
Information Flow
in

Boxed Ambient

I. Salvo

a joint work (in progress) with:

M. Bugliesi, G. Castagna, S. Crafa

journees “methode formelle pour la mobilitè”,
Paris, December 6, 2002

1

Outline of the talk

• From Mobile Ambients to NBA

• Information Flow in Distributed Systems

• A Type System for Information Flow in Boxed
Ambients

• Conclusions and Future Work

2

Ambient Calculus
[Cardelli & Gordon 98]

• Main Motivation:
– Define a calculus to model mobile computations

(programming the Web)

• Formalize:
– Named places (ambients) where computations

happen

– Hierarchical structure

– Movement between places

– Asyncronous communication among processes
running in parallel inside the same ambient

3

Operational Semantics

A process may:
• communicate locally in an asyncronous way:

〈M〉 | (x).P −→ P{x := M}

• cause the enclosing ambient to move inside or
outside another ambient:

n[in m.P | Q] | m[R] −→ m[n[P | Q] | R]
m[n[out m.P | Q] | R]

−→ n[P | Q] | m[R]

• destroy the boundary of a sub-ambient:
open n.P | n[Q] −→ P | Q

4

“Boxing” Ambients

[Bugliesi, Castagna & Crafa, 01]

• open is essential for communication, but:

– Dangerous for security:

m[in n.bad] | n[open m.P] −→ n[P | bad]

– Complicates type systems

• Drop the open capability

• Introduce parent-child communication for ex-
pressivess

5

Boxed Ambient

(Local) (x)P | 〈M〉Q −→ P{x := M} | Q

(Input n) (x)nP | n[〈M〉 | Q] −→ P{x := M} | n[Q]

(Output n) 〈M〉n | n[(x)P | Q] −→ n[P{x := M} | Q]

(Input ↑) 〈M〉 | n[(x)↑P | Q] −→ n[P{x := M} | Q]

(Output ↑) (x)P | n[〈M〉↑ | Q] −→ P{x := M} | n[Q]

6

Boxed Ambient: Discussion

• Powerful Communication Mechanism

Example: Broadcast

n[!〈M〉 | m[(x)↑ | . . .] | . . . | p[(x)↑ | . . .]]

• Source of grave interference

m[(x)n .P | n[〈M〉 | (x) .Q | k[(x)↑ .R]]]

7

Boxed Ambient (II)

[Bugliesi, Castagna & Crafa, 02]

• two non-interfering channels for local and up-
ward communication:

(Local) (x)P | 〈M〉Q −→ P{x := M} | Q

(Input n) (x)nP | n[〈M〉↑ | Q] −→ P{x := M} | n[Q]

(Output n) 〈M〉n | n[(x)↑P | Q] −→ n[P{x := M} | Q]

8

NBA Calculus
[Bugliesi, Crafa, Merro & Sassone 02]

• Expressiveness:

– Ambients must statically know their children

– do not learn about incoming ambients

• Introduce coaction as binder:

n[enter〈m, k〉.P | Q] | m[enter(x, k).R | S]
−→ m[n[P | Q] | R{x := n} | S]

n[m[exit〈n, k〉.P | Q] | R] | exit(x, k).S
−→ m[P | Q] | n[R] | S{x := m}

9

NBA: Discussion

• Expressiveness: using guarded choice allow to en-
code the first version of BA

• Nice equational laws: LTS sematics

• Barbs:

P ↓n iff P ≡ (ν ~m)(n[enter(x, k).Q | R] | S)

P ⇓n iff ∃Q and P −→∗ Q, Q ↓n

• It is equivalent to observe 〈·〉↑

10

NBA Type System

• Types:

Message Types W ::= N[E] ambient/password
| C[E] capability

Exchange Types E, F ::= Shh silent process
| W1 . . . Wk Tuples, k ≥ 0

Process Types T ::= [E, F] local/upward
exchange

11

NBA Typing Rules

Γ ` M : N[E] Γ ` N : N[F]
(Exit)

Γ ` exit〈M, N〉 : C[F]

Γ ` M : N[F] Γ ` P : [E, F]
(Amb)

Γ ` M [P] : T

Γ ` M : N[W̃] Γ, x̃ : W̃ ` P : T
(Input M)

Γ ` (x̃ : W̃)M .P : T

Γ, x̃ : W̃ ` P : [E, W̃]
(Input ↑)

Γ ` (x̃ : W̃)↑P : [E, W̃]

Γ ` M : W̃ Γ ` P : [W̃ , E]
(Output)

Γ ` 〈M〉.P : [W̃ , E]

Γ ` M : N[W̃] Γ, x : N[W̃] ` P : [E, F]
(Co-Exit)

Γ ` exit(x, M).P : [E, F]
12

Outline of the talk

• From Mobile Ambients to NBA X

• Information Flow in Distributed Systems

• A Type System for Information Flow in Boxed
Ambients

• Conclusions and Future Work

13

MAC Security Policy in NBA

• Each Ambient has a security clearance (types)

• Consider a set of subjects (Processes) and of ob-
jects (Ambients)

• Define a security policy (e.g no read-up, no write-
down)

• Read Access: m[(x)nP | n[〈M〉↑Q | R] | S]

• Write Access: m[〈M〉nP | n[(x)↑Q | R] | S]

14

Implicit Information Flows

• The behavior of a low level entity depends
indirectly from high level ones

• Example: testing the existence of a high level pro-
cess maybe a relevant information

• Information flow is difficult to formalize:
non interference (Goguen, Meseguer 82)

15

Example: e-commerce

• Consider an agent P that visits sites that offer a
given service

• P stores the offer in its private aerea H

• We do not want a new offer depends on previously
stored data and the vendors know the agent visited
other sites

P ≡ l[!enter(x, k).〈enter〈h, k′〉〉 | Q
| h[!enter(x, k′).R | S]]

16

What the Example Shows

• The secret component contains low-level subcom-
ponents

• Testing the presence of the secret component is a
relevant information

• To enter the secret component a capability is com-
municated (low level information)

• Information inside H will be inside other secrets
components

17

What has been done so far...
[HR98, BCC02, ...]

• Usual approaches: Consider Γ ` H a high level
process

• Only well-typed contexts wrt a type system which
discards “dangerous” flows of information

• Interference Free Processes P is interference
free if, for all high level sources H,

P | H ∼=L P

P ∼=L Q iff ∀C(), C(P) ⇓l⇐⇒ C(Q) ⇓l

18

Our (forthcoming) approach

• Consider processes typed in a lightweight type sys-
tem without information flow constraints

• Define the set of interference free process

• Define a type system that accepts only interference
free processes

19

Non Interference (revisited)

• High Level Sources H is a high level source if

(ν~h)H ∼= 0,

where ~h is the set of high free names of H

• Interference Free Processes P is interference
free if, for all high level sources H,

(ν~h)(P | H) ∼= (ν~h)P,

where ~h is the set of high free names of H and P

20

Outline of the talk

• From Mobile Ambients to NBA X

• Information Flow in Distributed Systems X

• A Type System for Information Flow in Boxed
Ambients

• Conclusions and Future Work

21

Security Types for NBA

• Types:

Message Types W ::= N[σ, E] ambient/password
| C[σ, E] capability

Exchange Types E, F ::= Shh silent process
| W1 . . . Wk Tuples, k ≥ 0

Process Types T ::= [σ, E, F] local/upward
exchange

22

Security Types for NBA

Clearence of types:

α(N[σ, E]) = σ

α(C[σ, E]) = ⊥

α(W1 . . . Wk) = maxi α(Wi)

Type formation rules:

Γ ` E Γ ` α(E) ≤ σ
(Type Amb)

Γ ` N[σ, E]

Γ ` Ei Γ ` α(Ei) ≤ σ
(Type Proc)

Γ ` [σ, E1, E2]

23

“Information Flow” Types for NBA

• Message types becomes: N[σ, τ, E]

• Judgement has the shape:

Γ `φ P : [σ, E, F]

24

“Information Flow” Types Rules

Γ ` M : N[τ, ρ, E] Γ, x : N[τ,−, W̃] `τ P : [σ, E, F]
(CoExit)

Γ `φ exit(x, M).P : [σ, E, F]

provided Safe(σ, φ, τ) ρ = H & τ = L ⇒ σ = H

Γ ` M : N[τ,−, W̃] Γ, x̃ : W̃ `τ P : [σ, E, F] Safe(σ, φ, τ)
(Input M)

Γ ` (x̃ : W̃)M .P : [σ, E, F]

25

Outline of the talk

• From Mobile Ambients to NBA X

• Information Flow in Distributed Systems X

• A Type System for Information Flow in Boxed
Ambients X

• Conclusions and Future Work

26

Conclusion and Future Work

• Main achievement: “type indepedent” definition of
interference free process

• Study less restrictive type system

• Apply this approach to π-calculus and compare
with previous work

27

Outline of the talk

• From Mobile Ambients to NBA X

• Information Flow in Distributed Systems X

• A Type System for Information Flow in Boxed
Ambients X

• Conclusions and Future Work X

28

