Flat Coalgebraic Fixed Point Logics

Lutz Schröder^{1,2} Yde Venema³

¹Safe and Secure Cognitive Systems, DFKI Bremen

²Department of Computer Science, Universität Bremen

³ILLC, Universiteit van Amsterdam

IFIP WG 1.3 Meeting, Etelsen, July 2010

Introduction: Modal Logic

Modal logics are a central logical tool in computer science and Al:

- Applications e.g. to
 - reactive systems
 - knowledge representation
 - multi-agent systems
- May be tailored to offer the right expressive means for a given domain
- Often have good computational properties (unlike, e.g., FOL/HOL)

Introduction: Coalgebra

- Large variety of domain-specific logics of different syntax, semantics, and complexity
- Coalgebra acts as a unifying semantic theory of modal logic and supports
 - generic complete deduction systems
 - generic decidability results
 - generic algorithms and complexity bounds
 - generic implementations
 - systematic logic design

Modal Logic (Version 1)

Modal logic extends (classical) propositional logic with additional operators, e.g.

$$\phi ::= \bot \mid p \mid \neg \phi \mid \phi_1 \land \phi_2 \mid \Box \phi \qquad (p \in P)$$

with $\Box \phi$ read e.g. 'necessarily ϕ ' (dually: $\Diamond \phi :\equiv \neg \Box \neg \phi$ 'possibly ϕ ')

Modal logic is a logic of relational structures:

- \blacktriangleright Models ((X,R),V), where
 - ▶ (X,R) is a Kripke frame, i.e. $R \subseteq X \times X$
 - ▶ V is a valuation $P \rightarrow \mathcal{P}(X)$.
- ▶ Satisfaction is per state $x \in X$

$$x \models \Box \phi \text{ iff } \forall y. xRy \Rightarrow y \models \phi.$$

□ satisfies normality:

$$\Box \top \qquad \Box (a \land b) \leftrightarrow (\Box a \land \Box b)$$

Many Logics are Normal

- ► Temporal logics
 - $\blacktriangleright \Box \phi =: G\phi = \text{`Generally/Forever } \phi$
- Epistemic logics
 - $\blacktriangleright \Box \phi =$ 'I know that ϕ '
- ► Logics of Belief
- Standard Deontic Logic
 - $\blacktriangleright \Box \phi =: O\phi =$ 'It is obligatory that ϕ '
- Description logic
 - Mother = Woman ∧ ∃hasChild. ⊤

... and Many Are Not

- ▶ Graded modal logic: $\Box_k \phi$ = 'with at most k exceptions ϕ '
 - ▶ Does have relational semantics, but better: multigraphs $\bullet \stackrel{n}{\rightarrow} \bullet$
- ▶ Probabilistic modal logic: $L_p \phi$ = 'with probability $\geq p$, ϕ '
- ▶ Agent logics $E_a \phi$ = 'agent *a* brings it about that ϕ '

$$\neg E_a \top$$

Deontic logics for dilemmas:

$$O \neg leave \land Oleave \rightarrow Osuicide$$

▶ Conditional logic: $a \Rightarrow b$ 'if a, then normally b'

$$(monday \Rightarrow bus) \not\rightarrow (monday \land strike \Rightarrow bus)$$

Modal Logic, Version 2

Neighbourhood semantics:

- ▶ Models (*X*, *R*, *V*) where
 - ► (X,R) neighbourhood frame, i.e.

$$R \subseteq X \times \mathcal{P}(X)$$

▶ $x \models \Box \phi$ iff $xR[\![\phi]\!]$ where $[\![\phi]\!] = \{y \in X \mid y \models \phi\}$.

This does cover nearly everything, but

- is unintuitive
- does not capture the intended semantics
 - and in fact gives up nearly all semantic structure
- is often unsuitable for metatheory and efficient reasoning.
- → Look for a general framework that retains semantic structure

A Reformulation of Kripke Semantics

► Frames are *P*-coalgebras

$$\xi: X \to \mathcal{P}(X)$$
Functor

A Reformulation of Kripke Semantics

► Frames are *P*-coalgebras

$$\xi: X \to \mathcal{P}(X)$$
 Functor

 $\triangleright x \models \Box \phi \text{ iff}$

$$\xi(x) \in \{A \in \mathcal{P}(X) \mid A \subseteq \llbracket \phi \rrbracket \}$$

A Reformulation of Kripke Semantics

► Frames are *P*-coalgebras

$$\xi: X \to \mathcal{P}(X)$$
Functor

 $\triangleright x \models \Box \phi \text{ iff}$

$$\xi(X) \in \{A \in \mathcal{P}(X) \mid A \subseteq \llbracket \phi \rrbracket \} =: \underbrace{\llbracket \Box \rrbracket_X}_{\text{redicate Lifting}}$$

Modal Logic, Version 3: Coalgebraic Modal Logic

- General modal similarity types (collections of modal operators)
- Abstract over the type of systems:
 - Set functor (parametrised datatype) T : Set → Set
 - ► Systems = *T*-coalgebras

$$\xi: X \to TX$$

- Abstract over the interpretation of modal operators L:
 - ▶ Predicate liftings $\llbracket L \rrbracket_X : \mathcal{P}(X) \to \mathcal{P}(TX)$, natural in X
 - $\triangleright x \models L\phi \text{ iff}$

$$\xi(x) \in \llbracket L \rrbracket_X(\llbracket \phi \rrbracket)$$

Nearly Everything is Coalgebraic

Logic	Systems	Syntax	Functor
Normal modal logics	Kripke frames	$\Box \phi$	powerset $\mathcal{P}(X)$
Probabilistic modal logics	Markov chains	$egin{aligned} L_{p}\phi\ \sum a_{i}P(\phi_{i})\geq b \end{aligned}$	distributions $D(X)$
Graded modal logics	Multigraphs	\geq n R. ϕ $\sum a_i \# (\phi_i) \geq b$	$multisets \\ \mathcal{B}(X) = X \to \mathbb{N}_{\infty}$
Conditional logics	Conditional frames	$\phi \Rightarrow \psi$	selection functions $\mathcal{P}(X) \to \mathcal{P}(X)$
Classical modal logics	Neighbourhood frames	$\Box \phi$	neighbourhoods $\mathcal{P}(\mathcal{P}(X))$
Coalition logic	Game frames	$[C]\phi$	Games $\exists (S_i). (\prod S_i \rightarrow X)$

(Schröder/Pattinson/Cirstea/Kurz/Venema et al. 2004-2008)

Example: Alternating Temporal Logic (ATL)

(Alur et al. JACM 2002)

- ▶ Signature: [C] for $C \subseteq N$ coalition
 - $[C]\phi$ 'C can force ϕ in the next step'
- ▶ Temporal operators such as $\langle\langle C \rangle\rangle F \phi$ 'C can eventually force ϕ ', e.g.
 - ⟨⟨{a}⟩⟩ Faccess
 - 'Agent a can access some resource autonomously'
 - $\langle\langle \{a,s\}\rangle\rangle F$ access
 - 'Agent a can access some resource in collaboration with server s'
- Functor:

$$F(X) = \exists S_1, \dots, S_N. \left(\prod_{i \in N} S_i\right) \to X$$

Predicate liftings

$$\llbracket [C] \rrbracket_{X}(A) = \{ f \in F(X) \mid \exists \sigma_{C}. \forall \sigma_{N-C}. f(\sigma_{C}, \sigma_{N-C}) \in A \}$$

One-Step Rules

One-step logic: V set of prop. var., $\Sigma(V) = \{La \mid a \in V, L \in \Sigma\}$.

Given $\tau: V \to \mathcal{P}(X)$, interpret

- ▶ propositional formulas φ over V as $\llbracket \varphi \rrbracket \tau \subseteq X$
- ▶ propositional formulas ψ over $\Sigma(V)$ as $\llbracket \psi \rrbracket \tau \subseteq TX$ by

$$\llbracket La \rrbracket \tau = \llbracket L \rrbracket_X \tau(a)$$

One-step rules $\frac{\varphi}{W}$ over V:

$$\varphi$$
 propositional over V
 ψ clause over $\Sigma(V)$

$$\varphi/\psi$$
 one-step sound if $\llbracket \varphi \rrbracket \tau = X \Longrightarrow \llbracket \psi \rrbracket \tau = TX$.

The Cut Rule

$$\frac{A \to {\color{red} C} \quad {\color{red} C} \to B}{A \to B}$$

The Cut Rule

$$\frac{A \to {\color{red} C} \quad {\color{red} C} \to B}{A \to B}$$

- not so good

The Cut Rule

$$\frac{A \to C \qquad C \to B}{A \to B}$$

— not so good for proof search.

One-Step Cut-Free Completeness

A set $\mathcal R$ of one-step rules is one-step cut-free complete (OSCC) if for every clause χ over $\Sigma(V)$,

$$\llbracket \chi \rrbracket \tau = TX \implies \exists \varphi/\psi \in \mathcal{R}, \sigma : V \to V.$$

$$\llbracket \varphi \sigma \rrbracket \tau = X, \quad \psi \sigma \text{ contracted}, \quad \psi \sigma \subseteq \chi.$$

- $ightharpoonup \mathcal{R}$ one-step cut-free complete $\iff \mathcal{R}$ absorbs cut and contraction
- OSCC rule sets
 - induce model constructions, in which states are demands, i.e. conj. clauses of conclusions of dual tableau rules $\bar{\psi}/\bar{\phi}$
 - yield cut-free complete modal deduction systems → proof search

(Schröder/Pattinson LICS 06, ACM TOCL 09; Pattinson/Schröder I&C)

Examples: OSCC Rule Sets

K (□ with Kripke semantics):

$$\frac{\bigwedge_{i=1}^{n}a_{i}\rightarrow b}{\bigwedge_{i=1}^{n}\square a_{i}\rightarrow\square b}\quad(n\geq0)$$

Alternating-time logic:

$$\frac{\bigvee_{i=1}^{n} \neg a_{j}}{\bigvee_{i=1}^{n} \neg [C_{i}] a_{i}} \quad \frac{\bigwedge_{i=1}^{n} a_{j} \rightarrow (b \lor \bigvee_{j=1}^{m} C_{j})}{\bigwedge_{i=1}^{n} [C_{i}] a_{i} \rightarrow ([D] b \lor \bigvee_{j=1}^{m} [N] c_{j})} \quad (m, n \ge 0, C_{j} \subseteq D, C_{i} \cap C_{j} = \emptyset \text{ for } i \ne j)$$

Examples: OSCC Rule Sets

K (\square with Kripke semantics):

$$\frac{\bigwedge_{i=1}^{n}a_{i}\rightarrow b}{\bigwedge_{i=1}^{n}\Box a_{i}\rightarrow\Box b}\quad(n\geq0)$$

Alternating-time logic:

$$\frac{\bigvee_{i=1}^{n} \neg a_{j}}{\bigvee_{i=1}^{n} \neg [C_{j}] a_{j}} \quad \frac{\bigwedge_{i=1}^{n} a_{j} \rightarrow (b \lor \bigvee_{j=1}^{m} C_{j})}{\bigwedge_{i=1}^{n} [C_{j}] a_{j} \rightarrow ([D] b \lor \bigvee_{j=1}^{m} [N] c_{j})} \quad (m, n \ge 0, C_{j} \subseteq D, C_{j} \cap C_{j} = \emptyset \text{ for } i \ne j)$$

Generic Algorithms via OSCC Rule Sets

- PSPACE for next-step-logics
- PSPACE for coalgebraic hybrid logic
- ► EXPTIME for coalgebraic description logics (i.e. with TBoxes)
- ► Completeness and EXPTIME global caching for flat fixed point logics via O-adjointness (Schröder/Venema 2010)
 - Alternating μ-calculus (Alur et al. 2002)
 - Graded μ -calculus (Kupferman et al. 2002)

Flat Coalgebraic Fixed Point Logics

Flat fixed point operators

$$\sharp_{\gamma}(\varphi) \equiv \mu x. \gamma(\varphi, x)$$
 $\flat_{\gamma}(\varphi) \equiv \nu x. \gamma(\varphi, x) \qquad (\gamma \text{ modal})$

 \rightarrow fragments of single-variable coalgebraic μ -calculus.

E.g.

- ► CTL: $AF\varphi = \sharp_{\rho \vee \Box x} \varphi$
- $\triangleright \flat_{p \land \sqcap \sqcap x}$ not in CTL*
- ► ATL: $\langle\langle C \rangle\rangle F \phi = \sharp_{p \vee [C]_X} \varphi$
- Graded μ-calculus (Kupferman et al. 2002):

$$\sharp_{\rho\vee\Diamond_{2}X}\phi$$

'the current state is the root of a binary tree whose leaves satisfy ϕ '.

The Kozen-Park Axioms

Briefly: ' $\sharp_{\gamma}(\phi)$ is a least fixed point', i.e.:

Unfolding:

$$\sharp_{\gamma} \phi \leftrightarrow \gamma (\phi,\sharp_{\gamma} \phi)$$

Fixed-point induction:

$$\frac{\gamma(\phi,\chi) \to \chi}{\sharp_\gamma(\phi) \to \chi}$$

Are these complete?

▶ Do imply that $\sharp_{\gamma}(\phi)$ is a least fixed point in the Lindenbaum algebra

Strategy for the Completeness Proof

► Show constructivity of the Lindenbaum algebra:

$$\sharp_{\gamma}(\varphi) = \bigvee_{i < \omega} \gamma(\varphi)^i(\bot)$$

via \mathcal{O} -adjointness of $\gamma(\varphi)$: for all ψ there is a finite set $G_{\gamma(\phi)}(\psi)$ s.t.

$$\gamma(\varphi,
ho) \leq \psi \iff
ho \leq \chi \quad ext{for some } \chi \in G_{\gamma(\phi)}(\psi)$$

Constructivity implies

$$\sharp_{\gamma} \varphi \wedge \psi$$
 consistent $\Longrightarrow \gamma(\varphi)^{i}(\bot) \wedge \psi$ consistent for some $i < \omega$.

Tableau construction with time-outs

O-Adjointness via OSCC Rule Sets

- Unfolding & guardedness: w.l.o.g. the top level of every formula is modal
- Rigidity lemma: w.l.o.g. proofs of modal clauses end in modal one-step rules

Example: Adjointness of □. Recall rule:

$$\frac{\bigwedge_{i=1}^n a_i \to b}{\bigwedge_{i=1}^n \Box a_i \to \Box b} \quad (n \ge 0)$$

Calculate:

$$\Box \rho \leq \psi = \Box \psi_1 \lor \dots \lor \Box \psi_n$$

$$\iff \vdash \Box \rho \to \Box \psi_1 \lor \dots \lor \Box \psi_n$$

$$\iff \vdash \rho \to \psi_i \quad \text{for some } i$$

Thus put $G_{\square X}(\psi) = \{\psi_1, \dots, \psi_n\}$

Conclusions

- Coalgebra provides a uniform framework for modal and hybrid logics
 - Graded operators (knowledge representation, redundancy)
 - Probabilistic operators (quantitative uncertainty, reactive systems)
 - Conditional operators (nonmonotonic reasoning)
 - Alternating-time logics, game logic, logics of agency (multi-agent systems)
- One-step cut-free complete rule sets are an important tool
- Completeness (and EXPTIME global caching) for flat coalgebraic fixed point logics
 - Graded μ-calculus
 - \blacktriangleright Alternating-time μ -calculus (e.g. ATL: Goranko/van Drimmelen TCS 2006)

Future Work

- Alternation-free coalgebraic μ-calculus
- Emerson/Halpern style fragment method
- Manydimensional coalgebraic logics
 - e.g. random Kripke models

$$\mu \in D(X \rightarrow \mathcal{P}(X))$$

- \rightarrow Prob- \mathcal{ALC} (Lutz/Schröder KR 2010)
- ▶ Vision: generic, efficient modular reasoning tools
 - ► CoLoSS (http://www.informatik.uni-bremen.de/cofi/CoLoSS/)