Errata

The following theorem gives the β -expansion of 1 for any cubic Pisot number.

Theorem 2. Let β be a cubic Pisot number and let

$$M_{\beta}(x) = X^3 - aX^2 - bX - c$$

be its minimal polynomial. Then the beta-expansion of 1 is

- Case 1: When $b \ge a$, then $d_{\beta}(1) = (a+1)(b-1-a)(a+c-b)(b-c)c$.
- Case 2: When $0 \le b \le a$, if c > 0, $d_{\beta}(1) = abc$, otherwise,

$$d_{\beta}(1) = a[(b-1)(c+a)]^{\omega}$$

- Case 3: When −a < b < 0, if b + c ≥ 0, then $d_β(1) = (a 1)(a + b)(b + c)c$, otherwise $d_β(1) = (a - 1)(a + b - 1)(a + b + c - 1)^ω$
- Case 4: When $b \leq -a$, let k be the integer of $\{2, 3, \ldots, a-2\}$ such that, denoting $e_k = 1 a + (a-2)/k$, $e_k \leq b + c < e_{k-1}$.
 - If $b(k-1) + c(k-2) \le (k-2) (k-1)a$, $d_{\beta}(1) = d_1 \dots d_{2k+2}$ with

 $\begin{array}{l} d_1 = a - 2, \\ d_{k+2-i} = -(k+3-i) + a(k+2-i) + b(k+1-i) + c(k-i), 3 \leq i \leq k \\ d_k = -k + ak + b(k-1) + c(k-2) \\ d_{k+1} = -(k-1) + ak + bk + c(k-1) \\ d_{k+2} = -(k-2) + a(k-1) + bk + ck \\ d_{2k+2-i} = -(i-2) + a(i-1) + bi + c(i+1) \quad k \geq 3, 2 \leq i \leq (k-1) \\ d_{2k+1} = b + 2c \quad and \quad d_{2k+2} = c. \end{array}$

• If b(k-1) + c(k-2) > (k-2) - (k-1)a, let m be the integer defined by $m = \lfloor \frac{1-c}{1-a-b-c} \rfloor$.

When m = 1, $d_{\beta}(1) = (a-2)(2a+b-2)(2a+2b+c-2)(2a+2b+2c-2)^{\omega}$.

When m > 1, $d_{\beta}(1) = d_1 d_2 \dots d_{m+2} d_{m+3}^{\omega}$, with

 $\begin{array}{ll} d_1=a-2, & d_2=2a+b-3, \\ d_{m+3-i}=2a+b-3+(m+1-i)(a+b+c-1) & m\geq 3, 3\leq i\leq m, \\ d_{m+1}=2a+b-2+(m-1)(a+b+c-1), \\ d_{m+2}=a+b-1+m(a+b+c-1), \\ d_{m+3}=(m+1)(a+b+c-1). \end{array}$

Example 1. When $a \ge b \ge 0$ and c > 0, we obtain the only beta-expansion of 1 of length 3.

The smallest Pisot number has $M_{\beta} = X^3 - X - 1$ as minimal polynomial, it is a simple beta-number and $d_{\beta}(1) = 10001$.

The positive root β of $M_{\beta} = X^3 - 3X^2 + 2X - 2$ is a simple beta-number and $d_{\beta}(1) = 2102$. The case where $b \leq -a$ shows that from a cubic simple beta-number, we can obtain an arbitrary long beta-expansion of 1. For any integer k greater than or equal to 2, the real root β of the irreducible polynomial $X^3 - (k+2)X^2 + 2kX - k$, is a simple beta number whose integer part is equal to k, and the beta-expansion of 1 has length 2k + 2. For k = 2, we get $d_{\beta}(1) = 221002$; for k = 3, we get $d_{\beta}(1) = 31310203$.

Example 2. The greatest positive root β of $M_{\beta} = X^3 - 2X^2 - X + 1$ is a betanumber and $d_{\beta}(1) = 2(01)^{\omega}$.

If β is the positive root of $X^3 - 5X^2 + 3X - 2$, then $d_{\beta}(1) = 413^{\omega}$. When β is the greatest positive root of $X^3 - 5X^2 + X + 2$, then $d_{\beta}(1) = 431^{\omega}$.

For any integer k greater than or equal to 3, the real root β of the irreducible polynomial $X^3 - (k+2)X^2 + (2k-1)X - (k-1)$, is a beta number whose integer part is equal to k, and the beta-expansion of 1 is eventually periodic of period 1, the length of its preperiod k. For k = 3, we get $d_{\beta}(1) = 3302^{\omega}$; for k = 4, we get $d_{\beta}(1) = 42403^{\omega}$.

Proof. It is known that Pisot numbers are beta-numbers, thus, for any cubic Pisot number β , the beta-expansion of 1 is finite or eventually periodic. In any case, we first compute the associated beta-polynomial P. Next we prove that the sequence $d = (d_i)_{i\geq 1}$ of nonnegative integers obtained from the beta-polynomial satisfy lexicographical order conditions: for all $p \geq 1$, $\sigma^p(d) < d$.

First of all, we recall that, from Theorem 1, a cubic number β , greater than 1 and having

$$M_{\beta}(X) = X^3 - aX^2 - bX - c$$

as minimal polynomial, is a cubic Pisot number if and only if it both

$$|b-1| < a+c$$
 and $(c^2-b) < sgn(c)(1+ac)$

hold.

Denote by Q the complementary factor of the beta-polynomial P defined by $P(X) = M_{\beta}(X)Q(X)$. As we shall see in what follows, the value of Q depends upon the value of the coefficients of M_{β} .

Case 1: When b > a, as β is a Pisot number, from Theorem ??, c is a positive integer. In this case, the complementary factor is $Q(X) = X^2 - X + 1$ and $d_{\beta}(1) = (a+1)(b-1-a)(a+c-b)(b-c)c$.

Indeed, as $(c^2 - b) < sgn(c)(1 + ac)$ and c > 0, we get $c \le a + 1$. As |b-1| < a + c, we get $b-1-a \le a$ and $0 \le a-b+c$. From b > a, we get that $0 \le b-a-1$ and, as $c \le a+1$, that $a-b+c \le a$. Finally as $0 \le a-b+c \le a$, we obtain $0 \le b-c \le a$.

Case 2: When $0 \le b \le a$, the complementary factor is then Q(X) = 1 and the associated beta-polynomial is equal to the minimal polynomial.

If c > 0, then $d_{\beta}(1) = abc$. Indeed, as $(c^2 - b) < sgn(c)(1 + ac)$, we get $c \le a$. If c < 0, then $d_{\beta}(1) = a[(b - 1)(a + c)]^{\omega}$. As |b - 1| < a + c, we get $b - 1 \le a - 2$. As $(c^2 - b) < sgn(c)(1 + ac)$, we get that $c \ge -a$ and, consequently, $0 \le c + a \le a - 1$. **Case 3**: When -a < b < 0, if $b + c \ge 0$ then the complementary factor is Q(X) = X + 1 and $d_{\beta}(1) = (a - 1)(a + b)(b + c)c$. Indeed, as -a < b < 0, we obtain $1 \le a + b \le a - 1$. Since $b + c \ge 0$, c is a positive integer. From $(c^2 - b) < sgn(c)(1 + ac)$, we get that $c \le a - 1$ and $b + c \le a - 2$.

If b + c < 0, then Q(X) = 1 and $d_{\beta}(1) = (a - 1)(a + b - 1)(a + b + c - 1)^{\omega}$. As -a < b < 0, we get $0 \le a + b - 1 \le a - 2$. From |b - 1| < a + c, we get that $1 \le a + b + c - 1$ and as b + c < 0, we obtain $a + b + c - 1 \le a - 2$.

Case 4: First of all, since |b-1| < a+c, we get $-a+2 \le b+c$. Moreover as $b \le -a$, we get $c \ge 2$ and as $(c^2 - b) < sgn(c)(1 + ac)$, we obtain $c \le a - 2$, thus $b+c \le -2$. So, there exists an integer k in $\{2, 3, \ldots, a-2\}$, such that, denoting $e_k = 1 - a + (a-2)/k$, $e_k \le b+c < e_{k-1}$.

When $b(k-1) + c(k-2) \le (k-2) - (k-1)a$, the complementary factor is

$$Q(X) = \frac{(X^k - 1)(X^{k+1} - 1)}{(X - 1)^2}$$

and $d_{\beta}(1) = d_1 \dots d_{2k+2}$ with

 $\begin{array}{l} d_1 = a-2, \\ d_{k+2-i} = -(k+3-i) + a(k+2-i) + b(k+1-i) + c(k-i), k \geq 3, 3 \leq i \leq k \\ d_k = -k + ak + b(k-1) + c(k-2) \\ d_{k+1} = -(k-1) + ak + bk + c(k-1) \\ d_{k+2} = -(k-2) + a(k-1) + bk + ck \\ d_{2k+2-i} = -(i-2) + a(i-1) + bi + c(i+1) \quad k \geq 3, 2 \leq i \leq (k-1) \\ d_{2k+1} = b + 2c \quad \text{and} \quad d_{2k+2} = c. \end{array}$

We now verify that the lexicographical order conditions on $d_{\beta}(1)$ are satisfied. As $2 \le c \le a-2$ and $b+c \le -2$, we get $d_{2k+1} \le a-4$. From $e_k \le b+c$ and $b(k-1)+c(k-2) \le (k-2)-(k-1)a$, we get $d_{2k+1} \ge 0$.

For $k \leq 3$ and $2 \leq i \leq k-1$, $d_{2k+2-i} = -(i-2) + a(i-1) + bi + c(i+1)$. As $b + c < e_i$, we get $d_{2k+2-i} < c$. As $-a + 2 \leq b + c$ and $b + 2c \geq 0$, we get $d_{2k+2-i} \geq i$.

As $e_k \leq b + c$, we obtain $d_{k+2} \geq 0$. Since $c \leq a - 2$, $d_{k+1} > d_{k+2}$ and since $b + c \leq -2$, $d_k > d_{k+1}$. Moreover from $b(k-1) + c(k-2) \leq (k-2) - (k-1)a$, we get $d_k \leq a - 2$.

For $k \leq 3$, as |b-1| < a+c, we obtain $d_2 < \cdots < d_{k-1}$. As $b+c < e_{k-1}$ and $b+2c \leq 0$, we get $d_{k-1} < a-2$. Moreover from $c \leq a-2$ and a+b+c-1 > 0, we get that $d_2 = 2a+b-3$ is nonnegative.

All d_i 's are smaller than d_1 , only d_{2k+2} and d_k can be equal to d_1 . Therefore we have to verify that $d_2 \ge d_{k+1}$ when $k \ge 3$ (otherwise $d_2 = d_k$ and $d_k > d_{k+1}$). If $d_k = a - 2$, then $b + c = e_k$, and $d_{k+1} = a - c - 1$. As a + b + c - 1 > 0, we obtain $d_{k+1} \le d_2$. In case of equality, if k = 3, then $d_3 = d_k$ and $d_k > d_{k+2}$, otherwise $d_3 > d_2$ and $d_{k+1} > d_{k+2}$, therefore $d_3 > d_{k+2}$.

So lexicographical order conditions are satisfied and $d_1 \dots d_{2k+2}$ is the betaexpansion of 1.

When b(k-1) + c(k-2) > (k-2) - (k-1)a, as $b \le -a$, we get $k \ge 3$. Let *m* be the integer defined by $m = \lfloor \frac{1-c}{1-a-b-c} \rfloor$. Note that by definition of *m*, $m \leq k-2$ and since $b \leq -a, m \geq 1$. In this case, the complementary factor is

$$Q(X) = \sum_{i=0}^{m} X^i.$$

The beta-expansion of 1 is then eventually periodic with period 1, the length of the preperiod is m + 2.

When m = 1, $P(X) = X^4 - (a - 1)X^3 - (a + b)X^2 - (b + c)X - c$ and

$$d_{\beta}(1) = (a-2)(2a+b-2)(2a+2b+c-2)(2a+2b+2c-2)^{\omega}.$$

Here $d_3 = d_{m+2} = a+b-1+m(a+b+c-1)$ and $d_4 = d_{m+3} = (m+1)(a+b+c-1)$. When m > 1,

$$P(X) = X^{m+3} - (a-1)X^{m+2} - (a+b-1)X^{m+1} - \sum_{i=3}^{m} (a+b+c-1)X^i$$
$$-(a+b+c)X^2 - (b+c)X - c$$

and $d_{\beta}(1) = d_1 d_2 \dots d_{m+2} d_{m+3}^{\omega}$, with

$$\begin{array}{ll} d_1=a-2, & d_2=2a+b-3, \\ d_{m+3-i}=2a+b-3+(m+1-i)(a+b+c-1) & m\geq 3, 3\leq i\leq m, \\ d_{m+1}=2a+b-2+(m-1)(a+b+c-1), \\ d_{m+2}=a+b-1+m(a+b+c-1), \\ d_{m+3}=(m+1)(a+b+c-1). \end{array}$$

In both cases, $d_1 = a - 2$. Since b(k-1) + c(k-2) > (k-2) - (k-1)a and $c \le a-2$, we get $-2a+3 \le b$. Moreover as $b \le -a$, $1 \le d_2 \le a-2$ when m = 1, and $0 \le d_2 \le a-3$ otherwise. By definition of m, (m+1)b+mc > m-(m+1)a, thus $d_{m+2} \ge 0$ and $d_{m+3} \ge c$. Since $e_k \le b+c < e_{k-1}$ and $m \le k-2$, we obtain $d_{m+3} \le a-3$ and $d_{m+2} \le a-c-3$.

When m > 1, since $mb + (m-1)c \le (m-1) - ma$, we get $d_{m+1} \le a - 2$. As $0 \le 2a + b - 2$ and a + b + c - 1 > 0, $d_{m+1} > 0$. Moreover as a + b + c - 1 > 0, one has $d_2 < d_3 < \ldots < d_{m+1}$. Note that, when $m \ge 3$, $d_2 \ne a - 2$.

We now study the cases where d_i is not strictly smaller than d_1 . When m = 1, only d_2 may be equal to a - 2, then b = -a and $d_3 = c - 2$, thus $d_3 < d_2$. When m > 1, only d_{m+1} may be equal to a - 2, then mb = -ma - (m-1)c + (m-1), and thus $d_2 - d_{m+2} = a - 1 - c$ is a positive integer.

We have proved that the lexicographical order conditions on $d_{\beta}(1)$:

$$d_1 d_2 \dots d_{m+3}^{\omega} >_{lex} d_i d_{i+1} \dots d_{m+3}^{\omega}$$
 for $2 \le i \le m+3$,

are satisfied, showing in this way that the announced beta-expansions of 1 are right.

References

[6] D. W. Boyd. On beta expansions for Pisot numbers. *Mathematics of Computation*, 65(214):841–860, 1996.