Q iff P ≡ Q

• However, for some extreme processes, the result fails be-

cause the ♦ has a weak semantic (→∗ instead of →).

• The imprecisions due to the many-steps semantics:

- η-convertibility: (x)
(
〈x〉|(y)P

)
=L (y)P

- stuttering: in n.P =L in n.Q iff P
(out n,in n)∗−−−−−−−−−−→ Q

(out n,in n)∗−−−−−−−−−−→ P
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Decidability issues in AL

• Model-checking and validity are mutually dependent (.,FP)

• In the general case, both are undecidable (Talbot,Charatonik)
A short proof: P |= FQ ∧ ♦FR and ` FQ → ♦FR boils down to decide wether
Q →∗R.

• Some cases where decidability has been obtained:
- finite control Ambients, logic without . [ChaGorTal02]
- static trees, logic without ∀ and ♦ [CalCarGor02]

• Logical equivalence (=L) is not decidable
in the general case, because of stuttering [HirLozSan02], while still being
“very close” to ≡ which is decidable (DalZilio)
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Extensions
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Adding communication

〈n〉 | (x).P −→ P{x:=n}
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Adding communication

〈n〉 | (x).P −→ P{x:=n}

• messages and receptions may be captured using formulas

• as before:

. image-finiteness ⇒ characteristic formulas

. completeness: no need of image-finiteness

• MAsyn
IF : =L coincides with ≡η, i.e. ≡ on η-normal terms

(x).
(
〈x〉|(y).P

)
→η (y).P
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Adding name restriction

• this extension is less clear

• new logical connectives nrA and In.A [CarGor01]

• we believe that:

. logical equivalence is still ≡ on MAsyn
IF for η-normalized terms

. characteristic formulas exist

. completeness only holds under image-finiteness
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Conclusion
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Main contributions

• evidence of the strong expressiveness of AL

• adjuncts are important in this setting

• characterisations of =L (coinductive and inductive)

• connections with other works about decidability in AL

→ to what extend do our technical developments (encoding

of persistence, completeness proof) depend on the specific

calculus of Mobile Ambients?
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Current investigations

• Decidability with .: what is tractable?

• The π-calculus logic: what about encoding capabilities?

(We have results)

• Less intensionnal logics: is there a way to define a “more

behavioural” =L?
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Annex
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Capability formulas

1Comp
def
= ¬0 ∧ 0‖0

1Cap
def
= 1Comp ∧ ¬∃x. x[>]

〈in n〉.A
def
= 1Cap ∧ ∀x.

(
n[0] . ♦ n[x[A]])@x

〈out n〉.A
def
= 1Cap ∧ ∀m.

(
(♦m[A]|n[0])@n

)
@m

〈open n〉.A
def
= 1Cap ∧ ∀m.

(
n[m[0]] . ♦ m[0]|A

)
((cap)).A

def
= 〈cap〉.> ∧ ¬〈cap〉.¬A for any capability cap
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Characteristic formulas

F0
def
= 0 FP |Q

def
= FP | FQ

Fn[P ]
def
= n[FP ] Fcap.P

def
= 〈cap〉.FP ∧ ((cap)).

∨
{P ′, P→∗P ′}/'int

FP ′

F
!n[P ]

def
= Repn[](FP) F!cap.P

def
= Repcap(Fcap.P)
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