Average Case Analysis of Moore’s State
Minimization Algorithm

Frédérique Bassino
LIPN UMR 7030, Université Paris 13 - CNRS,
99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
Frederique.Bassino@lipn.univ-paris13.fr

Julien David
LIPN UMR 7030, Université Paris 13 - CNRS,
99, avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
Julien.David@lipn.univ-paris13.fr

Cyril Nicaud
LIGM UMR 8049 - CNRS, Université Paris Est,
5, bd Descartes, 77454 Marne-la-Vallé Cedex 2, France.
Cyril.Nicaud@univ-paris-est.fr

July 25, 2011

Abstract. We prove that the average complexity of Moore’s state minimization
algorithm is O(knlogn), where n is the number of states of the input and k the size of
the alphabet. This result holds for a whole family of probabilistic models on automata,
including the uniform distribution over deterministic and accessible automata, as well
as uniform distributions over classical subclasses, such as complete automata, acyclic
automata, automata where each state is final with probability v € (0,1), and many
other variations.

Key Words. state minimization algorithms, Moore’s algorithm, average complexity,
finite automata.

1 Introduction

Deterministic automata are a convenient way to represent regular languages and can
be used to perform efficiently most usual computations involving regular languages.
Therefore, finite-state automata appear in many fields of computer science, such as
linguistics, data compression, bioinformatics, etc.. One can associate a unique smallest
deterministic automaton to any given regular language. This automaton is called its
minimal automaton. This canonical representation of regular languages is compact and
provides an easy way to check equality between regular languages. As a consequence,
state minimization algorithms, which compute the minimal automaton of a regular
language given by a deterministic automaton, are of great interest.

Moore proposed a solution [1] that can be seen as a sequence of partition re-
finements. Starting from a partition of the set of states of size n into at most two
parts, successive refinements lead to a partition whose elements are the subsets of
indistinguishable states; these sets can be merged to form a smaller automaton that
recognizes the same language. Since there are at most n such refinements, and since
each of these refinements is done in linear time, the worst-case complexity of Moore’s
state minimization algorithm is quadratic.

Hopcroft’s state minimization algorithm [2] also uses partition refinements to com-
pute the minimal automaton. It selects carefully the parts that are split at each
step. Using appropriate data structures, its worst-case complexity is O(knlogn). It is
the best known minimization algorithm and therefore it has been studied intensively:
in [3, 4] different proofs of its correctness are given, in [5, 6, 7] the tightness of the
complexity upper bound for various families of automata is proved, in [8, 9] a precise
description of the data structures that are needed to reach the O(knlogn) complexity
is given. In [10, 11] two O(mlogn) solutions for incomplete automata are given, where
m denotes the number of defined transitions, using improvements in Hopcroft’s strat-
egy together with advanced data structures. Note that Hopcroft and Ullman described
another minimization algorithm which is much easier to implement in [12]: for every
pair of states of the input automaton, it tests whether the two states are equivalent
or not. Tts complexity is ©(kn?).

Brzozowski’s algorithm [13, 14] is another minimization algorithm. It works differ-
ently than the other ones. It has the advantage to be able to take non-deterministic
automata as inputs. It is based on two successive determinization steps, and though
its worst-case complexity is proved to be exponential, it has been noticed that it is of-
ten sub-exponential in practice. For further details on all these algorithms, the reader
is invited to consult [15] where a taxonomy of minimization algorithms is presented.

Also note that for some specific families of automata, minimization can be done
in linear time. See for instance [16] for acyclic automata, [17] for unary automata
and [18] for local automata.

Number of iterations

15T Moore ——
S‘landard‘ Dev\a‘llon L'TF"

1 L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Size of Automata
Figure 1: The experimental results were obtained with the C++ library REGAL
(available at: http://regal.univ-mlv.fr/) to randomly and uniformly generate de-
terministic, accessible and complete automata [19, 20, 21]. For each size the values
are computed from 20000 random automata over a 2-letter alphabet.

In this paper we study the average time complexity of Moore’s algorithm. From
an experimental point of view, it seems that for the uniform distribution, the average

number of partition refinements increases very slowly as the size of the input grows
(Fig.1).

In the following we prove that Moore’s algorithm performs only O(logn) refine-
ments on average, and therefore has average complexity O(knlogn). Our result holds
for any probabilistic model that satisfies the following conditions: the underlying graph
of the automata and the set of final states are chosen independently from one another
and every state is final with fixed probability v € (0,1). We call such a probabilistic
model a Bernoulli model. For instance, our result holds for the uniform distribution on
possibly incomplete automata, the uniform distribution on strongly connected (resp.
acyclic, group, etc.) automata, since they are all Bernoulli models.

The O(knlogn) average time complexity therefore holds for various probabilistic
models, and the goal of this paper is to state a result that holds for as many distri-
butions as possible. Choosing one specific model may allow a more precise analysis;
this is what the second author did in [22], proving that the average complexity is
O(knloglogn) for the uniform distribution over deterministic and complete automata
(not necessarily accessible), but such a result cannot be generalized directly to, for
instance, acyclic automata.

A preliminary version of this work, where some proofs were omitted and the state-
ments were less general, has been presented in [23].

The paper is organized as follows. After recalling the basics of minimization algo-
rithms in Section 2, we establish some results on Moore’s algorithm when applied to
automata that are already minimal in Section 3. Section 4 is devoted to the statement
and the proof of our main result, starting with a description of the probabilistic models
under which it holds. In Section 5, we present some extensions and other models that
do not necessarily satisfy the hypothesis of our result, in order to illustrate the limits
of what can be done with the techniques introduced in this paper. A conclusion is
proposed in Section 6, with some perspectives and open problems.

2 Preliminaries

This section is devoted to basic notions related to the minimization of automata. We
refer the reader to the literature ([12]) for more details about this topic. Only a few
definitions and results that will be useful for our purpose are recalled here.

2.1 Definitions and notations

A finite deterministic automaton, or deterministic automaton, A = (A,Q,-, qo, F) is
a quintuple where @ is a finite set of states, A = {a1,...,ar} is a finite set of letters
called alphabet, the transition function - is a function from Q x A to Q, qo € Q is the
initial state and ' C @Q is the set of final states. An automaton is complete when its
transition function is total. The transition function can be extended by morphism to
all the words of A*: p-e =p for any p € Q and for any u,v € A*, p- (uv) = (p-u) - v.
A word u € A" is recognized by an automaton when qo - u € F. The set of all the
words recognized by A is denoted by L(.A). An automaton is accessible when for any
state p € @, there exists a word u € A* such that qo - u = p. It is co-accessible when
for any state p € Q, there exists u € A* such that p-u € F.

A transition structure is an automaton where the set of final states is not specified.
Given such a transition structure T' = (A, Q,-,qo) and a subset F' of @, we denote
by (T, F) the automaton (A, Q,-, qo, F). For a given deterministic and accessible n-
state transition structure there are exactly 2" distinct deterministic and accessible

automata that can be built from this transition structure. Each of them corresponds
to the choice of its set of final states.

For any fixed alphabet A and any integer n > 1, we denote by D,, the set of all n-
state deterministic and accessible automata on A and by 7,, the set of all deterministic
and accessible n-state transition structures on A. We also define D = U,>1D, and
T = Unlen.

In the following we only consider deterministic and accessible automata and de-
terministic and accessible transition structures. Consequently, these objects will often
just be respectively called automata and transition structures. We also consider, with-
out loss of generality, that the set of states of an m-state automaton or transition
structure is always Q = {1,...,n}.

When stating a result on the average time complexity of Moore’s algorithm, n is
implicitly always the number of states of the automaton, and k the size of the alphabet.

The cardinality of a finite set F is denoted by |E|. For a boolean condition (which
we also call property) Cond, the Iverson bracket [Cond] is equal to 1 if the condition
Cond is satisfied and 0 otherwise. If P = {Ey,..., Ex} is a partition of a set E, the
E;’s are called the parts of E.

2.2 Completion of an automaton

Moore’s algorithm deals with deterministic accessible and complete automata. Though
all automata considered in this article are deterministic and accessible, we will consider
in the sequel several distributions on possibly incomplete automata. In that case, a
simple preprocessing is needed before applying state minimization algorithm.

More precisely, if the automaton is not complete, just add a sink state, which
becomes the target state of every undefined transition. This transformation, which
will be called the completion step in the following, is done in time O(kn), in the worst
case, where k is the size of the alphabet and n the number of states of the automaton.

2.3 The Myhill-Nerode equivalence relation for complete automata
Let A = (A,Q,,qo, F) be a complete automaton. For any non-negative integer 1,
two states p,q € @ are i-equivalent, denoted by p ~; g, when for all words u of
length smaller than or equal to ¢, [p-u € F] = [¢g-u € F]. Two states are equivalent
when for all u € A*, [p-u € F] = [¢-u € F]. This equivalence relation is called the
Myhill-Nerode equivalence relation [24], and is denoted by p ~ q.

Recall that an equivalence relation = defined on the set of states @) of an automaton
is said to be right invariant when

Vue A", Y(p,q) €Q°, prg=p umq-u

The following proposition summarizes the properties of the Myhill-Nerode equivalence
relation that will be used in the following sections.

Proposition 1. Let A = (A,Q,-, qo, F) be a complete n-state automaton. The fol-
lowing properties hold:
1. For alli € N, ~;11 is a partition refinement of ~;, that is, for all p,q € Q, if
P ~it1 q then p ~; q.

2. For all i € N and for all p,q € Q, p ~it1 q if and only if p ~; q and for all
a€A p-ar~;q-a.

3. If, for some i € N, the (i + 1)-equivalence relation is equal to the i-equivalence
relation then for every j > i, the j-equivalence relation is equal to the Myhill-
Nerode equivalence relation ~.

4. Ifn > 2, the (n—2)-equivalence relation is equal to the Myhill-Nerode equivalence
relation. If n =0 or n =1 or if F is either empty or Q, then ~g=rv.

5. The Myhill-Nerode equivalence relation is right invariant.

For any complete automaton A € D, denote by NERODE(.A) the smallest integer
m such that the m-equivalence relation ~,, is equal to the Myhill-Nerode equivalence
relation.

Let A = (A,Q,-, qo, F) be an automaton and = be a right invariant equivalence
relation on Q. The quotient automaton of A by = is the automaton

A/% = (AvQ/%v*v [qoL{[f] | e F})7

where @/~ is the set of equivalence classes, [q] is the class of ¢ € Q, and x is defined
for any a € A and any ¢ € Q by [g] *a = [g - a]. The well-formedness of this definition
follows from the right invariance of the equivalence relation .

Theorem 1. For any deterministic accessible and complete automaton A, the au-
tomaton A/~ is the unique smallest deterministic and complete automaton (in terms
of the number of states) that recognizes the same language as the automaton A.

The quotient automaton A/~ of Theorem 1 is called the minimal automaton of
L(A). The uniqueness of the minimal automaton is up to labelling of the states. The-
orem 1 shows that the minimal automaton is a fundamental notion in language theory:
it is the most space efficient representation of a regular language by a deterministic and
complete automaton, and its uniqueness defines a bijection between regular languages
and minimal automata.

Note that for our definition, a minimal automaton is always complete; the alter-
native definition, where the minimal automaton must be trim, is also used in the
literature.

2.4 Moore’s state minimization algorithm for complete automata

In this section we describe an algorithm due to Moore [1], which computes the minimal
automaton of a regular language represented by a deterministic accessible and complete
automaton. The analysis of the average complexity of this algorithm is the main
purpose of this article.

Recall that Moore’s algorithm builds the partition of the set of states of the input
automaton corresponding to the Myhill-Nerode equivalence relation. The algorithm
relies mainly on Properties 2 and & of Proposition 1: The partition 7 is initialized
according to the 0-equivalence relation ~g, then in each iteration the partition corre-
sponding to the (i+1)-equivalence relation ~;41 is computed from the one correspond-
ing to the i-equivalence relation ~;, using Property 2. The algorithm stops when no
new partition refinement is obtained, and the result is the Myhill-Nerode equivalence
relation according to Property 3. The minimal automaton can then be computed from
the resulting partition since it is the quotient automaton of the input automaton by
the Myhill-Nerode equivalence relation. The algorithm is detailed in Figure 2.

Note that after 7 iterations in the main loop of the algorithm, the relation ~; has
been computed, and 7’ is the associated partition.

Moore’s algorithm
if F =0 then

L return (A, {1}, ,1,0)
if F={1,...,n} then

L return (A4, {1}, ,1,{1})

forallp € {1,...,n} do
| «'[pl :=[peF]

7 7 := undefined
8 while 7 # 7’ do

') N =

[

9 mi=n
10 compute 7’ from 7

11 return the quotient of A by w

The computation of the new partition
is done using the following property on
the associated equivalence relations:

b ~iq,

P qé{VaeA, p-a~;q-a.
To each state p is associated a signa-
ture s[p] such that p ~;11 ¢ if and
only if s[p] = s[g]. The states are then
sorted according to their signature, in
order to compute the new partition.
The use of a lexicographic sort yields
a complexity in ©(kn) for this part of
the algorithm.

In this description of Moore’s algorithm, x*
denotes the function such that 1xa =1 for
all a € A. Lines 1-4 correspond to the spe-
cial cases where ' = () or ' = . In the
process, 7 is the new partition and 7 the
former one. Lines 5-6 are the initialization
of ' to the partition of ~q, 7 is initially
undefined. Lines 8-10 form the main loop
of the algorithm where the new partition is
computed, using the second algorithm be-
low. The number of iterations of Moore’s
algorithm is the number of times these lines
are executed.

Computing 7’ from 7

=

forall p € {1,...,n} do
L slp] := (wlpl, w[p-a1], ..., w[p-ax])

3 compute the permutation o that
sorts the states according to s[|
1:=0
'lo(1)] =4
forall p € {2,...,n} do
if s[or(p)] # slo(p — 1)] then
| i=i+1

N

© w0 No s

7'lo(p)] =i

10 return 7’

Figure 2: Description of Moore’s algorithm.

The worst-case time complexity of Moore’s algorithm is ©(kn?).

Lemma 1 be-

low is a more precise statement that will be used in the proof of the main theorem

(Theorem 2).

If A € D, then the number of iterations of the main loop when Moore’s algorithm
is applied to A, denoted by MOORE(A), is directly related to NERODE(A), as stated

in the following lemma.

Lemma 1. For any automaton A of Dy, the following properties hold:

e The number of iterations MOORE(A) of the main loop in Moore’s algorithm is
equal to 0 if L(A) =0 or L(A) = A" and is equal to NERODE(A) + 1 otherwise.

e MOORE(A) is always less than or equal to n — 1.

o [fL(A) # 0 and L(A) # A", then the time complexity W(A) of Moore’s algo-
rithm applied to A is ©(MOORE(A)kn).

Proof. If F' is empty or equal to {1,...

,n}, then NERODE(A) = 0, and the time

complexity to compute the size of F is ©(n).

OO0~ 00

Figure 3: The minimal automaton of the language A"~'A* for n > 3. The
states 1 and 2 are (n — 3)-equivalent, but not (n — 2)-equivalent: Moore’s algo-
rithm performs n — 1 iterations before halting.

The loop is iterated exactly NERODE(A) + 1 times when the set F' of final states is
neither empty nor equal to {1,...,n}, because the algorithm needs one more iteration
to obtain that m = 7’. Moreover, by Property 4 of Proposition 1, NERODE(A) is
less than or equal to n — 2. The initialization and the construction of the quotient
automaton are both done in ©(kn). The complexity of each iteration of the main loop
is in ©(kn): this can be achieved using a lexicographic sort algorithm, and yields the
announced result for W(A). |

Lemma 1 gives proof that the worst-case complexity of Moore’s algorithm is
O(kn?), as there are no more than n — 1 iterations in the process of the algorithm, for
n large enough. More precisely, the worst-case complexity of the algorithm is 6(/€n2);
this can be shown using the automata depicted in Figure 3.

When the automaton that must be minimized is not complete, the completion
step described in Section 2.2 is applied before running Moore’s algorithm. The time
complexity of the completion step followed by Moore’s algorithm is of the same order
of magnitude as the one of the state minimization alone.

3 Moore’s algorithm on minimal automata

Before analyzing the average behavior of Moore’s algorithm, which is the main purpose
of this paper, we establish two results on what happens when it is used on minimal
automata. First, we prove that the number of iterations of Moore’s algorithm depends
only on the recognized language, and therefore it is the same for all deterministic
accessible and complete automata recognizing the same language. Next we establish
a lower bound of the number of iterations of Moore’s algorithm when it is applied to
minimal automata, which will be useful in the forthcoming discussions.

Lemma 2. The number of iterations of Moore’s algorithm applied to any deterministic
accessible and complete automaton is equal to the number of iterations of this algorithm
when it is applied to the associated minimal automaton.

Proof. Let A = (A,Q,-, qo, F) be the automaton and Amin = (A, Q/~,*,[qo], F') be
the associated minimal automaton. If the language recognized by A and A,y is either
A* or (), by Lemma 1 we have MOORE(A) = MOORE(Amin) = 0.

Otherwise, by Lemma 1, MOORE(.A) = NERODE(A) + 1. Moreover, by definition
one has

NERODE(.A):min{i20|V(p,q)6Q2 ipwqg= (EIuEASi:[[p-u]] ;é[[qu]])}

Since by definition p ~ ¢ if and only if [p] # [¢] and since for all p € Q and all u € A",
[p - u] = [[p] * u], one can write

NERODE(A) = min {z >0 Y(p,q) € Q°: [p] £ [q] = (au € AST: [[p] *] # [[q] * u]]) } .
Thus MOORE(A) = MOORE(Amin), concluding the proof. |

According to the previous lemma, it is interesting to study the behavior of Moore’s
algorithm when applied to minimal automata. The worst-case complexity of the al-
gorithm is still ©(kn?), since the automaton depicted in Figure 3 is minimal. Since
all the states of a minimal automaton are alone in their equivalence class, a minimum
number of iterations in the algorithm is required to distinguish all of them, as proved
in the following proposition.

Proposition 2. Moore’s algorithm applied to a minimal n-state automaton has a
complexity in Q(%nlog logn) for an alphabet of size k > 2 and in Q(nlogn) for a
one-letter alphabet.

Proof. The algorithm ends when each state of the minimal automaton A is isolated

in a part of the partition, and needs one more iteration to find out that the partition

has not changed. The number of parts is equal to the number of states in A. For

any integer ¢ and any state p, consider the mapping qﬁg) ¢ AS' — {0,1} defined by
{(u) = [p- u]. Since there are k' words of length j, the number of distinct words of

length at most i, for a fixed integer i, is

ik]-_{% when k > 2,

= i+1 when k = 1.

ki1 . .
Therefore, there are at most 2° =1 (resp. 2°1') distinct qzﬁgf), for finite alphabets of

size at least two (resp. equal to one). Since p ~; ¢ if and only if qzﬁé,i) = qb((f), there
kit g .

are at most 2~ #=1 (resp. 2°*1) distinct parts in the partition at the i-th iteration of

Moore’s algorithm. When n > 2, the set of final states of the minimal automaton A is

non trivial and the algorithm halts one iteration after the n parts have been computed.

Hence
kMOORE(A) _ ¢

n <2 k=1 when k > 2,
n < gMoorE(A) when k = 1,
concluding the proof, since the cost of an iteration is ©(kn). |

4 Average case analysis

4.1 Probabilistic Model
Our main theorem is established for a family of distributions that we call Bernoulli
model on automata. We define them formally in this section.

Since we are dealing with finite sets only, every universe on which probabilities are
defined is also finite; a probability law on such a finite universe U can be defined by a
probability mass function p : U — [0,1], that is, a function such that > _, p(z) = 1.
The associated probability law, that we also denote by p, is defined for all X C U by

Recall that every automaton A € D,, can be seen as a pair (T4, Fa), where Tq € T,
is a transition structure and F4 C {1,...,n} is a set of final states.

If for a given non-empty finite set E, we choose a subset of E by selecting every
element of E with probability v, where v € (0, 1), we get a probability on subsets of
FE, which is formally described in the following definition.

Definition 1. Let E be a non-empty finite set. For any v € (0,1), the probability
r defined on subsets X of E by r(X) = ~X!(1 —)IEI=IXI s called the Bernoulli
distribution of parameter v on elements of F.

Definition 2. For anyn > 1, a probability p defined on D., is a Bernoulli model when
there exists a probability q defined on T, and a real number v € (0,1) such that, for
any A € Dy,

p(A) = q(Ta) r(Fa), with A= (T4, Fa),

where r is the Bernoulli distribution of parameter ~ on states.

This means that the transition structures follow any probability law ¢ on 7,,, and
that each state is final according to a Bernoulli law of parameter -, independently
from the other states and from the transition structure. If we want to specify the
parameter, we shall say that p is a Bernoulli model of parameter ~.

Since we are interested in the asymptotic complexity of an algorithm, we are
working on a sequence of probabilities, one for each D,,, with n > 1. We can avoid
too much formalism using the following definition.

Definition 3. Lety € (0,1). Let p: D — [0, 1] be a mapping such that for anyn > 1,
the restriction of p to Dy is a Bernoulli model of parameter v. Then p is a Bernoulli
model on D (of parameter 7).

Note that it is important in the above definition that -y is fixed and therefore does
not depend on n.

In analysis of algorithms, one is often interested in uniform distributions on inputs
or on subfamilies of inputs. A wuniform distribution on a non-empty finite set F is
a probability p such that, for any e € E, p(e) = 1/|E|. Because of the required
independency between transition structures and sets of final states in Definition 2, the
uniform distribution on a subset E of D,, is not always a Bernoulli model. Nonetheless,
as stated in the following lemma, Bernoulli models can be obtained by restricting the
allowed transition structures.

Lemma 3. Let P be a property defined on T. For any n > 1, let &, C D, be the
subset of n-state automata whose transition structures satisfy P. For any n > 1 such
that £, # 0, the uniform distribution on &, is a Bernoulli model.

Proof. Let p be the probability defined for any A € D, with A = (T4, F4), by

_ [P(TW] 1
where ¢, is the number of transition structures in 7, that satisfy P. Then p is the
uniform distribution on &, and it is a Bernoulli model with ¢(T") = [P(T)]/t» and

v=3 =

Acyclic automata, strongly connected automata, group automata, etc. are exam-
ples of families of automata that are defined by a property on the transition structures
only. As a consequence, the uniform distribution on such a class of automata is a
Bernoulli model.

4.2 Main Result
The main result is the following;:

Theorem 2. For any Bernoulli model on D, the average time complexity of Moore’s
state minimization algorithm, possibly preceded by a completion step, is O(knlogn).

As a consequence of Theorem 2 and Lemma 3, we have the following corollary:

Corollary 1. The average complexity of Moore’s state minimization algorithm, pos-
sibly preceded by a completion step, is O(knlogn) for the following distributions:

e The uniform distribution on deterministic and accessible automata.
e The uniform distribution on deterministic, accessible and complete automata.
e The uniform distribution on deterministic, accessible and acyclic automata.

e The uniform distribution on deterministic and accessible inverse automata (the
action of each letter is a partial injection on the set of states).

e Any of the above, using a Bernoulli model of fized parameter v € (0,1) for the
sets of final states.

A typical example that does not meet the condition of Theorem 2 is the uniform
distribution on complete and co-accessible automata, since the co-accessibility condi-
tion depends on the set of final states (see Section 5.4 for more details).

4.8 Outline of the proof
The proof of Theorem 2 can be summarized informally as follows.

We first consider a fixed n-state complete transition structure T'. We establish
necessary conditions for a set of final states F' to be such that Moore’s algorithm
requires at least £ iterations when applied to the automaton (7, F'). Under a Bernoulli
model, the probability that an automaton satisfies these conditions is proved to be
exponentially small in £.

Therefore, for a good choice of £ = ©(logn), we can prove that the probability for
a set of final states F' to induce more than ¢ iterations in Moore’s algorithm is O(2):
the contribution to the average value of such sets is negligible. Hence most of the
time, less than £ iterations are performed before the algorithm halts. This is stated in
Proposition 3 and Proposition 4.

Moreover, the upper bound obtained for the average number of iterations does not
depend on the transition structure 7". Therefore, since the distribution of transition
structures and sets of final states are independent under a Bernoulli model, a simple
computation using the uniform bound completes the proof of Theorem 2.

4.4 Compatible partitions to obtain at least ¢ iterations
In this section, we introduce some definitions and preliminary results that will be used
in the main proof.

The notion of compatible partition will be of great importance in the following.

Definition 4. Let E be a non-empty finite set and P = {E1, ..., En} be a partition
of E. A subset X of E is compatible with P when it is a union of parts of P: there
exists I C{1,...,m} such that X =, Ei.

10

Let T be a fixed complete transition structure of 7,, and ¢ be an integer such that
1 <4< n. Let also p,q,p’,q¢" € {1,...,n} be four states of T.

Define F;(p,q,p’,q’) as the set of sets of final states F' for which in the automaton
(T, F) the states p and ¢ are (¢ — 1)-equivalent, but not ¢f-equivalent, because of a word
of length £ mapping p to p’ and q to ¢’, where p’ and ¢’ are not 0-equivalent. In other
words F¢(p,q,p’,q') is the following set:

Folp,q,p’,q¢") = {F C{1,...,n}| for the automaton (T, F), p ~¢—1 q
and [p’ € F] # [¢’ € F]

and HuEA[,(p%L:p' andq-u:q/)}.

We assume for the discussion below that F¢(p,q,p’,q’) is not empty; the cases
where it is empty are trivial and are handled easily.

We build a partition P;(p,q,p’,q’), denoted P, for short, that represents necessary
conditions for a set of states to belong to Fu(p, q,p’,q'). Let u = u1 ... ue, with u; € A,
be the smallest (for the lexicographic order) word of length ¢ such that p-u = p’ and
q-u=¢q.

For every i € {0,...,¢}, we build a partition P; of the set of states {1,...,n} in
the following way:

e Py = {{1},...,{n}} is the partition into n parts, where each state is alone in
its part.

e For any i € {0,...,¢ — 1}, the partition P;j;; is obtained from P; by merging
the parts of the states p- v and ¢ - v, where v is the prefix of length ¢ of w: if
is the part of p-v and E’ the part of q-v, P;11 is obtained from P; by removing
the parts E and E’ and by adding the part E U E’. Note that if p-v and ¢-v
are in the same part, then P;4+1 = P;, but we will show that it cannot happen.

Lemma 4. If Fi(p,q,p’,q') # 0, then the partition Pi(p,q,p’,q’) has evactly n — £
parts, and every element of Fo(p,q,p’,q") is compatible with P;(p,q,p’,q’).

Proof. Let (pi)o<i<e and (gi)o<i<e denote the sequences of states such that for every
i €40,...,4}, pi =p-vand ¢ = ¢-v, where v is the prefix of length ¢ of u. In
particular, po =p, go = ¢, pe = p’ and qo = ¢'.

Note that for every F € Fe(p,q,p’,q") and every i € {0,...,£ — 1}, pi ~e—i—1 qi
but p; ~¢—; gi, since by definition p ~,_1 ¢ and p », q. Therefore we can prove by
induction on ¢ € {0, ...,¢—1} that if and y are in the same part of P; then z ~y_; v,
in any automaton (T, F') such that F € F¢(p,q,p’,q’): Since P contains only trivial
parts, it is true for ¢ = 0. For the induction step, we prove that if it is true at rank
i € {0,...,£ — 2}, then it is also true at rank ¢ + 1. Indeed, let = and y be in the
same part of P,+1. If x and y are also in the same part of P;, the induction hypothesis
applies, ~¢—; y and therefore x ~,_(;y1) y. Otherwise, x and y are in different parts
of P;, which means that in P;, x is in the same part as p; and y is in the same part
as ¢; (or we swap z and y by symmetry); by induction hypothesis, * ~;—; p; and
Yy ~e—i qi- Hence x ~y_(i41) pi and y ~p_(iy1) ¢i, and since p; ~¢—;—1 g;, wWe obtain
that © ~,_(;11) y, concluding the proof by induction.

The property shown above proves that p; and ¢; are not in the same part of P;, since
they are not (£ — i)-equivalent, for any choice of set of final states F' € F¢(p,q,p’,q).
Therefore, for every ¢ € {0,...,£ — 1}, Pit1 # P;. Hence, a direct induction shows
that the number of parts in P; is exactly n — i, for any 7 € {0,...,¢}.

11

Moreover, if z and y are in the same part of Py, we have proved that = ~¢ y for
any F € Fu(p,q,p’,q'). This means that both z and y are in F or neither of them are
in F'. Therefore F' is a union of parts of P, and F' is compatible with P. O

Figure 4 illustrates the proof of Lemma 4 with the construction of a graph. This
is the way the main proof was done in [23].

(b)

Figure 4: Ilustration of Lemma 4 forn =9,/ =5 p=3,¢=17, p' = 3 and
¢ = 8. (a) u = abbaa is the smallest word of length 5, for the lexicographic
order, such that 3-u = 3 and 7-u = 8. The set F5(3,7,3,8) is not empty,
since it contains at least {4,8}. The bold transitions are the ones followed
when reading v from p and from ¢. (b) For every prefix v of u, with v # u,
we put an edge between p - v and g - v. The partition P, corresponds to the
connected components of the resulting graph: two states in the same connected
component must be either both final or both not final, for the automaton to be

in]:e(]% qapla ql)

4.5 Main proof
In this section, we present the proof of our main theorem. We consider separately the
case of complete and incomplete transition structures.

4.5.1 Complete transition structures

Lemma 5. Let r be a Bernoulli distribution of parameter v € (0,1) on elements of
a non-empty finite set E. Let P be a partition of E in m > 1 parts. The probability,
under r, that a subset of E is compatible with P is at most "~ ™, where f = max(y,1—

7)-

Proof. Let P ={Ex,...,Ex}. Since every X compatible with P is a union of parts of
the partition, such an X is determined by choosing the subset I of {1, ..., m} satisfying
X = UierE;. Furthermore, using properties of the Bernoulli model, we can work on
each E; independently: for every i € {1,...,m}, either £, N X = 0 or E; C X; the
probability that the elements of E; are all in X is v/%!, and the probability that they
all are not in X is (1 —~)%:l. With 8 = max(v,1—7+), the probability of having either
event is therefore 417l 4 (1 —~)1Fil < ~IFil=1 4 (1 —4)plEil=1 = gIEil=1 Therefore,
by independency, the probability that X is compatible with P is bounded from above
by T[T, ﬁ|Ei|*1 =pgrm. |

12

Proposition 3 (Complete transition structures). Letk > 1, n>1 and let T € T, be
a complete transition structure over a k-letter alphabet. For the Bernoulli distribution
of parameter v on final states, the average number of iterations of the main loop of
Moore’s algorithm applied to (T, F) is bounded from above by 5log% n + 2, where

B = max(y,1 —7).

Proof. Denote by F=* the set of sets of final states such that the execution of Moore’s
algorithm on (T, F') requires more than £ iterations. Equivalently, A € F=¢ if and
only if NERODE(A) > ¢, by Lemma 1.

A necessary and sufficient condition for F' to be in F=* is that there exists two
states p and ¢ such that p ~¢_1 g and p 7, q. Therefore, there is a word u of length ¢
such that [p-u] # [g - u]. Hence F' € F¢(p,q,p - u,q - u) and

F = U Fe(p,a,p',q).

p,q,p’,q¢' €{1,...,n}

In this union the sets F¢(p,q,p’, ¢') are not disjoint, but this characterization of F=* is
precise enough to obtain a useful upper bound for the probability of belonging to F=¢.
By Lemma 4, for every p,q,p’,q' € {1,...,n}, every F € Fe(p,q,p’,q’) is compatible
with a partition P:(p,q,p’,q’) into n — £ parts. Let r be the Bernoulli distribution of
parameter v on {1,...,n}. By Lemma 5 we have

r(F2) < > r(Fe(p,q,p',q)) < n*B" (1)
p,q,p’,q’ €{1,...,n}

Moreover, the average number of iterations of the main loop of Moore’s algorithm
is by definition

> r(F)-MoOoRg(T, F) = Y " r(F)- MOORE(T, F) + » " r(F) - MOORE(T, F),
FC{1,...,n} FeF<t FeF>t

where F<* is the complement of F=‘ in the set of all subsets of {1,...,n}. By
Lemma 1, for any F € F<, MOORE(T, F) < £. Therefore,

> r(F)-Moore(T,F)< £ Y r(F)<L

FeF<t FeF<t

Bounding MOORE(T,, F') from above by n when F' € F=* (see Lemma 1) and estimating
r(F=%) with Equation (1), we get that

> r(F)-Moorg(T, F) < n°p".
FeF=t

Finally, choosing ¢ = [5log 1 n], we obtain that

[5 1o, n]
Z 7(F) - MOORE(T, F) < [5log1 n] +n°3 *5 <5login+2.
FC{1,...,n} s o
This concludes the proof. |

13

4.5.2 Incomplete transition structures

Recall that before applying Moore’s algorithm to an incomplete automaton, a sink
state which is not final is added, as described in Section 2.2. Starting from such an
n-state automaton A = (T, F), the result is an (n + 1)-state complete automaton
A’ = (T', F), where T" is complete.

The proof for incomplete transition structures is roughly the same as before, but
the distribution on set of final states has changed, since the new sink state is always
non-final: though very similar, this is not a Bernoulli distribution anymore. Let r be
the Bernoulli distribution of parameter v on elements of {1,...,n}. We denote by 7
the probability it induces on {1, ...,n+1}, when sets containing n+ 1 have probability
zero: forany X C{1,...,n+1},7(X)=r(X)ifn+1¢ X and 7(X) =0ifn+1 € X.

Hence if we fix T € 7, and consider the automaton A = (T, F), where the fi-
nal states of F' are distributed following r, the final states of the automaton A’ are
distributed following 7.

We first establish a result similar to Lemma 5.

Lemma 6. Let r be a Bernoulli distribution of parameter v € (0,1) on elements of
{1,...,n}, forn > 1. Let P be a partition of {1,...,n+ 1} into m > 1 parts. The
probability, under 7, that a subset of {1,...,n 4+ 1} is compatible with P is at most
8™ where B = max(y,1 — 7).

Proof. Let P ={E,...,Eny} and assume without loss of generality that n+ 1 € E;.
Since for 7, n+4 1 cannot be in a subset having positive probability, it is necessary that
XNE; =0 for arandom X that is compatible with P. This happens with probability
(1 — y)!P1I=1 For the remaining elements, observe that 7 induces an independent
Bernoulli distribution on {1,...,n}\ E1, that must be compatible with the partition
{E2,...,En}. By Lemma 5, the probability of this event is bounded from above
by glE2l+ A Bm|=(m=1) By independency, X is compatible with P with probability
bounded from above by (1 —)/ F1l=1glE2l+-H|Em|=(m=1) < gnii-m O

Proposition 4 (Incomplete transition structures). Let k > 1, n > 1 and let T €
7, be an incomplete transition structure over a k-letter alphabet. For the Bernoulli
distribution of parameter v on final states, the average number of iterations of the
main loop of Moore’s algorithm applied to (T', F), where T' is obtained by completing
T, is bounded from above by 5log% (n+1)+2.

Proof. The proof mimics the one of Proposition 3, but with n + 1 instead of n, since
we have the additional sink state (the bound obtained in Lemma 6 is compatible with
the n 4 1 shift). The final upper bound is therefore 510g71f (n+ 1) 4+ 2, concluding the

proof. |

4.5.83 Proof of Theorem 2

We have all the ingredients to prove our main theorem.

Proof. Let C,, and C,, respectively denote the sets of complete and incomplete transi-
tion structures of 7.

If p is a Bernoulli model on D of parameter -, then by definition, for every (T, F') €
Dy, p((T, F)) = q(T) r(F) for a probability g over 7, and where r is a Bernoulli model

14

of parameter «y on elements of {1,...,n}. The average number of iterations in Moore’s
algorithm, for n-state automata is therefore

Z p(A) - Moorg(T, F) + Z p(A) - MOORE(T', F),
(T,F)eDy, (T,F)eDy,
TeCn TeCy

where T” is the complete automaton associated with T'.
For complete automata, we have

> p(A) - MOORE(T, F) = Y ¢(T) Y r(F)-MOORE(T, F).
(T,F)eDn TEC, FC{1,...,n}
TeCy

By Proposition 3, the latter sum is bounded from above by 5log 3 n + 2, hence by
510g% (n +1) + 2. Moreover, > ;. q(T) = q(Cn), therefore

3" p(A) - MOORE(T, F) < 4(Cu) (5 log1(n+1) + 2) .
(T,F)eDy, o
TECn
For incomplete automata, recall that the definition of 7 is given in Section 4.5.2;
and we have

> p(A)-MOORE(T', F) = > ¢(T) > #(F) MoORE(T", F).

(T,F)EDp TeC, FC{1,..., n+1}

TeCh

By Proposition 4, we obtain

3" p(A) - MOORE(T', F) < g(Ch) (5 logy (n+1) + 2) .
(T,F)EDn ’
TGEn
Therefore, since ¢(C) 4+ ¢(Cn) = 1, the average number of iteration is O(logn), and
by Lemma 1, the average complexity of Moore’s algorithm is bounded from above by

O(knlogn), concluding the proof. |

5 Additional results

In this section we analyze several specific distributions on automata, to emphasize the
limits of the method presented in this paper.

5.1 Variations on Bernoulli models

In fact, Theorem 2 can be established for more general distributions of automata.
But this requires a heavier formalism, describing new families of distributions that
resemble Bernoulli models a lot. The main point is that the proofs of Proposition 3
and Proposition 4 rely on properties formalized in Lemma 5 and Lemma 6: for the
considered distributions of final states, the probability that a size-n set of final states
is compatible with a given partition P with m parts is exponentially small in m.

Hence, the proof of Theorem 2 can readily be adapted whenever the probabilistic
model on D satisfies:

i. The transition structures and the set of final states are chosen independently.

15

ii. The transition structures follow any distribution on 7.

iii. The probability r on sets of final states satisfies the following property: there
exist « > 0 and 8 € (0,1) such that, for any partition P = {E1,..., En} of
{1,...,n}, the probability that X C {1,...,n} is compatible with P is at most
af"™™.

The bounds given in Proposition 3 and Proposition 4 change a bit, by some additive
constant terms depending on « and S.

As an example, consider the uniform distribution r on non-trivial subsets of {1, ...,n}:
For n =1, let r({1}) = () = 3; for n > 2, define for any X € {1,...,n},

7q()()_{O fX=0or X={1,...,n},

57— otherwise.

Let us establish property iii. for this distribution. For any partition P in m parts of
{1,...,n}, denote by Cp the set of subsets of {1,...,n} that are compatible with P.
Note that) € Cp and {1,...,n} € Cp. Hence, for n > 2,

Z T(X):|CP|_2< |Cp|

on 92 — 2n 92’
XeCp

By Lemma 5 applied with v = 3,

Therefore, for any n > 2,

= e sy () ()

XeCp

Hence, the uniform distribution on automata with non-trivial sets of final states satis-
fies the condition i., ii. and iii. above, with « = 2 and 8 = % The average complexity
of Moore’s algorithm is O(knlogn) for this distribution too.

5.2 Unary automata

In the remainder, we will use the uniform probabilistic model on complete unary
automata. It is quite simple and well-known [17], and therefore useful to design exam-
ples or counterexamples. In this section we recall some basic facts about these unary
automata and their average properties.

An automaton is a unary automaton when it is defined on a one-letter alphabet.
We fix a one-letter alphabet A = {a} and denote by U the set of complete automata
on A, and by U, the set of the n-state automata of . As described in [17], in the
transition structure of a complete n-state unary automaton U over the alphabet {a},
the n states are ¢; = qo - a’, for i € {0,...,n — 1}, and the transition structure is
determined by the choice of ¢ = gn—1 - a. The part {qo,...,ge—1}, which can be
empty if ¢ = 0, is called the queue of the automaton, and the part {gc,...,gn—1} is its
cycle.

Taking into account the n! distinct ways to label the states, the number of distinct
labelled transition structures in Uy, is n - nl. Thus |Un| = n2"nl. For the uniform
distribution on U, the probability of any n-state automaton is therefore ﬁ = %

We will use the following result:

16

Proposition 5 ([17]). For the uniform distribution on U, the probability for a n-state
automaton to be minimal is asymptotically equivalent to %

5.8 Tightness for unary automata and lower bound for the model

In this section we prove that the bound O(knlogn) is optimal for the uniform distri-
bution on U, and for similar distributions when k > 2.

Proposition 6. For the uniform distribution on deterministic accessible and complete
unary n-state automata, the average time complexity of Moore’s state minimization
algorithm is ©(nlogn).

Proof. By Theorem 2, and since k = 1, the average time complexity is O(nlogn).

By Proposition 2, there exists a positive constant C' > 0 such that, for any n > 1,
the complexity of Moore’s algorithm applied to a minimal n-state unary automaton
is at least Cnlogn. Let m, denote the number of minimal n-state unary automata.
Taking into account the contribution of minimal automata only, the average complexity
of Moore’s algorithm is bounded from below by

Mn

1
|un|0nlogn ~ §Cnlogn,

where the equivalence follows from Proposition 5. Hence, the average complexity is
Q(nlogn), concluding the proof. |

An important consequence of Proposition 6 is that Theorem 2 is optimal without
further conditions on the probabilistic model: For k = 1, this is the case for the uniform
distribution on U, by Proposition 6. For k > 2, let U’ be the set of complete automata
on A, such that for every state p, for every letters a,b € A, p-a = p-b. Hence, an
element of U’ is a complete unary automaton, whose transitions have been duplicated.
By Lemma 3, the uniform distribution on U’ is a Bernoulli model. Moreover, we get
the following result as a consequence of Proposition 6:

Corollary 2. For any k-letter alphabet A, with k > 2, the average time complexity of
Moore’s algorithm for the uniform distribution on U’ is ©(knlogn).

Proof. Each automaton of U’ can be seen as an element of I whose transitions have
been duplicated. The process of Moore’s algorithm applied to such an automaton uses
exactly the same number of iterations as if performed on the associated element in Y.
Since the induced distribution on associated automata is the uniform distribution on
U, Proposition 6 holds, the cost being multiplied by k because each iteration costs k
times as much instructions as in the unary case.

Theorem 2 gives the upper bound, concluding the proof. O

5.4 An example where transition structures and sets of final states are not indepen-
dent: co-accessible automata

In this section we consider the uniform distribution on complete and co-accessible
automata. This probabilistic model is not a Bernoulli model, nor a simple version of a
Bernoulli model, since transition structures and sets of final states are not independent:
an example of two 2-state transition structures having different impossible sets of final
states is depicted in Figure 5.

However, the average complexity of Moore’s algorithm is still O(knlogn). The
proof we propose below is based on the specific shape of a typical transition structure

17

Figure 5: On the left, the sets of final states () and {1} are not possible for the
automaton to be co-accessible. On the right, only the empty set is not allowed.

under the uniform distribution on 7,. The key argument is that the proportion of co-
accessible automata amongst complete ones is not negligible, which is a consequence
of a result by Korshunov [25]:

Theorem 3 ([25]). For any alphabet A of size k > 2, there exists a real constant
0 < ¢, < 1, which only depends on k, such that for the uniform distribution on
complete transition structures, the probability for a transition structure to be strongly
connected tends to c as the number of states tends to infinity.

The result of this section is the following.

Proposition 7. For the uniform distribution on complete and co-accessible automata,
the average time complexity of Moore’s state minimization algorithm is O(knlogn).

Proof. Let C, C D, denote the set of complete n-state automata, and let A, C C,
denote the set of complete and co-accessible n-state automata.
For £ > 1, let A’ (resp. AZ%) denote the subset of A, consisting of the automata
A such that MOORE(A) < £ (resp. MOORE(.A) > ¢), as in the proof of Proposition 3.
First, note that |A.| = O(|Cx]):

e For k = 1, an element of C,, = U, is in A, if and only if its cycle contains at least
one final state. Therefore, if ¢,—1 - a = g., the automaton is not co-accessible if
and only if the n — ¢ states in the cycle are not final. Hence,

n—1
1Co \ An| =1l 3" 2° = (2" = 1)nl = o(|Cal).

c=0

e For k > 2, this is a consequence of Theorem 3: if a transition structure is strongly
connected then any choice of set of final states but the empty set leads to a co-
accessible automaton. Hence, if S,, denotes the number of strongly connected
elements of C,,, then there are at least (1 —27")S,, co-accessible elements in C,,
the statement follows since S, = ©(|Cy|) by Theorem 3.

The uniform distribution on C,, is a Bernoulli model on automata which are com-
plete, hence the result of Proposition 3 holds. In the proof, it is shown that for such
a distribution and for ¢ = [5log, n], the probability that MOORE(A) > £ is O(2).
Since we are considering a uniform distribution, probabilities are directly related to
cardinals, so that the number of n-state automata A of C, such that MOORE(A) > £
is in O(2|Cal), for £ = [5log, n]. Hence [AZ¢] is O(%|Cal).

Therefore, since every element of A,, has probability ﬁ under the uniform distri-
bution, and since MOORE(A) < n, the average number of iterations for £ = [5log, n]

18

is

MOORE(.A) MOORE(A MOORE(.A
IAn

An| A€A, AcASt AeA;L

A, , A (_)
ywEAEy Wit Eywid P S B

IA

Hence, since |An| = ®(|Cn|) we get

>~ MoorE(A) < £+ O(1) = O(logn),
AcA,

IAnI

concluding the proof. O

5.5 Unary automata with exactly one final state
Under a Bernoulli model, automata tend to have a large number of final states. It is
natural to wonder what happens when Moore’s algorithm is applied to automata with
a small number of final states; the proposition below proves that we cannot expect to
always have a O(knlogn) bound for such models.

Proposition 8. For the uniform distribution on complete unary automata with exactly
one final state, the average time complexity of Moore’s state minimization algorithm

is ©(n?).

Proof. We use the notations of Section 5.2. Let A be an element of U,, with ¢. =
gn—1-a, that has only one final state q¢. First note that there are n*-n! such automata:
n choices for ¢ and f and n! ways to label the states with {1,...,n}. Assume that
f > 2. Then the states go and ¢1 satisfy go ~y_2 q1 but go »~s_1 q1, since the states
qo, - -.,qf—1 are not final and ¢y is. Hence, for such an automaton, MOORE(A) > f.
Therefore, the average number of iterations for n-state automata with one final state,
for the uniform distribution, is

1 1 n—1ln—1
Toq 2. MOORE(A) =53 > f =0
(T,F)eln, c=0 f=2
|F|=1
We used the fact that there are exactly n! such automata for given ¢ and f. O

6 Conclusion and open problems

We have seen that Moore’s state minimization algorithm has an average complex-
ity O(knlogn) in many situations. Its average time complexity therefore matches
the worst-case complexity of the best known minimization algorithm for complete au-
tomata, due to Hopcroft. One may wonder if we are in a situation like quicksort versus
optimal sorting algorithms, where the best worst-case algorithms are not always the
best choices. In our situation there is no evidence of such a phenomenon; Hopcroft’s
algorithm is closely related to Moore’s algorithm, as stated in [9], and might therefore
be fast when Moore’s algorithm is.

We have also seen that our result cannot be improved without adding new condi-
tions on the probabilistic model. Assuming uniformity on complete transition struc-
tures, the second author proved a O(knloglogn) behavior in [22]. An open question

19

here is to prove that this result also holds for accessible and complete transition struc-
tures, the combinatorics behind this problem being much more difficult when the
automata are accessible.

20 —

18

16 |
ut i i : |
12 i/ g

10 ! :

Number of iterations

Moore

§tandarg Devia‘tion ot

2 ! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Size of Automata

Figure 6: Experimental study of the average number of iterations in Moore’s
algorithm for the uniform probabilistic model over deterministic accessible and
complete automata with only one final state. For each size, the values are
computed from 20 000 random automata on a 2-letter alphabet.

Another open question is raised by Figure 6. Considering the uniform probabilistic
model on complete automata with only one final state, on a two-letter alphabet, the
average number of iterations seems to be sublinear, whereas it is ©(n) for a one-
letter alphabet (Proposition 8). This model is not a Bernoulli model, so it would be
interesting to know whether there are O(logn) average iterations in this case also.

Acknowledgment The authors wish to thanks the anonymous referees for insightful
comments and suggestions. They were supported by the ANR (GAMMA - project
BLANO07-2.195422 and MAGNUM - project ANR-2010-BLAN-0204.)

References

[1] Moore, E.F.: Gedanken experiments on sequential machines. In: Automata
Studies. Princeton U. (1956) 129-153.

[2] Hopcroft, J.E.: An nlogn algorithm for minimizing states in a finite automaton.
Technical report, Stanford, CA, USA (1971)

[3] Gries, D.: Describing an algorithm by Hopcroft. Acta Inf. 2 (1973) 97-109.

[4] Knuutila, T.: Re-describing an algorithm by Hopcroft. Theor. Comput. Sci.
250(1-2) (2001) 333-363.

[5] Berstel, J., Boasson, L., Carton, O.: Continuant polynomials and worst-case
behavior of Hopcroft’s minimization algorithm. Theor. Comput. Sci. 410(30-32)
(2009) 2811-2822

[6] Castiglione, G., Restivo, A., Sciortino, M.: Hopcroft’s Algorithm and Cyclic
Automata. In Martin-Vide, C., Otto, F., Fernau, H., eds.: Second International

20

[7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

Conference on Language and Automata Theory and Applications (LATA 2008).
Volume 5196 of Lecture Notes in Computer Science., Springer (2008) 172-183.

Castiglione, G., Restivo, A., Sciortino, M.: On Extremal Cases of Hopcroft’s
Algorithm. Theor. Comput. Sci 411(38-39) (2010) 3414-3422

Blum, N.: An O(nlogn) Implementation of the Standard Method for Minimizing
n-State Finite Automata. Inf. Process. Lett. 57(2) (1996) 65-59.

Lothaire, M.: Applied Combinatorics on Words. Volume 105 of Encyclopedia of
mathematics and its applications. Cambridge University Press. (2005)

Valmari, A., Lehtinen, P.: Efficient Minimization of DFAs with Partial Transi-
tion Functions. In Albers, S., Weil, P., eds.: 25th Annual Symposium on The-
oretical Aspects of Computer Science (STACS 2008). Volume 08001 of Dagstuhl
Seminar Proceedings., Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFT), Schloss Dagstuhl, Germany (2008) 645-656.

Beal, M.P.; Crochemore, M.: Minimizing incomplete automata. In: Seventh In-
ternational Workshop on Finite-State Methods and Natural Language Processing
(FSMNLP’08). (2008) 9-16.

Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for
definite events. In: Symposium on the Mathematical Theory of Automata. Vol-
ume 12., Polytechnic Institute of Brooklyn, New York, Polytechnic Press (1962)
529-561.

Champarnaud, J.M., Khorsi, A., Paranthoen, T.: Split and join for minimizing:
Brzozowski’s algorithm. In: The Prague Stringology Conference’02. (2002) 96—
104.

Watson, B.W.: A taxonomy of finite automata minimization algorithms. Tech-
nical Report of Faculty of Mathematics and Computer Science, Eindhoven Uni-
versity of Technology, The Netherlands (1994)

Revuz, D.: Minimisation of acyclic deterministic automata in linear time. Theor.
Comput. Sci. 92(1) (1992) 181-189.

Nicaud, C.: Average state complexity of operations on unary automata. In Kuty-
lowski, M., Pacholski, L., Wierzbicki, T., eds.: 24th International Symposium on
Mathematical Foundations of Computer Science 1999 (MFCS’99). Volume 1672
of Lecture Notes in Computer Science., Springer (1999) 231-240.

Beal, M.P., Crochemore, M.: Minimizing local automata. In G. Caire, M.F.,
ed.: IEEE International Symposium on Information Theory (ISIT’07). (2007)
1376-1380.

Bassino, F., Nicaud, C.: Enumeration and random generation of accessible au-
tomata. Theor. Comput. Sci. 381 (2007) 86-104.

Bassino, F., David, J., Nicaud, C.: REGAL: a library to randomly and ex-
haustively generate automata. In: 12th International Conference Implementation
and Application of Automata (CIAA 2007). Volume Lecture Notes in Computer
Science 4783. (2007) 303-305.

Bassino, F., David, J., Nicaud, C.: Enumeration and random generation of

possibly incomplete deterministic automata. Pure Mathematics and Applications
19 (2010) 1-16

21

[22]

23]

[24]

[25]

David, J.: The Average Complexity of Moore’s State Minimization Algorithm is
O(nloglogn). In Hlineny, P., Kucera, A., eds.: 35th International Symposium
on Mathematical Foundations of Computer Science (MFCS’10). Volume 6281 of
Lecture Notes in Computer Science., Springer (2010) 318-329

Bassino, F., David, J., Nicaud, C.: On the average complexity of Moore’s state
minimization algorithm. In Albers, S., Marion, J.Y., eds.: 26th Annual Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2009). Volume 09001
of Dagstuhl Seminar Proceedings., Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, Germany Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), Schloss Dagstuhl, Germany (2009) 123-134

Nerode, A.: Linear automaton transformation. In: Proc. American Mathematical
Society. (1958) 541-544.

Korshunov, A.D.: On the number of non-isomorphic strongly connected finite
automata. Elektronische Informationsverarbeitung und Kybernetik 22(9) (1986)
459-462.

22

