
Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

A Logic on Subobjects and Recognizability

Barbara König

Universität Duisburg-Essen, Germany

Joint work with Sander Bruggink
(published at IFIP-TCS ’10)

Barbara König A Logic on Subobjects and Recognizability 1

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Overview

1 Formal Languages and Logics

2 Graph Logics

3 Graph Decompositions and Recognizability

4 Automaton Functors and a Logic on Subobjects

5 Conclusion

Barbara König A Logic on Subobjects and Recognizability 2

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Motivation

Our overall aim is the verification of dynamic systems, especially
graph transformation systems.

There are several verification techniques which are based on
regular (= recognizable) word languages.

What about recognizable graph languages?

This talk: recognizability and logics

Barbara König A Logic on Subobjects and Recognizability 3

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Regular Languages and Monadic Second-Order Logic

There is an intimate connection between formal languages and
logics.

Theorem (Büchi, Elgot)

A language L ⊆ Σ∗ is regular if and only if it is expressible in
monadic second-order logic on words.

Example:

1 2

a

b

a, cb, c

Σ = {a, b, c}

∀x(Pa(x)→ ∃y(x ≤ y ∧ Pb(y)))

“For every position in the word
with an a, there is a later
position in the word with a b.”

Barbara König A Logic on Subobjects and Recognizability 4

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Regular Languages and Monadic Second-Order Logic

Why is this interesting (for our purposes)?

Encoding a logical formula into an automaton transforms a
specification into an algorithm.

Automata are well-suited for answering the following
questions:

Is the given regular language L empty?
Is L1 included in L2: L1 ⊆ L2?
Are L1 and L2 equal: L1 = L2?

Barbara König A Logic on Subobjects and Recognizability 5

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Regular Languages and Monadic Second-Order Logic

What about graph languages?

There is a notion of recognizable graph languages by Courcelle.

Every graph language expressible in (counting) monadic
second-order graph logic is recognizable.
(The other direction does not hold.)

Barbara König A Logic on Subobjects and Recognizability 6

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Regular Languages and Monadic Second-Order Logic

Why stop with graphs?

We have generalized Courcelles notion of recognizable to
arbitrary categories. (; IFIP-WG-Meeting in Udine)

Contributions in this talk:

Present a (simple) logic on subobjects that coincides
with Courcelle’s logic when we instantiate it with the
category of graphs.
Show that every language definable in this logic is
recognizable (for the case of hereditary pushout
categories, related to adhesive categories).
Our encoding from logical formulas into automata is
inductive on the formula (as opposed to the original
proof by Courcelle).

Barbara König A Logic on Subobjects and Recognizability 7

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Monadic Second-Order Graph Logics

Monadic second-order graph logics may quantify over nodes,
edges, node sets and edge sets. It is defined for hypergraphs.

ϕ := ϕ1 ∧ ϕ2 | ¬ϕ | (∃X : V)ϕ | (∃X : E)ϕ | (∃x : v)ϕ | (∃x : e)ϕ |
x = y | x ∈ X | edgeA(x , y1, . . . , yar(A)),

Example: (∃x : v) (∃y : v) (∃z : e) (edgeA(z , x , y) ∧ x = y)
“There exists an A-labelled loop.”

Barbara König A Logic on Subobjects and Recognizability 8

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Monadic Second-Order Graph Logics

Courcelle also considers counting monadic second-order logic which
allows to express statements such as:

The number of nodes (or edges) in a set X is equal to k
modulo m.

Here we do not consider this extension.

Barbara König A Logic on Subobjects and Recognizability 9

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

We now look into recognizability:

How to accept a word? ; Decompose it into letters and read
every letter separately.

How to accept a graph? ; Decompose the graph into smaller
units
; path and tree decompositions

Barbara König A Logic on Subobjects and Recognizability 10

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

Give a directed graph G = (V ,E) with E ⊆ V × V , a tree
decomposition of G consists of a tree T and sets (= bags) Xt ⊆ V
for every vertex t of T , satisfying the following properties:

The union of all bags Xt equals V . (Every node lives in at
least one bag.)

For every edge (u, v) ∈ E there exists a vertex t of T with
u, v ∈ Xt . (Every edge lives in at least one bag.)

For every node v ∈ V the set of vertices {t | v ∈ Xt} forms a
subtree of T .

It is a path decomposition if T is a path (instead of an arbitrary
tree).

The width of a tree composition is

max
t
{|Xt |} − 1

Barbara König A Logic on Subobjects and Recognizability 11

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

Example:

Barbara König A Logic on Subobjects and Recognizability 12

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

Example:

1 2 3 4 5

X1

X3 X4

X5

X2

Path decomposition of width 2.

Barbara König A Logic on Subobjects and Recognizability 12

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

Treewidth, pathwidth

The treewidth of graph G is the minimal width of a tree
decomposition of G . Analogously for pathwidth.

Intuitively treewidth measures how similar a given graph is to a
tree (path).

There is the following relation between pathwidth and treewidth of
a graph G :

pwd(G) ∈ O(log n · twd(G))

where n is the number of nodes of G .

Barbara König A Logic on Subobjects and Recognizability 13

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

Idea:

Consider automata over graphs.

Treat each bag as a “letter” which induces a transition
between states.

The intersection between two neighbouring bags is the
interface between the bags. Associate a separate state set Qn

to each interface size n.

Make sure that the transition function induced by a graph is
independent of its decomposition.

In order to obtain a finite automaton restrict the size of the
interfaces and the size of the bags ; restrict to graphs of
bounded pathwidth.

For tree decompositions use tree automata.

Barbara König A Logic on Subobjects and Recognizability 14

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

Example:

Q0 Q1 Q2 Q1 Q0Q1

Barbara König A Logic on Subobjects and Recognizability 15

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

The intuition is closer to our definition of recognizability that
Courcelle’s, but it is equivalent to Courcelle’s notion:

Recognizability (Courcelle)

Define a multi-sorted algebra of graphs, where

sorts are natural numbers (infinitely many sorts!) and the
carrier of n is the set of graphs with n interface nodes.

operations merge graphs and manipulate the interface.

Assume that we have an algebra homomorphism into an algebra F
with the same signature but finite carrier sets.
A set of graphs is recognizable if it is the pre-image of a subset of
a carrier set of F .

Barbara König A Logic on Subobjects and Recognizability 16

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

All this has interesting consequences for complexity theory:

Courcelle’s Theorem

Let L be a recognizable graph language. Then it is decidable in
linear time for graphs G of bounded treewidth whether G is
contained in L.

Idea: find a tree decomposition of G (non-trivial, but possible in
linear time in the size of the graph!) and check via the (tree)
automaton whether G is contained in L.

Barbara König A Logic on Subobjects and Recognizability 17

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Graph Decompositions and Recognizability

Corollary

Every graph property expressible in monadic second-order logic can
be decided in linear time for graphs of bounded treewidth.

Example graph properties:

subgraph isomorphism

k-colorability

planarity

. . .

Some of these problems (e.g., subgraph isomorphism,
k-colorability) are NP-complete for graphs of unbounded treewidth.

Barbara König A Logic on Subobjects and Recognizability 18

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Automaton Functors

We now take a more categorical view: replace bags and their
interfaces by cospans.

A cospan is a pair of arrows with the same codomain:

J → G ← K

Cospan composition:

J G

M

M ′

H K
cL

cR

f

dL

g

dR
(PO)

Barbara König A Logic on Subobjects and Recognizability 19

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Automaton Functors

Automaton functor

Functor A : Cospan(C)→ Relfin, where

Each object of C is mapped to a finite set of states.
Each set of states is equipped with a subset of start states
and a subset of end states.

Each cospan is mapped to a relation between states.

The automaton functor A accepts an arrow from c : I → J if
A(c) relates a start state of A(I) to an end state of A(J).

It is sufficient to define automaton functors on atomic cospans (for
graphs: cospans which add edges, nodes, permute nodes, restrict
nodes). However, functoriality must be ensured. For graphs it is
also sufficient to take as objects only discrete graphs.

There is a notion of recognizability by Griffing that is quite similar
to ours.

Barbara König A Logic on Subobjects and Recognizability 20

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

A Logic on Subobjects

We now introduce our logics, which classifies objects of C via their
subobjects.

Variables

First-order variables x : T of sort T , where T is an object of
C. (Such variables stand for subobjects isomorphic to T .)

Second-order variables X : Ω of sort Ω. (Such variables stand
for arbitrary subobjects.)

Expressions

e := X | f # x ,

where X : Ω, x : T and f : T ′ � T is a mono.

Intuition: x stands for a subobject isomorphic to T , whereas f # x
stands for a subobject of that subobject, as specified by f .

Barbara König A Logic on Subobjects and Recognizability 21

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

A Logic on Subobjects

Formulas

τ := e1 v e2 | τ1 ∧ τ2 | ¬τ | (∃X : Ω) τ | (∃x : T) τ

e1 v e2 stands for subobject inclusion.

I will skip the definition of the semantics (“when does an object
satisfy a formula?”). This is quite standard.

This is quite different from the usual categorical logics!

Barbara König A Logic on Subobjects and Recognizability 22

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

A Logic on Subobjects

Example formulas for C = Graph:

Let E = , src : → , tgt : →

There exist two edges which have the same target node:
(∃x : E) (∃y : E) (tgt # x = tgt # y)

The subgraph X is closed under reachability:
RC (X : Ω) := (∀y : E) (src # y v X → tgt # y v X)

There exists a path from node x to node y (every reachability
closed subgraph containing x also contains y):
Path(x , y) := (∀Z : Ω)

(
(id # x v Z ∧ RC (Z))→ id # y v Z

)

Barbara König A Logic on Subobjects and Recognizability 23

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

A Logic on Subobjects

The logic on subobjects vs. monadic second-order graph logic

For C = Graph, we can translate every formula of our logic into
monadic second-order graph logic and vice versa.
The two logics have the same expressive power.

Barbara König A Logic on Subobjects and Recognizability 24

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Translation to Automaton Functors

Logics and Recognizability

Let C be a hereditary pushout category (; Heindel, the definition
is very similar to an adhesive category). Furthermore assume that
C has an initial object 0.

Let L be a language of objects that can be characterized in the
logic of subobjects. Then there is an automaton functor A which
recognizes exactly the cospans in

{0→ A← 0 | A ∈ L}

Barbara König A Logic on Subobjects and Recognizability 25

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Translation to Automaton Functors

The translation is inductive on the structure of the formula.
In order to give some intuition concerning the translation, we
consider the following formula:

∃(x : T)true

That is we ask whether there exists a subobject isomorphic to T .

Barbara König A Logic on Subobjects and Recognizability 26

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Translation to Automaton Functors

State sets

Each object (= interface) B is associated with a set of states
A(B), where A(B) contains triples of arrows of the following form:

(v : V � B, t1 : V → V , t2 : V → T).

v specifies the intersection V of the interface with the object
we are looking for.

t2 describes the part V of T that has already been detected.

t1 describes how the intersection is located inside V (and
thus T).

Barbara König A Logic on Subobjects and Recognizability 27

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Translation to Automaton Functors

Example: category of graphs

We consider an interface of size 3 and T = . The following
triples of morphisms

B V
voo t1 // V

t2 // T

have the following meaning as states:

∅voo t1 // ∅
t2 //

So far we have not seen any part of T .

Barbara König A Logic on Subobjects and Recognizability 28

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Translation to Automaton Functors

voo t1 // t2 //

We have only seen the red node of T so far and it is in the current
interface.

voo t1 // t2 //

We have seen all of T so far, but the red node is the only one left
in the current interface.

Barbara König A Logic on Subobjects and Recognizability 29

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Translation to Automaton Functors

Transition relation

Given a cospan inter-
faces BD → BE ← BF

there is a transition
from (vD , tD

1 , t
D
2) to

(vF , tF
1 , t

F
2) whenever

there is an object V E and
arrows such that the two
squares below are pull-
backs and the trapezoid in
the middle is a pushout.

BD

V D

BE

V E

BF

V F

V D V F

T

αl′

ν l′

αr′

νr′

vD vE vF

tD
1

tD
2

tF
1

tF
2

tE

V F

T
V F

FD E

V E

Barbara König A Logic on Subobjects and Recognizability 30

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Translation to Automaton Functors

Transition relation

Intuitively: We nondeter-
ministically guess a part
V E of the cospan that
extends V D to V F (;
pushout).
If we restrict V E to the
left and right interface we
must obtain V D and V F

(; pullbacks).

BD

V D

BE

V E

BF

V F

V D V F

T

αl′

ν l′

αr′

νr′

vD vE vF

tD
1

tD
2

tF
1

tF
2

tE

V F

T
V F

FD E

V E

Barbara König A Logic on Subobjects and Recognizability 30

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Translation to Automaton Functors

More details concerning the translation:

The encoding of second-order quantifiers is easier, since we
only have to non-deterministically guess possible extensions,
without checking their relation to a given object T .

Formulas with free variables are encoded by considering
automaton functors from a category where objects are
C-objects with valuations and arrows are cospans between
such objects.

The translation is done inductively on the structure of the
formula. Boolean operations are handled as usual (via
cartesian products of the state sets or exchange of
final/non-final states). However, negation requires prior
determinization and could be very costly.

In order to obtain our results we have to show we obtain a
functor.

Barbara König A Logic on Subobjects and Recognizability 31

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Conclusion

We presented a generalization of the theorems by Büchi-Elgot
and Courcelle (languages expressible in monadic second-order
are regular) to a general categorical setting.

Apart from the theoretical appeal, we are also expecting
practical consequences:

The manual definition of automaton functors is very
cumbersome. Hence we now have a way to generate
them automatically.
The inductive translation looks reasonable. (For the case
of graphs such an inductive encoding has only been
defined recently by Courcelle & Durand.)
Still, state space explosion is a problem. We are working
on a BDD-based implementation, with quite encouraging
results. For subgraph isomorphism we can now easily
generate automata up to interface size 100.

Barbara König A Logic on Subobjects and Recognizability 32

Languages and Logics Graph Logics Graph Decompositions Automaton Functors and Logics Conclusion

Conclusion

Applications for a graph automaton tool suite:

Invariant checking ; GT-VMT ’10
(joint work with Christoph Blume)

Termination analysis

Regular model-checking

Barbara König A Logic on Subobjects and Recognizability 33

	Formal Languages and Logics
	Graph Logics
	Graph Decompositions and Recognizability
	Automaton Functors and a Logic on Subobjects
	Conclusion

