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Abstract

Directed random walks in dimension two describe the
diffusion dynamics of particles in a line. Through
a well-known bijection, excursions, i.e. walks in the
half-plane, describe families of “simply-generated”
Galton–Watson trees. These random objects can be
generated in linear time, through an algorithm due
to Devroye, and crucially based on the fact that the
steps of the walk form an exchangeable sequence of
random variables.

We consider here the random generation of a more
general family of structures, in which the transition
rates, instead of being fixed once and for all, evolve
in time (but not in space). Thus, the steps are not
exchangeable anymore.

On one side, this generalises diffusion into time-
dependent diffusion. On the other side, among other
things, this allows to consider effects of excluded vol-
ume, for Galton–Watson trees arising from explo-
ration processes on finite random graphs, both di-
rected and undirected. In the directed version, a
special case concerns partitions of N objects into M
blocks (counted by Stirling numbers of the second
kind), and rooted K-maps which are accessible from
the root, which in turn are related to the uniform gen-
eration of random accessible deterministic complete
automata.

We present an algorithm, based on the block-
decomposition of the problem, and a crucial proce-
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dure consisting of a generalised Devroye algorithm,
for transition rates which are well-approximated
by piecewise exponential functions. The achieved
(bit-)complexity remains linear.
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1 Introduction

This paper deals with the exact sampling of random
directed walks on Z

2, ~x = (x1, . . . , xN ), where the
measure is such that the steps xi ∈ Z are indepen-
dent, not equally-distributed random variables in a
set S ⊂ Z, and the path is constrained to arrive at
height h = |~x| = ∑N

i=1 xi. A collection of |S| func-
tions {wα(t)}α∈S , with suitable regularity conditions
discussed later on, describes the weights of the steps,
so that the probability of a walk has the form1

(1) µ(~x) ∝ δh,|~x|

N∏

i=1

wxi
(i/N) .

We will call XN,h(w) the corresponding statistical en-
semble (the set S being implicit in the collection w).

Exact sampling is a central notion in the theory
of complexity of algorithms. The main interest is to-
wards the asymptotic complexity for sampling large
structures, when the logarithm of the number of
size-N structures2 scales as N , or more generally as

1The proportionality symbol ∝ is here intended for mea-
sures, f(x) ∝ g(x) iff there exists a ∈ R

+ such that f(x) =
ag(x) for all x in the domain. Furthermore, for i, j ∈ Z, δi,j
denotes Kronecher delta.

2Or, for weighted sampling, the Shannon entropy of the
desired measure, −∑

~x∈XN
µ(~x) lnµ(~x).
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N(lnN)γ for some power γ. ‘The hope’ is to find an
algorithm of complexity polynomial in N , thus pro-
viding a sensible gain w.r.t. the mere ideal enumera-
tion algorithm. Once polynomiality has been estab-
lished, it becomes a matter of determining the algo-
rithm with the best algebraic asymptotic behaviour,
in a word, the one with the ‘best exponent’.

When the random structures are described through
a combinatorial specification, in the sense illus-
trated in [FS09], a general strategy called Boltzmann
Method [DFal 04, FFP07] allows to sample the objects
with complexity O(N1+ c

2 ), where c is the number
of constraints on extensive quantities (i.e., quanti-
ties defined as the sum of functions of the elementary
components of the specification). The extra N

c
2 fac-

tor is due to the fact that the (linear-time) procedure
must be restarted, up to when the constrained quan-
tities come out to have the appropriate values. After
some fine-tuning of parameters, these quantities are
asymptotically distributed as random integer Gaus-
sian variables, with averages on the desired value, and
spectrum of the covariance matrix scaling as Θ(N),
from which the claimed complexity.

For example, while a random walk on Z
d, of length

N , starting at the origin, is trivially sampled in linear
time, a random walk constrained to arrive at an affine
subspace L = {~x | B~x = ~u} of dimension d′ (i.e.,
for B a (d− d′)× d matrix with rational entries and
maximal rank), under the basic Boltzmann paradigm

would require a complexity O(N1+ d−d′

2 ).

A natural question is whether this extra factor is
ineliminable and intrinsic to this family of problems,
or it is a feature of the basic Boltzmann method, that
can be smoothered or eliminated, in alternate algo-
rithms, at least for some (large) subfamily of prob-
lems.

In fact, for several special problems viable to the
Boltzmann method, more efficient algorithms are
known in the literature since a long time. For ex-
ample, our analysis above of constrained walks, in
the case d = 2, d′ = 0 and ~u = ~0, i.e., walks on the
square lattice returning to the origin, predicts an ex-
ponent 2. However, by rotating the lattice by 45 de-
grees, these walks can be seen as the direct product
of two independent walks in d = 1, with ±1 steps,

and this factorisation already gives an exponent 3
2 .

Furthermore, various (non-Boltzmann) ‘classical’ al-
gorithms exist for sampling such walks in linear time
(and a trivial one, running in time ∼ N lnN , con-
sists in producing a random permutation of the string
(+1, . . . ,+1,−1, . . . ,−1)).

However, in principle these improvements may be
accidental to specially tailored problems. For this
reason, it is interesting to see to which extent we can
design algorithms improving over Boltzmann sam-
plers, for families of problems involving general lists,
and continuous weights, as parameters. For example,
for our lattice walks, would the Boltzmann sampler
complexity be optimal, for a generic finite collection
S ⊂ Z

d of steps, real positive weights {wα}α∈S , and
destination subspace (B, ~u)?
The case d = d′ = 1, with B = 1 and ~u = h

corresponds to our initial problem of sampling from
the measure given in equation (1), when all the func-
tions are constant. Can we find an algorithm that
runs faster than the O(N 3

2 ) complexity of the asso-
ciated basic Boltzmann sampler? It is only recently
that this question has been positively answered. In
[Dev12] Devroye gives an algorithm with linear arith-
metic complexity. Small modifications allow to de-
rive a version with linear bit-complexity. The use of
the cyclic lemma allows to obtain excursions at the
same cost, and thus, through the standard bijection,
the sampling of families of simply-generated Galton–
Watson trees.

On the same line of research, of whether the com-
plexity of Boltzmann samplers can be improved for
large families of algorithms, the authors have re-
cently proposed a general strategy, based on a hy-
brid Boltzmann–Recursive Method [BS13]. This al-
gorithm works as a recursive algorithm, and cru-
cially performs ‘saddle-point queries’ for evaluating
the branching probabilities, which are of the same
form of the preprocessing in the Boltzmann method
for establishing the value of the ‘oracle’, and of
the analytical calculations performed on specificable
structures in order to determine the asymptotic enu-
meration. This algorithm is complicated, especially
for what concerns the analysis of the bit-complexity,
in the procedures involving floating point approxima-
tions to analytic quantities. And, in turns, it is not of
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easy implementation. Some hypotheses are required,
on the specificable structure, in order to establish the
viability of the method, and, besides a number of ex-
amples, it is not still clear what is the largest class to
which the method applies.

In a symmetric way, besides understanding which
problems are ‘too hard’ for being treated with the
methods in [BS13], it is reasonable to ask which is the
the largest class of problems which are ‘too easy’ for
this, i.e., to which the methods in [BS13] would apply,
but a simpler method also applies. For example, in
retrospective, the problems solved in Devroye’s paper
[Dev12] certainly fall into this category. The goal
of this paper is to enlarge this class, namely to the
problem discussed at the beginning, of walks with
inhomogeneous (in time) step-weights.

Our intuition, that we will investigate in future
work, hints towards the fact that certain general
families of walks, with weights which are inhomoge-
neous both in time and space (but regular enough),
can be sampled with the difficult method discussed
in [BS13], while, presumably, cannot be sampled
through a simple modification of [Dev12].

Furthermore, besides the theoretical motivations
on the optimal complexity of Boltzmann–like sam-
plers that we just discussed, time-inhomogeneous
walks are also an interesting family by themselves,
with a number of applications in Combinatorics and
in Probability Theory, so that efficient samplers are
desired for various applications. Some examples of
this are illustrated in Section 5.

2 Preliminar analysis

2.1 The setting

We recall that our problem, introduced in the pre-
vious section, is to sample walks ~x = (x1, . . . , xN )
from the statistical ensemble XN,h(w) described by
equation (1), i.e. according to the measure µ(~x) ∝
δh,|~x|

∏N
i=1 wxi

(i/N). As anticipated, all xi’s are in a
set of steps S ⊂ Z. For short, throughout the paper
we use the notation

(2) Sc = {s | ∃ s1, . . . , sc ∈ Sc, s = s1 + · · ·+ sc} .

Thus, we shall require h ∈ SN in order to have
a non-empty statistical ensemble. For simplifying
slightly the analysis, we will assume that N is even
(of course, this is a minor detail that can be elimi-
nated if needed).

The complexity will depend, of course, on the car-
dinality |S|, that here we will assume to be finite.
This condition in fact can be relaxed, in the direction
already discussed in the final section of [Dev12], and
we review this in some detail throughout the analysis
of the algorithm.

As already stated in Devroye’s paper, [Dev12], we
need some standard annoying congruence conditions,
like (∃ S′ ⊆ S : gcd(S′)|h and min(S′) ≪ h/N ≪
N max(S′)), for the statistical ensemble carrying an
algebraic fraction of the full measure (instead of being
empty). When this happens, we have a discrete ver-
sion of the Central Limit Theorem, i.e. there exists
a value of Lagrange multiplier ω∗ such that, taking
step-weights w′

α(t) = wα(t)(ω
∗)α, the distribution of

the random variable |~x| in the unconstrained problem
is ‘decently’ approximated by a Gaussian3 centered
in h. Note that we do not use the convergence to
a Gaussian in any step of the algorithm. We only
need to establish that Prob(|~x| = h) can be made
as big as Ω(1/

√
N). This is in fact, essentially, the

most general setting for application of the Boltzmann
method.

For what concerns functions wi(t), there are vari-
ous possible hypotheses, trading generality with sim-
plicity. A reasonable choice is as follows. Let
Lipk(λ0, . . . , λk) the set of functions differentiable
k− 1 times, and such that the h-th derivative is Lip-
schitz, with constant λh−1, for h = 0, . . . , k. In par-
ticular, and more informally, the truncated Taylor
expansion of the function is a ‘good approximation’,
namely, for f(x) ∈ Lipk(λ0, . . . , λk),

∣
∣
∣
∣
∣
f(x)−

k∑

h=0

dh

dxh
f(x)

∣
∣
∣
∣
x=0

∣
∣
∣
∣
∣
≤ 1

k!
λkx

k ;(3a)

∣
∣
∣
∣

dh

dxh
f(x)

∣
∣
∣
∣
x=0

∣
∣
∣
∣
≤ λh−1 for 1 ≤ h ≤ k .(3b)

3 Or possibly, for S infinite, a Lévy stable distribution, but
this would require to reconsider all power-laws in the analysis.
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We require that the functions lnwα(t) are in
Lip1(λ0, λ1) (and the complexity will be a function
of λ0 and λ1). We say that a function is efficiently
calculable if the evaluation, with d-digit accuracy, at
a given point requires a complexity O(dγ), for some
finite γ. We require that our functions wα(t) are
efficiently calculable. Ultimately, γ will not enter
the leading asymptotic complexity. We consider this
assumption not quite restrictive, as the property is
closed under taking polynomials and rational expres-
sions away from poles and zeroes, and holds for a
variety of trascendental functions.
A convex linear combination of Lipk(λ0, . . . , λk)

functions is clearly a Lipk(λ0, . . . , λk) function. For
what follows, we need to establish the analogous fact:

Lemma 2.1 The logarithm of a linear combina-
tion of exponentials of Lip1(λ0, λ1) functions is a
Lip1(λ0, λ1 + 2λ2

0) function.

Proof. Let f1(x), . . . , fn(x) the exponential functions
in question. Thus we have, from the specialisation of
(3) to k = 1,

(4) fi(x) ≤ fi(0) exp(bix+ λ1x
2/2)

for some −λ0 ≤ bi ≤ λ0. This implies

(5) fi(x)fi(−x) ≤ fi(0)
2 exp(λ1x

2) .

This is a necessary and sufficient condition for fi to
be Lip1(λ

′
0, λ1) for some λ′

0. We want to show that
ln
∑

i fi(x) is Lip1(λ0, λ1+2λ2
0). First, we prove that

it is Lip0(λ0), then we use the characterisation (5) to
conclude. We have

(6)
d

dx
f(x)

∣
∣
∣
∣
x=0

=

∑

i f
′
i(0)

∑

i fi(0)
= E(bi) ,

where the average is done with the measure
fi(0)/f(0). As all bi’s are in the range [−λ0, λ0], so
is the average.
For the Lipshitzianity of the first deriva-

tive, we analyse the product f(x)f(−x) =
(
∑

i fi(x)) (
∑

i fi(−x)). A summand fi(x)fi(−x)
is bounded by fi(0)

2 exp(λ1x
2). A summand

fi(x)fj(−x) + fj(x)fi(−x) is bounded by

2fi(0)fj(0) cosh((bi − bj)x) exp(λ1x
2). Note the

bound cosh((bi − bj)x) ≤ cosh(2λ0x) ≤ exp(2λ2
0x

2).
so that f(x)f(−x) has a characterisation similar
to the one of equation (5), with the new constant
λ′
1 = λ1 + 2λ2

0, which allows to conclude. �

2.2 The pairing strategy

In [Dev12], a main idea in the design of the algo-
rithm is to exploit the fact that the steps of the
path are exchangeable random variables. Indeed,
the algorithm is composed essentially of two parts.
First, one samples the total number of steps of each
kind, through a sub-linear “multinomial” routine,
fast enough to allow for the extra

√
N factor, per-

tinent to the Boltzmann method, for implementing
the constraint. Then, once the constraint has been
established, one samples the order by which the steps
appear in the path, in linear time.

Time-dependent step weights break the exchange-
ability assumption. As the functions wα(t) have
smoothness hypotheses, a minimal näıve strategy
could be to approximate these functions by functions
which are stepwise constant on certain intervals, use
exchangeability for variables in the same interval, and
correct at the end by an appropriate reject procedure.

However, this would not work in linear time. If we
approximate by using k intervals, we have wα’s that
change by O(1/k) within an interval, and thus ac-
ceptance ratios of order 1−O(k−1) per variable, and
(1 − O(k−1))N ∼ exp(−constN/k) overall, which is
exponentially large unless k itself is linear in N (up
to possibly logarithmic factors). This would push the
full complexity towards the sole multinomial proce-
dure, that would apply on a linear number of param-
eters, instead that a constant number (and would not
be fast anymore).

Still, the idea of approximating wα’s through func-
tions which are simple within intervals must be the
right track, given the generality of our assumptions.
Just, a small extra idea is required.

Let W (z, t) =
∑

α∈S zαwα(t), and Wj(z) =
W (z, j/N). Consider some index j. From the Boltz-
mann method, we know that the step xj is distributed
approximatively according to Wj(ω

∗z), where P (z)
describes a distribution in terms of a generating func-
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tion as P (z) ∝ ∑

α zαProb(xj = α), and ω∗ is the
value of the Boltzmann oracle, discussed later on.
The variable xj + xj′ is distributed as the convo-

lution of the two distributions Wj and Wj′ , i.e., the
generating function of its distribution is proportional
to the product of the two polynomials, Wj(z)Wj′(z).
While Wj(z) varies Ω(k−1) for j running on the

scale of an interval, the product Wj+i+1(z)Wj−i(z)
varies Ω(k−2) for j fixed, and i running on the scale of
an interval. Thus, we can proceed as above, for these
distributions with support on S2, getting acceptance
ratios of order 1 − Ω(k−2) per pair of variables, and
(1 − Ω(k−2))N/2 ∼ exp(−constN/k2) overall, which
is Ω(1) (respectively, 1− o(1)) already if k = Ω(

√
N)

(respectively, k &
√
N). Thus, the method would

give an overall linear complexity, provided that the
multinomial part has a complexity at most linear in
N , even though applied to each of the k blocks (and
k ∼
√
N).

This shall be somewhat optimal, in the sense that
we cannot easily ‘squeeze’ k up to, say, k ∼ N

1
3 , by

producing a reject of the form exp(−constN/k3), at
the cost of demanding regularity of further Taylor
terms in the expansion of lnwα(t) (see the discussion
at the beginning of Section 4.2).
This is the rough scheme of our algorithm. A num-

ber of subtleties shall be ruled out, and we describe
this in detail in the following subsections.

2.3 Analytic quantities associated to

the algorithm

In this section we discuss the analytic quantities
needed all along the algorithm, and the complexity
for evaluating those which can be set up once and for
all in a preprocessing part of the algorithm.
A value of k must be chosen. One can take k =
⌈
√
N⌉. Later on, just after Proposition 3.1, we will

see that it is better (by a constant factor) to take
k = ⌈

√
N/x⌉, with x defined there.

Assume that {2ν(j)}1≤j≤k, the lengths of our in-
tervals, are all even. These quantities can be chosen
rather freely, and can be calculated trivially.4

4E.g., a simple choice is ν(j) = ⌊N/(2k)⌋ or ⌈N/(2k)⌉, de-
pending if j ≤ j0 or j > j0, with j0 = N/2− k⌊N/(2k)⌋.

We mentioned above the generating polynomials
Wj(z). Certainly, we will not calculate all these
polynomials, as this would take O(|S|N) just in
space-complexity. We now define more precisely
what is needed in the algorithm. Let W (z, t) =
∑

α∈S zαwα(t). Because of Lemma 2.1 we know that
lnW (z, t) is a Lip1(λ0, λ1 +2λ2

0) function of t, for all
real-positive values z.

Let tj be the middle time of the j-th interval,

namely tj = 1
N

(∑

j′<j ν
(j′) + 1

2ν
(j)

)
. Then the full

range of W (z, t) is covered by {W (z, tj + τν(j)/N)},
for 1 ≤ j ≤ k and τ ∈ [− 1

2 ,
1
2 ]. Note that5

W
(

z, tj +
τν(j)

N

)

= exp

[

Aj(z) +Bj(z)
ν(j)

N
τ ± (λ1 + 2λ2

0)
(ν(j)

N

)2

τ2
]

As a consequence, W
(
z, tj +

τν(j)

N

)
W

(
z, tj − τν(j)

N

)
≤

exp
[
2Aj(z) +

1
2 (λ1 + 2λ2

0)
(
ν(j)

N

)2] ≤ CW (z, tj)
2 for

all τ ∈ [− 1
2 ,

1
2 ], where

(7) C = exp
(

1
2 (λ1 + 2λ2

0)max
j

(ν(j))2N−2
)

is a constant 1 +O(k−2) that can be calculated eas-
ily. An analogous reasoning shows that not only the
inequality above on the product of two W ’s holds
uniformly in z, but also coefficient-wise (this makes
sense, as both the LHS and RHS are polynomials in
z with positive coefficients, although the middle ex-
pression is not polynomial in z).

We need to calculate and store the k polynomials
W (j)(z) = W (z, tj), with d-digit accuracy (and d ∼
lnN), which takes O(|S|k(lnN)γ) in bit-complexity,
for γ some finite power.

One crucial quantity to be calculated, ω∗, is the
equivalent of the value of the ‘oracle’ in the Boltz-
mann method. Define6

(8) H(z) =
∑

j

ν(j)
zW ′

j(z)

Wj(z)
;

5Here f(x) = φ(a(x)±b(x)) means φ(a(x)−b(x)) ≤ f(x) ≤
φ(a(x) + b(x)).

6Let here Wj ≡ W (j), in order to have a light notation for
derivatives.
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and

H ′(z) =
∑

j

ν(j)
(W ′

j(z) + zW ′′
j (z))Wj(z)− zW ′

j(z)
2

Wj(z)2
;

Then ω∗ is the solution (in z) of the equation H(z) =
h, with O(lnN) digits of accuracy. The calculation
of H(z) takes arithmetic complexity 2k|S|, and the
one of H ′(z) takes 4k|S2|, so that, either using the
Newton method [PSS12] or a simple bisection algo-
rithm, the bit-complexity to determine ω∗ is of the
order O(|S2|k(lnN)γ ln lnN) (in the first case, where
we neglect |S| over |S2|), or O(|S|k(lnN)γ+1) (in the
second case). For both choices, this takes a sub-linear
time.

3 The algorithm

3.1 Structure of the main algorithm

Our algorithm is schematised in Algorithm 1. After a
number of preliminary calculations, described in the
previous subsection and executed in sublinear time,
it performs two cycles under a reject condition, that
we can call the ‘multinomial’ and the ‘shuffle’ parts of
the algorithm. This general structure is in common
with Devroye algorithm, with a notable difference: in
our algorithm also the shuffle part has a reject, due to
the necessity of approximating the weight functions
in terms of a standardised form, so that the reject
implements the correction back to the original func-
tions. A detailed description of the new ingredients
required in our case is given throughout this section
(and, in the following subsections, in detail for each
procedure).
The acceptance probability of the most external

repeat loop, as discussed in Section 2.2, is O(1) if
k = O(

√
N). More precisely, using equation (7) and

assuming the ν(j) − ν(j
′) = o(N/k), this probability

is at least exp
(
− 1

2 (λ1 + 2λ2
0)N/k2

)
.

The acceptance probability of the internal repeat
loop, as implied by our assumption on the existence
of a Central Limit Theorem for |~x|, is of the or-
der 1/

√
N . If we have the ‘classical’ convergence to

a Gaussian, we have more precisely a quantity re-
lated to the one in (8), namely the quantity V =

Input: N ∈ N, S ⊂ Z, {wα(t)} : S × [0, 1] → R
+,

h ∈ SN

Result: an object ~x from XN,h[w]

calculate quantities k, {ν(j),W (j)(ω)}1≤j≤k, ω
∗;

repeat

repeat

h′ = 0;
for j ← 1 to k do

Run MULTIN[2ν(j),W (j)(ω)2, ω∗],

which returns {ν(j)α }α∈S2
;

h′ = h′ +
∑

α α ν
(j)
α ;

end

until h′ = h;
for j ← 1 to k do

Run SHUFF[{ν(j)α }α∈S2
], which returns

{η(j)i }1≤i≤ν(j) ;

for i← 1 to ν(j) do
Run SPLIT[η

(j)
i , i] , which returns

either (ξ
(j)
i , ξ

(j)

2ν(j)+1−i
), or reject;

end

end

until you get no reject;

Output: ~x = (ξ
(1)
1 , . . . , ξ

(1)

2ν(1) , · · · , ξ(k)1 , . . . , ξ
(k)

2ν(k))

Algorithm 1: Scheme of the algorithm. SN is as in
(2), the procedures are described in this section, and
the quantities in Section 2.3.

2πω∗H ′(ω∗)/N converges to a finite limit, the ac-
ceptance probability is Θ(1/

√
V N), and a success-

ful run of the internal repeat loop costs on average√
V N k Time[MULTIN].

The following block of for instructions just pro-
cesses overall N objects, each with finite complex-
ity. Let us say that the overall complexity per object
of the two involved functions are Time[SHUFF] and
Time[SPLIT]. We can now deduce the overall com-
plexity.

Proposition 3.1 The average complexity of Algo-
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rithm 1 is

(
N(Time[SHUFF] + Time[SPLIT])

+
√
V
√
N k Time[MULTIN]

)
exp

(
1
2 (λ1 + 2λ2

0)N/k2
)

.

(9)

The function above is of the form (aN +

b
√
N k)ecN/k2

. For k =
√
N/x, this function be-

comes N(a + b/x)ecx
2

, which is linear for all choices
of x ∈ R

+, and optimised for x being the only real-
positive solution of b = 2c x2 (b+ ax).
We describe now the various procedures involved,

namely MULTIN, SHUFF and SPLIT.

For A a finite set of integers, and {να}α∈A a list of
positive integers, SHUFF[{να}α∈A] is a ‘classic’ shuf-
fling algorithm for the sequence

(α1 · · ·α1
︸ ︷︷ ︸

να1
times

· · · α|A| · · ·α|A|
︸ ︷︷ ︸

να|A|
times

) ,

i.e. an algorithm that returns a random uniform shuf-
fling of the sequence above.
Let us call n =

∑

α νa. In arithmetic complexity,
this can be done in linear time, just through a random
permutation (see e.g. [Knu97, Sect. 3.4.2, alg. P], as
mentioned in [Dev12]). This requires however a bit-
complexity of order n lnn. Nonetheless, as long as
|A| is finite (or, more generally, as long as the Shan-
non Entropy −∑

α
νa

n ln νa

n is finite), the shuffling can
be done in linear bit-complexity, with slightly more
effort. For sake of completeness, we discuss in Sec-
tion 3.2 one of the many possible algorithms that
solve this issue.

Let P (ω) be a Taylor–Laurent polynomial (or, un-
der certain hypotheses, a series) with non-zero co-
efficients at the set of exponents A ⊆ Z. We
call MULTIN[n, P (ω), ω∗] an algorithm that sam-
ples {nα}α∈A, such that

∑

α nα = n, with prob-
ability proportional to

(
n

{nα}

)∏

α pnα
α , where pα =

(ω∗)α[zα]P (z).7 This can be implemented exactly as
described in [Dev12] and references therein. Note

7As customary, [zα]P (z) is the coefficient of the monomial
zα in P (z).

that, at each of the k rounds, the support of P
is finite, namely S2, thus we are in the conditions
of [Dev12], where it is described why this part of
the algorithm runs in sublinear time. In fact, un-
der mild hypotheses (discussed therein), this runs in
time O(1), still in arithmetic complexity. Given that
the result itself is composed of O(lnN) essentially
independent binary digits, we must have instead log-
arithmic factors in the bit complexity.

Unfortunately, in our application we need to run
this procedure a considerably larger number of times:
k times per repeat trial, for approximatively

√
N tri-

als. For the optimal value k = Θ(
√
N), this makes a

linear arithmetic complexity, and only a quasi-linear
bit complexity (contrarily to [Dev12], where this was
sublinear, and in factO(

√
N(lnN)γ) for some γ). We

can get linear bit complexity with some extra work,
reducing k by the required logarithmic factors. This
is achieved through a procedure, at our knowledge
new in the literature, which is somewhat subtle, and
possibly of independent interest. This is presented in
Section 4.1.

The procedure SPLIT samples a pair (β, β′) ∈ S ×S,
such that β + β′ = α, for α a given value in S2,
with the appropriate distribution. Recall that it is at
the level of this function that we take into account
the reject factors, due to the fact that the polynomi-
als Wj+i+1(z)Wj−i(z) are not uniform for all i, but
only coefficientwise uniformly bounded within an er-
ror O(1/k2), for i within our interval. This gives the
possibility that the full procedure shall be restarted,
at the rates discussed in Section 2.2.

More precisely, let τ1 =
∑

j′<j ν
(j′) + i and τ2 =

∑

j′≤j ν
(j′) + 1− i, with i and j as in the algorithm.

Define

πα
β,β′ = [uβvβ

′

]
(
Wτ1(uω

∗)Wτ2(vω
∗)
)
;(10)

π̄α = [zα]
(
CW (j)(zω∗)2

)
,(11)

(with C as in (7)). Then, for a given α, SPLIT must
return a pair (β, β′) with probability πα

β,β′/π̄α, and
reject with the complementary probability.

As no scaling variables, like k or N , are involved
here, each query of the SPLIT procedure is obviously
implemented in average constant time in arithmetic
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complexity. As we need to sample a discrete measure
with probabilities, πα

β,β′/π̄α, requiring a logarithmic
number of digits of accuracy, it is not clear a priori,
still it is true, that this is done in constant time also
in bit complexity.
It is worth sketching how this is possible. It is

well known that, when many extraction of the same
measure are performed, the cost per extraction can
be made O(1), extracting random numbers one bit
at the time, and using an extra data structure con-
structed once and for all. Here we shall perform a
trick similar in spirit, although we are in a slightly
more cumbersome situation, as consecutive extrac-
tions in a range are governed by probabilities which,
instead of being identical, evolve smoothly. So, one
shall produce a data structure that, on average, pre-
serves its quality for sufficiently many extractions.
In Section 3.3 we present the description of one such
possible data structure, and the reasons why, under
the hypotheses needed for our main algorithm, this
routine achieves the required complexity.

3.2 Shuffling in linear time

For A a finite set of cardinality k, identified with
{1, 2, . . . , k}, να positive integers, and n =

∑

α νa,
we have the canonical sequence

σ(ν) = ( 1 · · · 1
︸ ︷︷ ︸

ν1 times

· · · k · · · k
︸ ︷︷ ︸

νk times

) .

The goal of SHUFF[{να}α∈A], the algorithm we are
going to discuss, is to produce an uniform random
shuffling of the sequence. As we are going to estab-
lish, we will have

Proposition 3.2 When the density of Shannon En-
tropy S(ν) := −

∑

α
νa

n ln νa

n is O(1) w.r.t. n, the
algorithm SHUFF[{να}α∈A] runs in Θ(n) time and
space.

The worst-case behaviour for S(ν) is O(lnn), which
is obtained for |A| = n and all να = 1. Note that k =
O(1) is a sufficient, not necessary condition for having
finite entropy density. In the case k = O(1), the
following algorithm analysis simplifies considerably.
Also note that, as the Shannon Entropy is an a priori

theoretical lower bound to the (space) complexity,
this hypothesis is the most general possible one for
linear bit-complexity.

Structurally, the shuffling of a given sequence is not
quite different from the trasmission of a given source,
and ideas and intuitions from Coding Theory are use-
ful here. Indeed, as well-known, the best approxima-
tion of the Shannon bound by a fixed coding is by
use of a Huffman coding. The a priori knowledge
of the frequences να/n makes it possible, in princi-
ple, to evaluate the coding in a preamble part of the
algorithm. A small difference between our problem
and the trasmission of a fixed source is the fact that,
when have a o(1) fraction of the shuffling sequence
left, the frequencies are perturbed in an important
way. Thus, it is more convenient to reconstruct the
Huffman table ∼ lnn times, through a geometric sub-
division.

We now describe the algorithm in detail.

Fix 0 < γ < 1. Let nsmall :=
∑

α:να<nγ να the
total cardinality of “small” classes. As the contribu-
tion to the entropy of an entry να < nγ is at least
να

n (1 − γ) lnn, we know that nsmall <
S

1−γ
n

lnn . We
can consider elements in small classes altogether, and
distinguish them at the end (or at the beginning) by
mean of a complete permutation, with a complexity
∼ n

lnn ln n
lnn = O(n).

So we can assume that all classes are of size at least
nγ . Thus, there are at most n1−γ classes, and we can
suppose w.l.o.g. that the να’s are sorted (decreasing),
as sorting would be fast enough.

Let us denote by ⌈n⌉2 the smallest power of 2
above n. Note that n′ :=

∑

α⌈να⌉2 is always in
the range {n, . . . , 2n − 1}, and n′′ := ⌈n′⌉2 is in the
range {n, . . . , 4n − 3}. So, we can embed the range
{1, . . . , n} into the range R = {1, . . . , n′′} up to losing
a factor bounded by 4.

Call uα =
∑

β<α⌈νβ⌉2, and U =
∑

α⌈να⌉2. The
ranges Rα = {uα, uα + 1, . . . , uα + να − 1} are all
within R, cover a considerable part of it (at least
1/4), and do not overlap. The crucial observation is
that each uα has all zero binary digits besides the
first log2⌈n/να⌉.8 The non-trivial digits of the uα’s
have here a role equivalent to the Huffman coding.

8The fact that the ⌈log2 να⌉’s are sorted is used here.

8



In other words, by definition of Shannon Entropy, we
can sample random integers r ∈ R, one digit at the
time, so that in expected S

ln 2 + 1 = O(1) digits we
know in which range {uα, . . . , uα+1 − 1} it is (or if
it is in {U, . . . , n′′ − 1}, case in which we restart the
extraction).
Identifying the potential uα for a random integer

r, in expected O(1) complexity, requires the uα’s to
be arranged into a trie, namely, in the Huffman tree.
Given this, with further O(1) digits (in fact, on aver-
age, 2 digits) we can know if it is in the appropriate
range Rα (and thus produce a new element α in the
sequence), or not (and thus perform a new extrac-
tion).
If we re-calculate the quantities uα everytime

⌊log2 n⌋ decreases (this costs just n1−γ lnn), we are
always within a finite acceptance rate, namely 1/8.

3.3 Splitting in constant time

Let A be a collection of events. In our problem, for
a given β ∈ S2,

(12) Aβ = {(α, α′) ∈ S2 |α+ α′ = β} ∪ {reject} ;

but here, more generally, we will denote by α a
generic element of A. At a collection of times
(t1, t2, . . . , tn) we shall extract an element α ∈ A,
with (normalised) probabilities pα(t). We know that
the functions pα(t) are in Lip1(λ0, λ1) for some con-
stants λ0 and λ1. The functions pα(t) can be evalu-
ated at any t, in such a way that d digits of accuracy
cost dγ , for some finite γ.
The times ti are distributed uniformly on an in-

terval of width ℓ, with some finite density (in our
problem, with a Bernoulli distribution on an interval
of Z/N , and ℓ = 1/k).
The positivity of probabilities, and the fact that

derivatives must compensate in order to preserve nor-
malisation (i.e.,

∑

α
d
dtpα(t) = 0 at all t) implies that

we can uniformly bound the functions pα(t) by con-
stants qα, so that Q :=

∑

α qα is finite, and has no
scaling in ℓ or n. Similarly to the reasonings of Sec-
tion 3.2, we can also take the qα’s to be a (negative)
power of 2, up to a further factor.
The goal of SPLIT[{pα(t)}α∈A, {ti}1≤i≤n], the al-

gorithm we are going to discuss, is to produce n

random variables {αi}, indepenedent, with αi dis-
tributed according to the unnormalised probabilities
pα(ti). As we are going to establish, we will have

Proposition 3.3 When S(q) = −∑

α
qα
Q ln qα

Q is

O(1), the algorithm SPLIT[{pα(t)}α∈A, {ti}1≤i≤n]
runs in Θ(n) time, provided that any of the following
conditions hold:

1. A is finite.

2. γ = 1.

3. The series −∑

α qα(ln qα)
γ is convergent.

4. Calculating d significant digits of pα(t) takes d
γ .

Equivalently, it takes dγ to calculate d digits of
pα(t)/⌈qα⌉2, not of pα(t).

5. Always, in the limit n/ℓ→∞.

The conditions are listed in an order “of difficulty”,
for testing the applicability in concrete situations,
and for seeing why the algorithm runs in linear time.
Note that already the first three conditions cover the
vaste majority of applications.9

Let us now describe the algorithm. Similarly to the
previous section, let us sort A according to log2⌈qα⌉2,
and call uα =

∑

β≺α⌈qβ⌉2, and U =
∑

α⌈qα⌉2. At
time ti, we shall extract a random real ξ ∈ [0, U ], one
digit at the time, and return α if ξ ∈ [uα, uα+pα(ti)],
or restart if ξ is not in any of these intervals (the
acceptance rate is O(1), for what seen in the pre-
vious section). Thus, we shall build up a trie for
the values uα, so that, even when A is not finite
(but the probabilities have finite Shannon entropy),
the average depth of trie queries is finite. This pro-
duces in finite complexity the label α of the poten-
tial interval [uα, uα+1]. Then, we shall determine if
ξ ∈ [uα, uα + pα(ti)]. At this purpose we need as
many digits of pα(ti) as of qα, and possibly more.

9In particular, informally speaking, there are “few” series
{xk}i∈N such that xk ∈ R

+,
∑

k xk = 1,
∑

k xk lnxk < ∞, but
∑

k xk(lnxk)
γ = ∞ for a given finite γ, as such a series shall,

for example, have the unusual asymptotics xk ∼ k−1(ln k)−β

for 1 < β ≤ γ.
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As well known, the average number of extra re-
quired digits is finite.10 Thus, for this part of the
algorithm, we have a complexity ∼ (log2 qα)

γ , to be
averaged w.r.t. the probabilities ⌈qα⌉2/U .11 Thus, up
to factors, we have a complexity of the form

(13) −
∑

α

q′α(ln q
′
α)

γ ,

plus subleading quantities, which are either of the
form

∑

α q′α, or of the form −∑

α q′α ln q′α, and thus
finite. This already gives the claimed complexity, just
by using the regularity hypothesis on the pα’s in order
to have the uniform bounds qα, within the first four
of the five conditions given in the proposition.
For what concerns the final condition, we can use

the regularity hypothesis in a second respect, that we
only sketch here. At every time ti we determine pα(ti)
with log2 qα digits or more, from the Lipshitzianity
conditions on the pα(t)’s we can deduce a parabolic
bound for the values of pα(tj)’s, for j > i. The next
time j at which we will need such a level of preci-
sion will be for j ∼ i + 2d. This will be after a time
∼ 2dq−1

α ℓ/n ∼ 4dℓ/n, by when the Lipshitz bound
on the probability has grown to ∼ 24d(ℓ/n)2, to be
compared to the required precision ∼ 2−d. This in-
troduces an effective cut-off in the diverging series
of equation (13), to d larger than ∼ const ln(n/ℓ).
Under the condition n/ℓ → ∞, the cut-off is pushed
towards infinity, and we are left with contributions
of the other forementioned simpler form, which are
finite.
In the application discussed in the paper, ℓ = 1/k

and n = N/k, so that n/ℓ ∼ N diverges, and we are
always at least in the 5th condition of the proposition.

4 Optimisation strategies

In this section we discuss two algorithmic strategies
that improve the complexity when our general algo-
rithm is applied to a collection of weight functions

10It is bounded by 3, and is is generically 2, as given by the
simple geometric series 1 + 1

2
+ 1

4
+ . . ., and reaches higher

values when pα(ti) are dyadic numbers.
11These are within a constant factor w.r.t. qα/

∑

β qβ , thus
the Shannon entropies associated to the two collections differ
by a finite linear transformation.

presenting certain technical difficulties. In the first
subsection, we analyse a construction that improves
on the number of queries of the MULTIN procedure
in the algorithm. In the second subsection, we dis-
cuss how to deal with the divergence of the complex-
ity prefactors, when some weigth functions vanish at
some times of the interval.

4.1 Universal boost of Boltzmann

samplers

Most applications of Boltzmann samplers to recursive
structures can be described, at some level of the de-
scription of the grammar, by an equation of the form
X = A1+· · ·+An, where X is the desired object, n is
a deterministic or random integer parameter, which
is large in the asymptotic limit, and the Ai’s are more
fundamental objects, either identically distributed, or
more generally with similar properties, for what con-
cerns their size, complexity of generation, and so on.
The ‘size’ N(X) is given by the sum of the sizes of
its components Ai. As it is constrained, this gives
a factor of order

√
N for the reject. The discussion

in the introduction also concerns the ‘nature’ of this
factor, namely whether it is ineliminable for the fam-
ily of problems, or at least for the method, or it can
be decreased through a refined implementation.

The aim of this section is to give a general set-
ting in which this factor can be reduced consider-
ably, at least by a factor N

1
3 . This is much more

than what is needed in the paper for achieving linear
bit-complexity, which is just a logarithmic factor.

Let ~x = (x1, . . . , xN ), where xj is an integer ran-
dom variable, generated at a ‘unit’ cost of complex-
ity, and according to measures with variance σ2

j , all
O(1). Let |~x| = x1 + . . . + xN , and assume that the
distributions are tuned so that E(|~x|) = h. Our goal
is to sample a random ~x, under the constraint that
|~x| = h.

The näıve Boltzmann method, of sampling ~x inde-
pendently up to get one run satisfying the constraint,

has a complexity N
√
∑

j σ
2
j ∼ N

3
2 , and we want to

improve on this asymptotics.

It is first instructive to study the following biased
algorithm. Let K < N/2, A ≥ 2 an integer, and let
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us write ~x = (~y, ~z), with ~y = (x1, . . . , xK) and ~z =
(xK+1, . . . , xN ). In one run of the procedure, do the
following: (1) sample ~z; (2) sample A independent
copies of ~y; (3) if exactly one ~y is such that |~y|+ |~z| =
h, take the corresponding pair ~x = (~y, ~z), otherwise
restart.
Clearly, we have a complexity factor ∼ N+KA−K

in place of N , while the average acceptance rate is
increased, from some probability p, to Ap(1− p)A−1.
If Ap . 1 and AK/N . 1, while A ≫ 1, this is a

considerable gain. As max(p) ∼ K− 1
2 , this suggests

to choose K ∼ N
2
3 and A ∼ N

1
3 , which produces a

gain in complexity of a factor N
1
3 .

However, this algorithm is biased, as the appro-
priate acceptance for ~z is a certain p = p(~z), and
the one in the algorithm is, instead, Ap(1− p)A−1 ∼
Ap exp(−Ap), where we would have needed a depen-
dence from p exactly linear. Of course, in the case
A = 1 the dependence is linear. In fact, in this case
we are implemented exactly the (ordinary) Boltz-
mann method, with a complexity TBoltz := NE(p)−1.
However, for A > 1 we need to implement a correc-
tion, due to the ‘curvature’ of the function exp, in the
acceptance rate of ~z. This is done by the algorithm,
that could be called boosted Boltzmann method, illus-
trated in Algorithm 2, for which we have

Proposition 4.1 Algorithm 2 samples vectors ~x
from the desired measure, with a complexity
TBoltz Θ(max(P,A−1, N−1P−2eAP )), with P =

max~z(p(~z)). For K ∼ N
2
3 and A ∼ N

1
3 , this gives a

complexity TBoltz Θ(N− 1
3 ).

The crucial correction of the curvature comes from
the central cases node. And the crucial idea is to
repeat the extraction when we have two or more so-
lutions. In fact, excluding this case allows to consider
the ratio of probabilities of two events, not mutually
exclusive, which are polynomials of p with a large
polynomial gcd: we have one solution with probabil-
ity Ap(1−p)A−1, and zero solutions with probability
(1− p)A, thus we follow the downward branch of the
cases node with probability Ap/(1− p).
The final ‘small’ curvature of the factor 1/(1− p),

which has the ‘good concavity’, is corrected at the
following if check node.

It is easy to check that this unbiased procedure has
a complexity comparable with the rough estimate of
the simplified biased algorithm, as in fact the correct-
ing branches are followed sufficiently seldomly. More
precisely, an algorithm with the structure described
on the right of Algorithm 2 has average complexity

(14)
1

1− c

(a+ b)X + Y + bZ

b
.

Substituting the values given in the caption of Algo-
rithm 2, and comparing with the complexity N/p of
the näıve Boltzmann method, gives a gain by a factor
of the form

(15)

(

p+
1

A
+

K

N
eAp

)(

1 +O(p,A−1)
)

.

Choosing K ∼ N
2
3 and A ∼ N

1
3 , and recalling that

max(p) ∼ K− 1
2 ∼ N− 1

3 , (more precisely, max(p) ∼
(
∑K

i=1 σ
2
i )

− 1
2 ), we have that eAp is bounded by a con-

stant, and get the expression claimed in the proposi-
tion.

Curiously enough, although the quantity above de-
pends in a trascendental way from two variables, the
global minimum can be found in closed form. In fact,
dropping the subleading terms, and up to an overall
factor O(N− 1

3 ), it is a function of the form

(16) f(x, y) = y +
1

x
+

c

y2
exy ,

(with x = AN− 1
3 and y = max(p)N

1
3 , thus both

in R
+, and c a parameter related to the variance

∑K
i=1 σ

2
i ). The system d

dxf(x, y) = d
dyf(x, y) = 0

gives cexy = y
x2 = y3

2−xy , which implies xy = 1 (the
other solution xy = −2 is not the domain of the vari-
ables), and in turns y = x−1 = (ce)

1
3 . Not surpris-

ingly, at this optimal value, the three summands in
(16) are equal. This shows that the näıve argument
given at the beginning of the section, of a gain in
complexity of order A, was over-estimated just by a
factor 3.

As a final comment, note how, along the algorithm,
we manipulate functions of p without calculating this
quantity, but instead reproducing the corresponding
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✎
✍

☞
✌START

❄

sample ~z

❄

sample ~y1, . . . , ~yA

❄

✟
✟✟

❍
❍❍

❍
❍❍

✟
✟✟

how many ~yj such that |~yj |+ |~z| = h?
0

✲

1

❄

≥ 2

✛

call it ~y∗

sample ~ycheck

❄

✟
✟✟

❍
❍❍

❍
❍❍

✟
✟✟

is |~ycheck|+ |~z| = h?

No
❄

Yes

✛

✎
✍

☞
✌RETURN (~y∗, ~z)

✎
✍

☞
✌START

❄

X

❄

Y

❄

✟
✟✟

❍
❍❍

❍
❍❍

✟
✟✟

a

✲

b

❄

1− a− b

✛

Z

❄

✟
✟✟

❍
❍❍

❍
❍❍

✟
✟✟

1− c
❄

c

✛

✎
✍

☞
✌END

Algorithm 2: Left: scheme of the algorithm for correcting the bias in the boosted Boltzmann method.
Right: simplified scheme for calculating the average complexity: labels on instruction nodes denote the
complexities, those on branches of question nodes denote the probabilities. In our case we have (X,Y, Z) =
(N −K,KA, 1) and (a, b, c) = ((1− p)A, Ap(1− p)A−1, p).

function through events of the given probability. This
strategy is very general, but requires a positive de-
composition into disjoint or independent events, thus
it cannot reproduce conveniently any function, and
the existence of such a decomposition is not to be
expected a priori. It is a lucky and exceptional fact
that, in the algorithm above, such a decomposition
not only exists, but is also relatively simple.

4.2 The case of vanishing weight func-

tions

In Section 2.2 we discuss how the ‘pairing strategy’
allows to crucially improve the acceptance rate of our

algorithm, by producing weights for the sum of two
variables in an interval which are much more near to
a constant than the single variables are.

In this section, we aim to relax the hypothesis of
lnwα(t) being Lipschitzian, for allowing some (but
not all!) wα(t) to vanish at an extremum of the in-
terval, as is the case in various concrete applications.

For our generating functions at the j-th interval,
with time parameter t ∈ [0, 1], we can write

(17) W (j + t) = W0(t) + (j + t)ǫW1(t)

where both lnW0 and lnW1 are Lipschitzian, and ǫ,
scaling as ǫ = 1/k in our application, is an expansion
parameter.
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Our pairing strategy gives

W (j + t)W (j + 1− t)

= W 2
0 + ǫ(2j − 1)W0W1 + ǫ2(j + t)(j + 1− t)W 2

1

The Lipschitz condition on W0 also gives errors of
the order ǫ2. Apparently, this is just as desired, be-
cause all terms of smaller order, namely W 2

0 + ǫ(2j−
1)W0W1, do not depend on t.
However, our sampling procedure would be dete-

riorated in this case, because W 2
0 and W0W1 do not

have the same support, and we cannot compare lead-
ing term and error bounds coefficient-wise, as desired,
but only as evaluations of polynomials.
This accounts for a deformation of the calculation

for the acceptance rate. This was originally of the
form (1− 1

k2 )
N , i.e., written as a product over blocks,

(18)
k∏

j=1

(

1− 1

k2

)N
k

∼ exp

( k∑

j=1

N

k3

)

∼ exp

(
N

k2

)

.

Now, for the more sensible entries α ∈ S2, the ac-

ceptance ǫ2 ∼ 1
k2 is replaced by ǫ2

ǫ(2j−1) ∼ 1
kj , which

gives
(19)
k∏

j=1

(

1− 1

kj

)N
k

∼ exp

( k∑

j=1

N

k2j

)

∼ exp

(
N

k2
ln k

)

.

Luckily enough, from Section 4.1 we know how to al-
low for k &

√
N in our algorithm, for the multinomial

part in which small values of k are desired.
Thus, in the case of vanishing weight functions, we

shall choose k as large as (say)
√
N lnN , in order

to have finite acceptance rates in the most external
repeat loop, and use the strategy of Section 4.1 in or-
der to have a linear complexity in the internal repeat
loop.

5 Applications

Here we discuss some direct applications of the algo-
rithm we presented above. Indeed, besides the the-
oretical motivations on the optimality of Boltzmann
samplers, discussed in the introductory section, time-
inhomogeneous walks have several concrete applica-
tions.

Time-dependent hopping dynamics on the lat-

tice. A first natural application is the direct inter-
pretation as a lattice modelisation of time-dependent
diffusion, a much-studied problem in Mathematical
and Statistical Physics, both for its original fluidody-
namics motivations, and for its ‘rejuvination’ in the
path-integral formulation of field theories.

Indeed, staying on the easier original formulation,
as well as in Brownian Motion, its continuum coun-
terpart, lattice walks with a finite set of local steps
describe the Langevin drift and diffusion of particles
in a fluid, where the randomness in the step sum-
marises the ‘noise’ effect of collisions with the mi-
croscopic particles. The drift and diffusion constant
are related to the (uniform) external force, and to
the temperature. Thus, a time dependence of the
step weights modelises various contexts of particle
diffusion in a medium with time-dependent thermo-
dynamic properties, and weighted random walks from
(0, 0) to (N,h) describe the typical contribution to
the Green’s functions G(N,h) of the corresponding
diffusion operator, where N is time, and h is position
displacement.

Exploration of random graphs. Consider ran-
dom (undirected edge-labeled) graphs of size V , with

degree distribution p
(0)
k . The distribution of the num-

ber of (other) neighbours of the endpoint of a random
edge is given by

(20) pk =
(k + 1) p

(0)
k+1

∑

h h p
(0)
h

.

The exploration tree rooted at a random vertex is,
in a regime, a Galton–Watson tree governed by pk,
GW[pk]. As long as ρ =

∑

k k pk > 1, we have a
giant component in the graph. Not accidentally, this
is also the condition for the Galton–Watson tree hav-
ing a non-zero finite probability of being infinite.12

As a consequence, the asymptotic probability that
the breath-first (BFS) neighbourhood of size N of a
random vertex in the giant component has surface h
is governed by the probability that the breath-first

12As a marginal detail, the first branching of this tree is

determined by p
(0)
k

instead of pk.
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portion of size N of an infinite GW[pk] tree has h
boundary nodes.

The pure Galton–Watson regime is achieved in the
limit V,N → ∞, with V/N → ∞. When, more
generally, we only have V,N → ∞, there are finite-
volume effects on the scale N/V , due to the event
that the BFS exploration tree visits a node that has
already been visited before in the tree. This leads
to ‘time-dependent’ branching probabilities satisfy-
ing the equation

(21) pk(i) =
∑

k′>k

(
k′

k

)(
i

V

)k′−k (

1− i

V

)k

pk′ ,

where the ‘time’ i is the size of the BFS up to that
moment. Up to the standard tree-meander bijec-
tion (where the height of the meander describes the
length of the stack of boundary nodes in the tree, and
the length corresponds to the volume of the tree), if
N/V = ξ ∈ [0, 1], we are ‘almost’ in the framework of
our problem with S being the convexification of the
support of p, translated by −1, and

wk−1(t) = pk(tξV )

=
∑

k′>k

k∑

s=0

(−1)s k′! pk′ ξk
′−k+s

(k′ − k)!(k − s)!s!
tk

′−k+s .
(22)

Then, as our algorithm is designed to sample random
walks, not random meanders (which are the combi-
natorial structures in bijection with BFS trees), we
have to restart the algorithm as long as the walk is
not a meander. In particular, as the steps are not
equally distributed, we cannot use the cyclic lemma
to convert walks into excursions with no reject, as is
done e.g. in [Dev12].

Nonetheless, contrarily to the case of equally-
distributed steps and zero drift, for which we have an
acceptance factor ∼ N− 1

2 for meanders, and ∼ N−1

for excursions, here, as long as ρ > 1, the accep-
tance probability is of order 1.13 Thus, our algorithm

13The condition ρ > 1 justifies an acceptance of order 1 for
the positivity condition near t = 0. Then, the fact that ρ(t)
is monotonically decreasing justifies an acceptance of order 1
for the positivity condition near t = N , even when h .

√
N

(while this is obvious for h &
√
N).

provides an exact sampler for the typical BFS neigh-
bourhood of a random vertex in the giant component,
conditioned to have a given surface, even when this
is not the typical one for the given family of graphs.

Note that in the special case of uniform random
graphs of degree d we face a small technical problem:
we have S = {−1, 0, 1, . . . , d − 1}, and the functions
lnwα(t), for α < d − 1, are not Lipshitz, and the
variance of the single-step distribution is not O(1) as
required in Section 4.1 (but instead o(1)), because of
the logarithmic singularity at t = 0. Thus, in such a
case, we are in the condition of using the analysis in
Section 4.2.

Accessible digraphs and automata. The rea-
sonings of the previous section can be repeated with
small modification in the case of (edge-labeled) ran-
dom oriented graphs, where the condition of the root
being in the giant component is replaced by the con-
dition that the giant strongly-connected component
is accessible from the root. Due to these strong sim-
ilarities, we omit to further discuss this case.

Little changes if we take “k-maps” instead of ori-
ented graphs, where a k-map is an oriented graph
with homogeneous out-degree k, equipped with an
edge-colouration, in k colours, such that each ver-
tex has exactly one outgoing edge of each colour. In
this case, the edge-labeling, whose purpose is only to
fix canonically the BSF exploration, is not necessary
anymore, as this role is taken by the colouration.

A special case of k-maps are maps with a root ver-
tex, such that the whole digraph is accessible from
the root. These digraphs describe the possible tran-
sition structures of accessible deterministic complete
automata (ADCA), where vertices correspond to the
states of the automaton, edges of colour α correspond
to transitions under the letter α, and the root is the
initial state.

Although global accessibility is a complicated non-
local constraint, the study of these maps has some
similarity with the study of the BSF tree sketched
above. In particular, as remarked in [BN07], the
study of a family of certain rectangular (kn+ 1)× n
tableaux connects these objects to a classical struc-
ture in discrete combinatorics, namely partitions of
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M = kn+1 objects into n non-empty classes. There
are

{
M
n

}
such structures, where

{
n
m

}
are the Stirling

numbers of second kind. A subset of these tableaux,
satisfying a certain non-negativity condition, is in
bijection with ADCA transition structures. For a
mechanism similar to the one described at the end
of the previous paragraph this subset is a finite frac-
tion of the full statistical ensemble, w.r.t. the uni-
form measure. Thus, equivalently, we can sample
uniformly ADCA’s by sampling Stirling partitions,
and using a reject algorithm. Because of the results
in [BDS12], this would also imply an algorithm for
sampling uniformly minimal automata.

The tableaux associated to Stirling partitions have
entries that can be subdivided into two classes: a
‘skeleton’ and a ‘wiring’ part. The measure on the
wiring part is trivial, once conditioned on the skele-
ton, and the measure on the skeleton is independent
on the wiring part, and corresponds to an oriented
random walk in the plane, with inhomogeneous steps.
More precisely, there exists a simple bijection with a
walk from (0, 0) to (kn − n + 1, n), where at (x, y)
one can perform a north- or an east-step with relative
probabilities ω∗ and y/n (here ω∗ is a transcendental
constant that can be written in terms of the Lambert
W -function, see [BDS12] for more details).

Collecting together the east steps preceeding any
given north step, we can equally well say that the
path performs a step from (x, y) to (x+δ, y+1) with
probability nω∗yδ(nω∗ + y)−δ−1, for δ ≥ 0. Thus,
we can interpret y/n as the ‘time’ in our algorithm,
and we are in our setting, with S = N and wα(t) =
ω∗tα(ω∗ + t)−α−1.

We have only a few small technical problems. First,
the functions lnwα(t) are not Lipshitz, and the vari-
ance of the single-step distribution is not O(1) as
required in Section 4.1 (but instead o(1)), because
of the logarithmic singularity at t = 0. Thus, as
in the previous paragraph, we are in the condi-
tion of using the analysis in Section 4.2. Further-
more, the support of S is not compact, although,
as desired, the Shannon entropy is finite, because
∑

k∈N
(1−x)xk ln

(
(1−x)xk

)
= ln(1−x)+

∑

k∈N
(1−

x)kxk lnx = ln(1− x)+ x
1−x lnx, so the treatment of

Sections 3.2 and 3.3 applies.
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