Errata

The following theorem gives the S-expansion of 1 for any cubic Pisot number.

Theorem 2. Let 8 be a cubic Pisot number and let
Mg(z) = X3 —aX? - bX —c
be its minimal polynomial. Then the beta-expansion of 1 is

— Case 1 : When b > a, then dg(1) = (a+1)(b—1—a)(a+c—0)(b—c)c.
— Case 2: When 0 <b<a, if c >0, dg(1) = abe, otherwise,

dg(1) = a[(b = 1)(c+a)]”.

— Case 8: When —a <b <0, ifb+¢ >0, then dg(1) = (a —1)(a+b)(b+ ¢)c,
otherwise dg(1) = (a —1)(a+b—1)(a+b+c— 1)
— Case 4: When b < —a, let k be the integer of {2,3,...,a — 2} such that,
denoting e, =1 —a+ (a—2)/k, e, <b+c<ep_1.
o Ifb(k—1)+c(k—2) < (k—2) — (k— Da, dg(1) = dy ... dop2 with

dlza—2,
diyoi=—(k+3—t)+alk+2—0)+bk+1—4)+c(k—1),3<i<k
dp = —k+ak +b(k—1)+c(k —2)

dit1 = —(k — 1) + ak + bk + c(k — 1)

diro = —(k—2) +a(k — 1) + bk + ck
dopyo—i=—(i—2)+a(i—1)+bi+c(i+1l) k>3,2<i<(k—1)
d2k+1=b+20 and d2k+2:c.

o Ifblk—1)+c(k - ) (k —2) — (k—1)a, let m be the integer defined
1—

C
byﬁl l—a—b—c

Whenm =1, dg(1) = (a—2)(2a+b—2)(2a+2b+c—2)(2a+2b+2c—2)“.
When m > 1, dg(1) = didy . .. dpyodsy, 3, with

d1:a72, d2:2(1+b73,
dmts—i=2a+b—3+(m+1—-i)(a+b+c—1) m>3,3<i<m,
dmt1 =2a+b—2+(m—-1)(a+b+c—1),
dpt2=a+b—1+m(a+b+c—1),
dpys=(m+1)(a+b+c—1).

Ezample 1. When a > b > 0 and ¢ > 0, we obtain the only beta-expansion of 1
of length 3.

The smallest Pisot number has Mg = X 3 — X —1 as minimal polynomial, it
is a simple beta-number and dg(1) = 10001.

The positive root 8 of Mg = X3 — 3X? + 2X — 2 is a simple beta-number
and dg(1) = 2102.



The case where b < —a shows that from a cubic simple beta-number, we can
obtain an arbitrary long beta-expansion of 1. For any integer k greater than or
equal to 2, the real root 3 of the irreducible polynomial X3 —(k+2)X2+2kX —k,
is a simple beta number whose integer part is equal to k, and the beta-expansion
of 1 has length 2k + 2. For k = 2, we get dg(1) = 221002; for k = 3, we get
dg(1) = 31310203.

Ezample 2. The greatest positive root 8 of Mg = X3 —2X? — X + 1 is a beta-
number and dg(1) = 2(01)~.

If 3 is the positive root of X3 —5X2 +3X — 2, then dg(1) = 413*. When
is the greatest positive root of X® —5X2 + X + 2, then dg(1) = 431%.

For any integer k greater than or equal to 3, the real root /3 of the irreducible
polynomial X3 — (k+2)X?+ (2k—1)X — (k—1), is a beta number whose integer
part is equal to k, and the beta-expansion of 1 is eventually periodic of period
1, the length of its preperiod k. For k = 3, we get dg(1) = 3302%; for k = 4, we
get dg(1) = 42403

Proof. Tt is known that Pisot numbers are beta-numbers, thus, for any cubic
Pisot number 3, the beta-expansion of 1 is finite or eventually periodic. In any
case, we first compute the associated beta-polynomial P. Next we prove that the
sequence d = (d;);>1 of nonnegative integers obtained from the beta-polynomial
satisfy lexicographical order conditions: for all p > 1, o?(d) < d.

First of all, we recall that, from Theorem 1, a cubic number (3, greater than
1 and having

Mg(X) = X3 —aX?-bX —c

as minimal polynomial, is a cubic Pisot number if and only if it both
b—1|<a+c and (c*—b) < sgn(c)(1+ ac)

hold.

Denote by @ the complementary factor of the beta-polynomial P defined by
P(X) = Mp(X)Q(X). As we shall see in what follows, the value of ) depends
upon the value of the coefficients of Mg.

Case 1: When b > a, as 3 is a Pisot number, from Theorem ?7?, ¢ is a
positive integer. In this case, the complementary factor is Q(X) = X? — X + 1
and dg(1) = (a+1)(b— 1 —a)(a+c—b)(b—c)c.

Indeed, as (c> — b) < sgn(c)(1 + ac) and ¢ > 0, we get ¢ < a + 1. As
[b—1<a+ec,wegetb—1—a<aand 0<a—b+c. From b > a, we get that
0<b—a—1land,asc<a+1,thata—b+c<a. Finallyas 0 <a—b+c < a,
we obtain 0 < b —c¢ < a.

Case 2: When 0 < b < qa, the complementary factor is then Q(X) = 1 and
the associated beta-polynomial is equal to the minimal polynomial.

If ¢ > 0, then dg(1) = abc. Indeed, as (¢* —b) < sgn(c)(1+ac), we get ¢ < a.

If ¢ < 0, then dg(1) = a[(b—1)(a + ). As |b—1] < a+c, we get
b—1<a—2.As (c?2—b) < sgn(c)(1+ac), we get that ¢ > —a and, consequently,
0<c+a<a-—1.



Case 3: When —a < b < 0, if b4 ¢ > 0 then the complementary factor is
Q(X) = X +1 and dg(1) = (a — 1)(a + b)(b + c)c. Indeed, as —a < b < 0,
we obtain 1 < a+b < a— 1. Since b+ ¢ > 0, ¢ is a positive integer. From
(c? —b) < sgn(c)(1 + ac), we get that c<a—1and b+c<a— 2.

Ifb+c¢<0,then Q(X)=1and dg(l) =(a—1)(a+b—1)(a+b+c—1)~.
As —a<b<0,weget 0<a+b—1<a—2 From |b—1| < a+ ¢, we get that
1<a+b+c—1landasb+c<0,weobtaina+b+c—1<a—2.

Case 4: First of all, since [b— 1| < a+ ¢, we get —a+2 < b+ ¢. Moreover as
b < —a, we get ¢ > 2 and as (¢ — b) < sgn(c)(1 + ac), we obtain ¢ < a — 2, thus
b+ ¢ < —2. So, there exists an integer k in {2,3,...,a— 2}, such that, denoting
er=1—a+(a—2)/k, e <b+c<ep.

When b(k — 1) + ¢(k — 2) < (k —2) — (k — 1)a, the complementary factor is

(X - et -
(x-1p

QX) =

and d/g(l) =dy... d2k+2 with

dlza—Z,
diyo_i=—(k+3—i)+alk+2—9)+bk+1—9)+clk—1),k>3,3<i<k
di, = —k+ak+bk—1)+c(k—2)

dit1 = —(k—1)+ak + bk + c(k — 1)

diyo = —(k—2)+a(k —1)+ bk +ck
dopyo—i=—(i—2)+a(i—1)+bi+c(i+1) k>3,2<i<(k—-1)
d2k+1=b+26 and d2k+2=C.

We now verify that the lexicographical order conditions on dg(1) are satisfied.

As2<c<a—2and b+c¢ < -2, we get dogy1 < a—4. From e, < b+ c and
blk—1)+c(k—2) < (k—2)—(k—1)a, we get dagt1 > 0.

For k<3and 2<i<k—1,dogy2-s=—(i—2)4+a(i —1)+bi +c(i+1).
As b+ c < e;, we get dogio—; < c. As —a+2 <b+cand b+ 2c > 0, we get
dopyo—; > 1.

As e, < b+ ¢, we obtain dgio > 0. Since ¢ < a — 2, dpy1 > di12 and since
b+ c < =2, di, > dp41. Moreover from b(k — 1) +c(k —2) < (k—2) — (k — 1)a,
we get di, < a— 2.

For k <3,as|[b—1] <a+c, weobtaindy < -+ <dp_1. Asb+c < e,_1 and
b+42¢ <0, we get d,—1 < a—2. Moreover fromc<a—2anda+b+c—1>0,
we get that do = 2a + b — 3 is nonnegative.

All d;’s are smaller than dy, only dag12 and dji can be equal to d;. Therefore
we have to verify that dy > dj1 when k > 3 (otherwise do = dy, and dy, > dj11).
Ifd,=a—-2thenb+c=¢ep,and dyy1 =a—c—1. Asa+b+c—1>0, we
obtain di4+1 < do. In case of equality, if k£ = 3, then ds = dj and di, > di42,
otherwise ds > do and diy1 > di42, therefore ds > di1o.

So lexicographical order conditions are satisfied and dj . .. dag 2 is the beta-
expansion of 1.

When b(k — 1) +c(k—2) > (k—2) — (k—1)a, as b < —a, we get k > 3.

Let m be the integer defined by m = \_17(11:27(:J' Note that by definition of m,




m < k — 2 and since b < —a, m > 1. In this case, the complementary factor is
m
QX)=> X'
i=0

The beta-expansion of 1 is then eventually periodic with period 1, the length
of the preperiod is m + 2.
When m =1, P(X)=X*—(a—1)X® - (a+b)X%2— (b+c)X —cand

dg(1) =(a—2)(2a+b—2)(2a +2b+c—2)(2a + 2b + 2¢ — 2)*.

Here ds = dypto = a+b—14+m(a+b+c—1) and dy = dpr3 = (m+1)(a+b+c—1).
When m > 1,

P(X) = X" — (a— )X™2 — (a+b— DX™1 -5 (a+b+c—1)X!

—(a+b+c)X2—(b+c)X —c¢
and dﬁ(l) = d1d2 . dm+2d%+3, with

d1:a—2, d2:20+b—3,
dmts—i=2a+b—3+(m+1—i)la+b+c—1) m>3,3<i<m,
dmt1 =2a+b—2+(m—-1)(a+b+c—1),
dpyo=a+b—1+ma+b+c—1),
dmsz=(m+1)(a+b+c—1).

In both cases, d; = a — 2. Since b(k— 1) +c¢(k —2) > (k—2) — (k — 1)a and
c<a—2,weget —2a+3 <b. Moreover as b < —a, 1 < dy <a—2whenm =1,
and 0 < dy < a— 3 otherwise. By definition of m, (m+1)b+mec > m— (m+1)a,
thus dy+2 > 0 and dy, 43 > c. Since e, < b+c¢ < ex—1 and m < k — 2, we obtain
dm+s <a—3and dpq2 <a—c—3.

When m > 1, since mb+ (m —1)c < (m —1) —ma, we get dpt1 < a—2. As
0<2a+b—-2anda+b+c—1>0,dyny1 > 0. Moreover asa+b+c—1>0,
one has dy < ds < ... <d;,4+1. Note that, when m > 3, ds # a — 2.

We now study the cases where d; is not strictly smaller than d;. When m = 1,
only do may be equal to a — 2, then b = —a and d3 = ¢ — 2, thus d3 < d2. When
m > 1, only d,,+1 may be equal to a — 2, then mb = —ma — (m — 1)c+ (m — 1),
and thus ds — d,,+2 = a — 1 — ¢ is a positive integer.

We have proved that the lexicographical order conditions on dg(1):

dldg...dlfnJrg >lex didiJrl...dfnJrg for 2 <i<m+ 3,
are satisfied, showing in this way that the announced beta-expansions of 1 are
right.
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