Errata

The following theorem gives the β-expansion of 1 for any cubic Pisot number.
Theorem 2. Let β be a cubic Pisot number and let

$$
M_{\beta}(x)=X^{3}-a X^{2}-b X-c
$$

be its minimal polynomial. Then the beta-expansion of 1 is

- Case 1: When $b \geq a$, then $d_{\beta}(1)=(a+1)(b-1-a)(a+c-b)(b-c) c$.
- Case 2: When $0 \leq b \leq a$, if $c>0, d_{\beta}(1)=a b c$, otherwise,

$$
d_{\beta}(1)=a[(b-1)(c+a)]^{\omega} .
$$

- Case 3: When $-a<b<0$, if $b+c \geq 0$, then $d_{\beta}(1)=(a-1)(a+b)(b+c) c$, otherwise $d_{\beta}(1)=(a-1)(a+b-1)(a+b+c-1)^{\omega}$
- Case 4: When $b \leq-a$, let k be the integer of $\{2,3, \ldots, a-2\}$ such that, denoting $e_{k}=1-a+(a-2) / k, e_{k} \leq b+c<e_{k-1}$.
- If $b(k-1)+c(k-2) \leq(k-2)-(k-1) a, d_{\beta}(1)=d_{1} \ldots d_{2 k+2}$ with

$$
\begin{aligned}
& d_{1}=a-2 \\
& d_{k+2-i}=-(k+3-i)+a(k+2-i)+b(k+1-i)+c(k-i), 3 \leq i \leq k \\
& d_{k}=-k+a k+b(k-1)+c(k-2) \\
& d_{k+1}=-(k-1)+a k+b k+c(k-1) \\
& d_{k+2}=-(k-2)+a(k-1)+b k+c k \\
& d_{2 k+2-i}=-(i-2)+a(i-1)+b i+c(i+1) \quad k \geq 3,2 \leq i \leq(k-1) \\
& d_{2 k+1}=b+2 c \quad \text { and } \quad d_{2 k+2}=c .
\end{aligned}
$$

- If $b(k-1)+c(k-2)>(k-2)-(k-1) a$, let m be the integer defined by $m=\left\lfloor\frac{1-c}{1-a-b-c}\right\rfloor$.

When $m=1, d_{\beta}(1)=(a-2)(2 a+b-2)(2 a+2 b+c-2)(2 a+2 b+2 c-2)^{\omega}$.
When $m>1, d_{\beta}(1)=d_{1} d_{2} \ldots d_{m+2} d_{m+3}^{\omega}$, with

$$
\begin{aligned}
& d_{1}=a-2, \quad d_{2}=2 a+b-3 \\
& d_{m+3-i}=2 a+b-3+(m+1-i)(a+b+c-1) \quad m \geq 3,3 \leq i \leq m, \\
& d_{m+1}=2 a+b-2+(m-1)(a+b+c-1) \\
& d_{m+2}=a+b-1+m(a+b+c-1) \\
& d_{m+3}=(m+1)(a+b+c-1)
\end{aligned}
$$

Example 1. When $a \geq b \geq 0$ and $c>0$, we obtain the only beta-expansion of 1 of length 3 .

The smallest Pisot number has $M_{\beta}=X^{3}-X-1$ as minimal polynomial, it is a simple beta-number and $d_{\beta}(1)=10001$.

The positive root β of $M_{\beta}=X^{3}-3 X^{2}+2 X-2$ is a simple beta-number and $d_{\beta}(1)=2102$.

The case where $b \leq-a$ shows that from a cubic simple beta-number, we can obtain an arbitrary long beta-expansion of 1 . For any integer k greater than or equal to 2 , the real root β of the irreducible polynomial $X^{3}-(k+2) X^{2}+2 k X-k$, is a simple beta number whose integer part is equal to k, and the beta-expansion of 1 has length $2 k+2$. For $k=2$, we get $d_{\beta}(1)=221002$; for $k=3$, we get $d_{\beta}(1)=31310203$.

Example 2. The greatest positive root β of $M_{\beta}=X^{3}-2 X^{2}-X+1$ is a betanumber and $d_{\beta}(1)=2(01)^{\omega}$.

If β is the positive root of $X^{3}-5 X^{2}+3 X-2$, then $d_{\beta}(1)=413^{\omega}$. When β is the greatest positive root of $X^{3}-5 X^{2}+X+2$, then $d_{\beta}(1)=431^{\omega}$.

For any integer k greater than or equal to 3 , the real root β of the irreducible polynomial $X^{3}-(k+2) X^{2}+(2 k-1) X-(k-1)$, is a beta number whose integer part is equal to k, and the beta-expansion of 1 is eventually periodic of period 1 , the length of its preperiod k. For $k=3$, we get $d_{\beta}(1)=3302^{\omega}$; for $k=4$, we get $d_{\beta}(1)=42403^{\omega}$.

Proof. It is known that Pisot numbers are beta-numbers, thus, for any cubic Pisot number β, the beta-expansion of 1 is finite or eventually periodic. In any case, we first compute the associated beta-polynomial P. Next we prove that the sequence $d=\left(d_{i}\right)_{i \geq 1}$ of nonnegative integers obtained from the beta-polynomial satisfy lexicographical order conditions: for all $p \geq 1, \sigma^{p}(d)<d$.

First of all, we recall that, from Theorem 1, a cubic number β, greater than 1 and having

$$
M_{\beta}(X)=X^{3}-a X^{2}-b X-c
$$

as minimal polynomial, is a cubic Pisot number if and only if it both

$$
|b-1|<a+c \quad \text { and } \quad\left(c^{2}-b\right)<\operatorname{sgn}(c)(1+a c)
$$

hold.
Denote by Q the complementary factor of the beta-polynomial P defined by $P(X)=M_{\beta}(X) Q(X)$. As we shall see in what follows, the value of Q depends upon the value of the coefficients of M_{β}.

Case 1: When $b>a$, as β is a Pisot number, from Theorem ??, c is a positive integer. In this case, the complementary factor is $Q(X)=X^{2}-X+1$ and $d_{\beta}(1)=(a+1)(b-1-a)(a+c-b)(b-c) c$.

Indeed, as $\left(c^{2}-b\right)<\operatorname{sgn}(c)(1+a c)$ and $c>0$, we get $c \leq a+1$. As $|b-1|<a+c$, we get $b-1-a \leq a$ and $0 \leq a-b+c$. From $b>a$, we get that $0 \leq b-a-1$ and, as $c \leq a+1$, that $a-b+c \leq a$. Finally as $0 \leq a-b+c \leq a$, we obtain $0 \leq b-c \leq a$.

Case 2: When $0 \leq b \leq a$, the complementary factor is then $Q(X)=1$ and the associated beta-polynomial is equal to the minimal polynomial.

If $c>0$, then $d_{\beta}(1)=a b c$. Indeed, as $\left(c^{2}-b\right)<\operatorname{sgn}(c)(1+a c)$, we get $c \leq a$.
If $c<0$, then $d_{\beta}(1)=a[(b-1)(a+c)]^{\omega}$. As $|b-1|<a+c$, we get $b-1 \leq a-2$. As $\left(c^{2}-b\right)<\operatorname{sgn}(c)(1+a c)$, we get that $c \geq-a$ and, consequently, $0 \leq c+a \leq a-1$.

Case 3: When $-a<b<0$, if $b+c \geq 0$ then the complementary factor is $Q(X)=X+1$ and $d_{\beta}(1)=(a-1)(a+b)(b+c) c$. Indeed, as $-a<b<0$, we obtain $1 \leq a+b \leq a-1$. Since $b+c \geq 0, c$ is a positive integer. From $\left(c^{2}-b\right)<\operatorname{sgn}(c)(1+a c)$, we get that $c \leq a-1$ and $b+c \leq a-2$.

If $b+c<0$, then $Q(X)=1$ and $d_{\beta}(1)=(a-1)(a+b-1)(a+b+c-1)^{\omega}$. As $-a<b<0$, we get $0 \leq a+b-1 \leq a-2$. From $|b-1|<a+c$, we get that $1 \leq a+b+c-1$ and as $b+c<0$, we obtain $a+b+c-1 \leq a-2$.

Case 4: First of all, since $|b-1|<a+c$, we get $-a+2 \leq b+c$. Moreover as $b \leq-a$, we get $c \geq 2$ and as $\left(c^{2}-b\right)<\operatorname{sgn}(c)(1+a c)$, we obtain $c \leq a-2$, thus $b+c \leq-2$. So, there exists an integer k in $\{2,3, \ldots, a-2\}$, such that, denoting $e_{k}=1-a+(a-2) / k, e_{k} \leq b+c<e_{k-1}$.

When $b(k-1)+c(k-2) \leq(k-2)-(k-1) a$, the complementary factor is

$$
Q(X)=\frac{\left(X^{k}-1\right)\left(X^{k+1}-1\right)}{(X-1)^{2}}
$$

and $d_{\beta}(1)=d_{1} \ldots d_{2 k+2}$ with

$$
\begin{aligned}
& d_{1}=a-2 \\
& d_{k+2-i}=-(k+3-i)+a(k+2-i)+b(k+1-i)+c(k-i), k \geq 3,3 \leq i \leq k \\
& d_{k}=-k+a k+b(k-1)+c(k-2) \\
& d_{k+1}=-(k-1)+a k+b k+c(k-1) \\
& d_{k+2}=-(k-2)+a(k-1)+b k+c k \\
& d_{2 k+2-i}=-(i-2)+a(i-1)+b i+c(i+1) \quad k \geq 3,2 \leq i \leq(k-1) \\
& d_{2 k+1}=b+2 c \quad \text { and } \quad d_{2 k+2}=c
\end{aligned}
$$

We now verify that the lexicographical order conditions on $d_{\beta}(1)$ are satisfied.
As $2 \leq c \leq a-2$ and $b+c \leq-2$, we get $d_{2 k+1} \leq a-4$. From $e_{k} \leq b+c$ and $b(k-1)+c(k-2) \leq(k-2)-(k-1) a$, we get $d_{2 k+1} \geq 0$.

For $k \leq 3$ and $2 \leq i \leq k-1, d_{2 k+2-i}=-(i-2)+a(i-1)+b i+c(i+1)$. As $b+c<e_{i}$, we get $d_{2 k+2-i}<c$. As $-a+2 \leq b+c$ and $b+2 c \geq 0$, we get $d_{2 k+2-i} \geq i$.

As $e_{k} \leq b+c$, we obtain $d_{k+2} \geq 0$. Since $c \leq a-2, d_{k+1}>d_{k+2}$ and since $b+c \leq-2, d_{k}>d_{k+1}$. Moreover from $b(k-1)+c(k-2) \leq(k-2)-(k-1) a$, we get $d_{k} \leq a-2$.

For $k \leq 3$, as $|b-1|<a+c$, we obtain $d_{2}<\cdots<d_{k-1}$. As $b+c<e_{k-1}$ and $b+2 c \leq 0$, we get $d_{k-1}<a-2$. Moreover from $c \leq a-2$ and $a+b+c-1>0$, we get that $d_{2}=2 a+b-3$ is nonnegative.

All d_{i} 's are smaller than d_{1}, only $d_{2 k+2}$ and d_{k} can be equal to d_{1}. Therefore we have to verify that $d_{2} \geq d_{k+1}$ when $k \geq 3$ (otherwise $d_{2}=d_{k}$ and $d_{k}>d_{k+1}$). If $d_{k}=a-2$, then $b+c=e_{k}$, and $d_{k+1}=a-c-1$. As $a+b+c-1>0$, we obtain $d_{k+1} \leq d_{2}$. In case of equality, if $k=3$, then $d_{3}=d_{k}$ and $d_{k}>d_{k+2}$, otherwise $d_{3}>d_{2}$ and $d_{k+1}>d_{k+2}$, therefore $d_{3}>d_{k+2}$.

So lexicographical order conditions are satisfied and $d_{1} \ldots d_{2 k+2}$ is the betaexpansion of 1 .

When $b(k-1)+c(k-2)>(k-2)-(k-1) a$, as $b \leq-a$, we get $k \geq 3$. Let m be the integer defined by $m=\left\lfloor\frac{1-c}{1-a-b-c}\right\rfloor$. Note that by definition of m,
$m \leq k-2$ and since $b \leq-a, m \geq 1$. In this case, the complementary factor is

$$
Q(X)=\sum_{i=0}^{m} X^{i}
$$

The beta-expansion of 1 is then eventually periodic with period 1 , the length of the preperiod is $m+2$.

When $m=1, P(X)=X^{4}-(a-1) X^{3}-(a+b) X^{2}-(b+c) X-c$ and

$$
d_{\beta}(1)=(a-2)(2 a+b-2)(2 a+2 b+c-2)(2 a+2 b+2 c-2)^{\omega} .
$$

Here $d_{3}=d_{m+2}=a+b-1+m(a+b+c-1)$ and $d_{4}=d_{m+3}=(m+1)(a+b+c-1)$.
When $m>1$,

$$
\begin{aligned}
P(X)= & X^{m+3}-(a-1) X^{m+2}-(a+b-1) X^{m+1}-\sum_{i=3}^{m}(a+b+c-1) X^{i} \\
& -(a+b+c) X^{2}-(b+c) X-c
\end{aligned}
$$

and $d_{\beta}(1)=d_{1} d_{2} \ldots d_{m+2} d_{m+3}^{\omega}$, with

$$
\begin{aligned}
& d_{1}=a-2, \quad d_{2}=2 a+b-3 \\
& d_{m+3-i}=2 a+b-3+(m+1-i)(a+b+c-1) \quad m \geq 3,3 \leq i \leq m \\
& d_{m+1}=2 a+b-2+(m-1)(a+b+c-1) \\
& d_{m+2}=a+b-1+m(a+b+c-1) \\
& d_{m+3}=(m+1)(a+b+c-1)
\end{aligned}
$$

In both cases, $d_{1}=a-2$. Since $b(k-1)+c(k-2)>(k-2)-(k-1) a$ and $c \leq a-2$, we get $-2 a+3 \leq b$. Moreover as $b \leq-a, 1 \leq d_{2} \leq a-2$ when $m=1$, and $0 \leq d_{2} \leq a-3$ otherwise. By definition of $m,(m+1) b+m c>m-(m+1) a$, thus $d_{m+2} \geq 0$ and $d_{m+3} \geq c$. Since $e_{k} \leq b+c<e_{k-1}$ and $m \leq k-2$, we obtain $d_{m+3} \leq a-3$ and $d_{m+2} \leq a-c-3$.

When $m>1$, since $m b+(m-1) c \leq(m-1)-m a$, we get $d_{m+1} \leq a-2$. As $0 \leq 2 a+b-2$ and $a+b+c-1>0, d_{m+1}>0$. Moreover as $a+b+c-1>0$, one has $d_{2}<d_{3}<\ldots<d_{m+1}$. Note that, when $m \geq 3, d_{2} \neq a-2$.

We now study the cases where d_{i} is not strictly smaller than d_{1}. When $m=1$, only d_{2} may be equal to $a-2$, then $b=-a$ and $d_{3}=c-2$, thus $d_{3}<d_{2}$. When $m>1$, only d_{m+1} may be equal to $a-2$, then $m b=-m a-(m-1) c+(m-1)$, and thus $d_{2}-d_{m+2}=a-1-c$ is a positive integer.

We have proved that the lexicographical order conditions on $d_{\beta}(1)$:

$$
d_{1} d_{2} \ldots d_{m+3}^{\omega}>_{\text {lex }} d_{i} d_{i+1} \ldots d_{m+3}^{\omega} \quad \text { for } 2 \leq i \leq m+3
$$

are satisfied, showing in this way that the announced beta-expansions of 1 are right.

References

[6] D. W. Boyd. On beta expansions for Pisot numbers. Mathematics of Computation, 65(214):841-860, 1996.

