A logic for true concurrency

Paolo Baldan

Joint work with Silvia Crafa

University of Padova

Interleaving vs. True concurrency

?
alb ~ ab+ba

/\
Different causal properties

Different distribution properties

Interleaving world

Bisimulation equivalence

|

2-nested simulation equiv.

v

a ‘ b ~ a,b + b.a ready simulation equiv.
simulation equiv. ready trace equiv.

i

completed trace equiv.

/

Trace equivalence

Interleaving world: Logical characterization

Hennessy-Milner Logic pu=T |[(a)p | @ | oA

HML bisimulation equiv.
HML without : : :
, simulation equiv.
negation
HML without

negation and conjunction trace equiv.

True-Concurrent world

hereditary history-preserving bisim
l [Bedg1,]NWo6]

albxXab+ba

history-preserving bisim.

/ NRTSS,DDMSg]

pomset bisim. weak hp bisim.
step bisim.

v
(interleaving) bisimulation eq.

True-concurrent world vs Logic ?

e Hereditary hp- bisim
e O
=TT T T =S _ =TT T =S ~ o
/” \\\ /// \\\
\ 4 \
/ \ / \
/ \ / \
| I | I
\ / \ I/
AN / \ /
\ / \ /
N\ e N\ Ve
~ 7 ~ 7’
\\ ’/ \\ ’/

~ - -
-
~ . — ~ -

Hennessy-Milner Logic Bisimulation equiv.

Logics for true-concurrency

[DeNicola-Ferrari 9o]
Framework for several temporal logics.
Pomset bisim and weak hp-bi

Different logics for

|Hennessy-Stirling 85, Nielsen-Clat . .
different equivalences!!

Charaterise hhp-bis with past

In absence of autoconcurrency

|Bradfield-Froschle o2, Gutierrez og9]

Modal logics expressing action independence/causality

Captures hp-bisimulation

Our Proposal

» Alogic for true concurrency which allow to
predicate on

— events
— their dependencies

~ independence friendly modal logic [Bradfield]

A single logic for true-concurrency

hereditary hp bisim
|
hp bisim
p
|
pomset bisim

|

step bisim

!

Hennessy-Milner Logic bisimulation equiv.

LIS

N <

S

«— N <

True Concurrent Model: Event Structures

® Computation in terms of events = action occurrence
® (Causality / incompatibility between events

® A labeling to record the actions corresponding to events

E=(E, <,# L)

® < isapartial order and [¢] = {¢/ | ¢’ < ¢} 1isfinite

* #isirreflexive, symmetric and hereditary: if e # e’ <e” then e#e”

True Concurrent Model: Event Structures

TN
autoconcurrency
e,is caused by {e, e,, e}
(e, e,) and (e, e) are concurrent

(e, e5) and (e,, e4) are in conflict
(e,, e,) and (e, e4) are consistent

True Concurrent Model: Event Structures

4. <5 Computation
\ / in terms of
e, """ ¢ ,
3 \ ° Configurations
causally-closed set of
< € consistent events

0 l {62} i> {62766}

{e1,e2} {es.es5}
N

) N '\> C’

step pomset d run

True Concurrent Spectrum

Hereditary history-preserving bisim.

l

History-preserving bisim.

/

Pomset bisim.

N

Step bisim.

!

(interleaving) bisimulation eq.

(Interleaving) Bisimulation

whenever (C,C") € R
if C —— D then ' —— D' with (D,D') € R and A(e) = A(¢)

/

E~F iff (0,0)€R

(Interleaving) Bisimulation

®* Interleaving equivalence

a.b+b.a

al|b

Step Bisimulation

whenever (C,C') € R
b'e b
if C —— D then C'" —— D’ with (D,D’) € R

and X, X’ are isomorphic steps (i.e., sets of concurrent events)

Step Bisimulation

® It observes concurrency

a|b 765 a.b + b.a

® but it cannot observe causality:

there is an occurrence of b
causally dependent from a

Pomset Bisimulation

whenever (C,C') € R
X b
if C —— D then C'" —— D’ with (D,D’) e R

and X, X’ are isomorphic pomsets (i.e., p.o. consistent events)

Pomset Bisimulation

® [t captures causality

b, b
. ~p The same pomsets but
. :
Lo a b---—:a only in the lhs
- “after a we can choose

between a dependent and an
independent b”

Pomset Bisimulation

® Analogously to bisimulation:
* interleaving of pomsets (rather than actions)

® it does not observe the dependencies between different

pomset steps

® keep the history of already matched transitions
* Let the two matching configurations (entire history) in the game

to be pomset-isomorphic a
* let the history grow pomset-isomorphically o

History-preserving Bisimulation

whenever (C, f,C’) cR
if C —— Dthen C' —— D' with (D, fle — ¢'],D') € R

where fle — €’] is a label-preserving iso extending f

History-preserving Bisimulation

® [t captures the causality / branching interplay

“causal bisimilarity”

p ? b

@ m.

> 4 -

» It does not capture the interplay between
causality - concurrency - branching

History-preserving Bisimulation

C C
Y h p | ‘ 2
AN N oY i) A
¥) | 4 \ 4 f) ! \
aﬁxi ;" i\.‘b@‘g # EL«E,:!: ('\k..b;j ”'--xia«"’ “‘&J.:?d"' # {;‘"’ d} \.‘]2.:"

And similarly the other way round

» cand d depend on conflicting vs. concurrent a and b !!

» hp-bisim hides such a difference:
» the execution of an event rules out any conflicting event

» there is the same causality

History-preserving Bisimulation

d c.

C. ’ d
\\\ /// Nh ,/V\\
él) @ 4 a, b, P @ @ # b é)

a,, b, can be matched in principle eitherby a’, b’ or a,, b

1) 1 2) 2

» the match depends on the order in which they are linearized

(a, b, are concurrent)

1 1

» a, b areinc

1 1

“behavioral How can we formalize this difference?

Hereditary History-preserving Bisimulation

whenever (C, f,C") € R

/

¢ if C —— Dthen C' —— D' with (D, fle > ¢'],D') € R

¢ if D — Cthen D' —— ' with (D, f|p,D’') € R

\ Backward moves!!

a7 d c.)
7 M O ®
é @ # d, b2 al’ bl’ #
a1 b1 a1 d
— —> «— —+>
a2’ b2’ a2 d

Hereditary History-preserving Bisimulation

What kind of forward observatic "~es +
correspond to? S,
possibly conflicting

futures

-

——————
-

-

.
-~
-~
-~
~~~~~
-~ ~
~~~~~~
~~~~~~~~~~~~~~
-~
.....

-
-
———————————



A logic for true concurrency

p = (x,¥y<az) |[()e | pAp |—p| T



A logic for true concurrency

Var : denumerable set of variables ranged over by x, y, z, ...
p = (xy<az)e | (el epAp | mp | T

Interpreted over prime event structures:

C =y ¢
PR R

configuration describes a set of
ible futur
current state of the poss I;oer (‘}tu es
computation

n:Var — E
records the events
bound to variables



A logic for true concurrency

p = (x,y<az)p | (f)p] oA | np | T

Event-based logic

z bound to e so that it can
CkE,(xy<az)p be later referred to in ¢

declares the existence of an event e in the future of C s.t.
n(x) <e, n(y)lle, AMe)=aand C ):"7[2—>€] ©

Cly (2 e
the event n(z) can be executed from C, leading to C’s.t.
C' =y




A logic for true concurrency

there is a future
Obo (ba)T <

evolution that enables b

there are two
‘ 0 =g (bx)TA(dy)T < (incompatible) futures

0 l?é@ (a Z) <z> ((b gj) A (d y)) PR executing a disallows

the future containing d

b--- d
\/ a b---d
0 g (a2)(z) ((bz) A (dy)) 0 g (a2)(z) ((bx) A (dy))

0ty (a2)(2) (Z < bx) 0 g (az)(2) (2 <bx)



Examples and notation

» Immediate execution

((az) @ (by)) ((z <c)®(y<d)) T

stal
1mj

({a) @ (b) @{ch) ¢

» Step ({az) @ {ayh) ({z <bh @ (7 <b))y

stands for ((x,¥ <az)(x',y’,z<bz")) ¢ which declares

the existence of two concurrent events



Well-formedness

The full logic is too powerful: it also observe conflicts!

&1 & (ax)(by)(z)(y)

Well-formedness syntactically ensures that

* free variables in any subformula will always refer to events consistent with
the current config.

* the variables used as causes/non causes in quantifications will be bound to
consistent events



Logical Equivalence

» An e.s. satisfies a closed formula ¢: € = ¢ when &,0 =p ¢

» Two e.s. are logically equivalent in the logic L:

E1=r & when & Eop iff & F@

Theorem: Er=p & M & ~pnp &2

The logical equivalence induced by the full logic is hhp-bisimilarity




A single logic for true-concurrency

Vo Hereditary hp- bisim
] |

Ly, hp bisim

} !

ya Pomset bisim

|

Step bisim

!

Hennessy-Milner Logic Bisimulation equiv.



(o]
Logical Spectrum: HM Logic ano

Hennessy-Milner logic corresponds to the fragment L, :

e = (azhe| oA | mp | T

® No references to causally dependent/concurrent events

® Whenever we state the existence of an event, we must execute it

Theorem: E1 =y €2 M &~ &

The logical equivalence induced by £,;,, is (interleaving) bisimilarity



or

Logical Spectrum: Step Logic Q‘Q

The fragment £ :

p = ((arz) @@ {anza)) o[ oA | 2o [T
® Predicates on the possibility of performing a parallel step

® No references to causally dependent/concurrent events between steps

® Generalizes £,

Theorem: E1=¢, E UM &~ &

The logical equivalence induced by £, is step bisimulation



Logical Spectrum: Pomset Logic 0&9

The fragment L, :

p = (x,y<az)eo| eAp | np | T

where =1, A are used only on closed formulae

® Predicates on the possibility of executing a pomset transition
® Closed formula < execution of a pomset

® (Causal links only within a pomset but not between different pomsets

Theorem: E1 =, &2 M & ~p &

The logical equivalence induced by £, is pomset bisimulation



Logical Spectrum: History Preserving Logic

The fragment Lyp

p = (x,y<azpp| oAp | ~¢ | T

* Besides pomset execution, it also predicates about its dependencies

with previously executed events

® quantify + execute — no quantification over conflicting events

Theorem: & =Ly Ey ML &1 ~pp &

The logical equivalence induced by £, is hp-bisimulation



Logical Spectrum: Separation Examples

b a N
N B & & )@ (b) €L
a~~~b ° a b
~s b\
* | & K& (az){z <by) €L,
p .



Logical Spectrum: Separation Examples

‘ The same pomsets but
a b a_b--":a only in the lhs

“after a we can choose

between a dependent and an
independent b”

& & (az) ((z <by) A (T <bz)) € Lpny



Logical Spectrum: Separation Examples

\\ // th

a b # a b Fhhp a b # a b

c and d depend on conflicting vs. concurrent a and b

E1 & E ((ax)®@(by))((x<cz2)A(y<dZ)) € Lpny

f ~.

observe without executing: conflicting futures

&L & (laz) @ (by)) (w<c2) A (y<de') €Ly I



Future work

A unitary logical framework for true concurrent equivalences

® Study the logical true concurrent spectrum:
* linear time concurrent equivalences (trace/simulation hp, ...)

° observe without executing, but only predicate on consistent futures lies
in between hp- and hhp-bis.

® Decidability border

* hp isdecidable and hhp is undecidable for finite state systems.
Characterise decidable equiv.

® Speicification logic
* add recursion to express properties like
any a-action can be always followed by a causally related b-action
an a-action can be always executed in parallel with a b-action



Future work

® Relation with other logic for concurrency:
* Past tense modality

® Prooftheory

®* Model checking

® Automata- and game-theoretic approaches



