My 1st WADT

3rd International Workshop on
Theory and Application of Abstract Data Types
Bremen, November 1984

Einbahnstraße

Many-sorted Universal Algebra: Some Technical Nuances

Andrzej Tarlecki

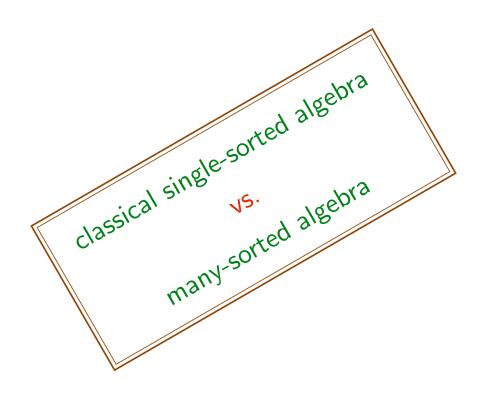
Institute of Informatics, University of Warsaw and Institute of Computer Science, Polish Academy of Sciences Warsaw, Poland

Thanks to: Bartek Klin, Jiři Adámek, Tomasz Brengos. . .

Algebraic Specifications

Some basic concepts and facts:

- algebras
- equations
- equationally definable classes
 - Birkhoff variety theorem
- equational calculus
 - soundness & completeness
- modularisation and compositionality
 - amalgamation
 - interpolation



Quickly through the basics

Algebraic signature:

 $\Sigma = (S, \Omega = \langle \Omega_{w,s} \rangle_{w \in S^*, s \in S})$

 Σ -algebra:

$$A = (|A|, \langle f_A \rangle_{f \in \Omega})$$

 $|A| = \langle |A|_s \rangle_{s \in S}$ and $f_A \colon |A|_{s_1} \times \ldots \times |A|_{s_n} \to |A|_s$, for $f \colon s_1 \times \ldots \times s_n \to s$.

And then:

- Σ -subalgebra $A_{sub} \subseteq A$...
- Σ -homomorphism $h \colon A \to B \dots$
- Σ -congruence $\equiv \subseteq |A| \times |A| \dots$
- quotient algebra $A/\equiv \dots$
- product of $\langle A_i \rangle_{i \in \mathcal{I}}$, $\prod_{i \in \mathcal{I}} A_i \dots$

- terms $t \in |T_{\Sigma}(X)| \dots$
- term algebra $T_{\Sigma}(X)$...
- term evaluation: $t_A(v) \in |A|_s$ for $t \in |T_\Sigma(X)|_s$, $v \colon X \to |A| \dots$
- ..

Equations

Equation:

$$\forall X.t = t'$$

where: X is a finite set of variables, and $t, t' \in |T_{\Sigma}(X)|_s$ are terms of a common sort.

Satisfaction relation:

$$A \models \forall X.t = t'$$

when for all $v: X \to |A|$, $t_A(v) = t'_A(v)$.

Models of a set of equations:

$$Mod(\Phi) = \{ A \in \mathbf{Alg}(\Sigma) \mid A \models \Phi \}$$

Semantic entailment:

$$\Phi \models \varphi$$

 φ is a semantic consequence of Σ -equations Φ if $A \models \varphi$ for all $A \in Mod(\Phi)$.

Birkhoff's Variety Theorem

 $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ is a variety if \mathcal{V} is closed under products, subalgebras and homomorphic images:

$$\mathcal{V} = \mathcal{HSP}(\mathcal{V})$$

Fact: A class $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ of Σ -algebras is equationally definable (that is, $\mathcal{V} = Mod(\Phi)$ for some set Φ of Σ -equations) if and only if \mathcal{V} is a variety.

$$\mathcal{V} = \mathcal{HSP}(\mathcal{V}) \ \ \text{iff} \ \ \mathcal{V} = Mod(EQ(\mathcal{V}))$$

BTW: reachable initial/free models exist by "only if"

the equational theory of V:

Birkhoff's Variety Theorem

Birkhoff's Variety Theorem essentially holds; the standard proof essentially carries over

BUT:

One of the following additional assumptions is needed:

- only algebras with no carriers empty are considered;
- the set of sorts in the signature is finite;
- there may be infinitely many variables named in equations.

Counterexample: Consider a signature with no operations and an infinite set of sorts. Let V be the class of algebras with finitely many sorts with non-empty carriers, or with all carriers containing at most one element. $V = \mathcal{HSP}(V)$ but V is not equationally definable.

Exercise: Check that any of the assumptions above makes \mathcal{V} equationally definable.

(Finitary) Birkhoff's Variety Theorem

Fact: A class $\mathcal{V} \subseteq \mathbf{Alg}(\Sigma)$ of Σ -algebras is equationally definable (that is, $\mathcal{V} = Mod(\Phi)$ for some set Φ of Σ -equations) if and only if \mathcal{V} is a variety and is closed under directed sums (unions of directed families of algebras).

Classical equational calculus

$$\frac{t=t'}{t=t} \qquad \frac{t=t'}{t'=t} \qquad \frac{t=t'-t'=t''}{t=t''}$$

$$\frac{t_1=t_1'-\ldots-t_n=t_n'}{f(t_1\ldots t_n)=f(t_1'\ldots t_n')} \qquad \frac{t=t'-t'=t''}{t(\theta)=t'(\theta)} \text{ for } \theta\colon X\to |T_\Sigma(Y)|$$

where naive equation t = t' stands for $\forall FV(t, t').t = t'$.

Naive equational calculus is essentially sound and complete

BUT: Mind the variables!

a=b does **not** follow from a=f(x) and f(x)=b, unless...

We need to assume that only algebras with no carriers empty are considered.

Equational calculus

$$\frac{\forall X.t = t'}{\forall X.t = t} \qquad \frac{\forall X.t = t'}{\forall X.t' = t} \qquad \frac{\forall X.t = t'}{\forall X.t = t''}$$

$$\frac{\forall X.t_1 = t'_1 \quad \dots \quad \forall X.t_n = t'_n}{\forall X.f(t_1 \dots t_n) = f(t'_1 \dots t'_n)} \qquad \frac{\forall X.t = t'}{\forall Y.t(\theta) = t'(\theta)} \text{ for } \theta \colon X \to |T_{\Sigma}(Y)|$$

Fact: The above calculus is sound and complete:

$$\Phi \models \varphi \; \; \mathsf{iff} \; \; \Phi \vdash \varphi$$

Moving between signatures

Signature morphism:

$$\sigma\colon \Sigma\to\Sigma'$$

maps sorts to sorts and operation names to operation names preserving their profiles.

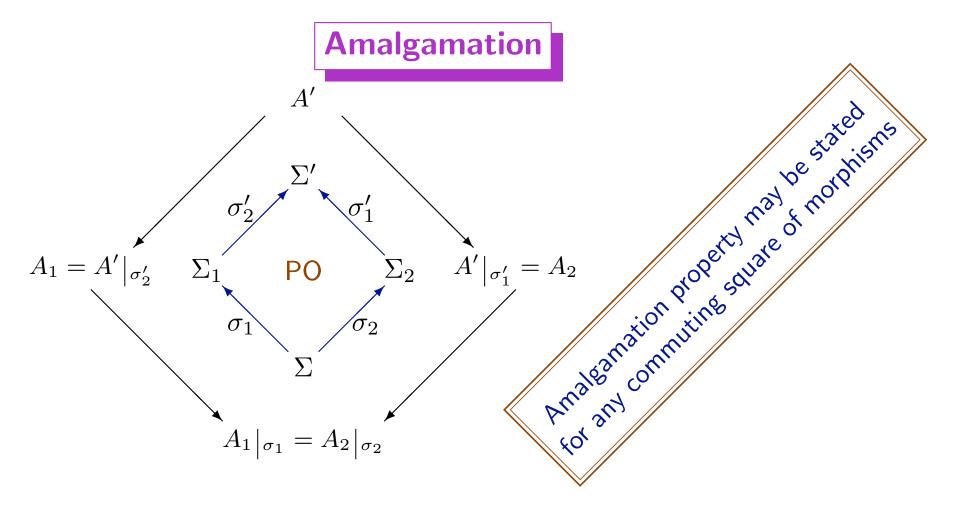
Translating syntax and semantics:

- translation of equations: $\sigma(\forall X.t_1 = t_2)$ yields $\forall X'.\sigma(t_1) = \sigma(t_2)$
- σ -reduct: $_{-|\sigma}$: $\mathbf{Alg}(\Sigma') \to \mathbf{Alg}(\Sigma)$ where for $A' \in \mathbf{Alg}(\Sigma')$, $A'|_{\sigma}$ interprets sorts and operation names in Σ as A' interprets their image under σ .

Satisfaction condition:

Fact: For all signature morphisms $\sigma \colon \Sigma \to \Sigma'$, Σ' -algebras A' and Σ -equations $\varphi \colon$

$$A'|_{\sigma} \models_{\Sigma} \varphi \iff A' \models_{\Sigma'} \sigma(\varphi)$$

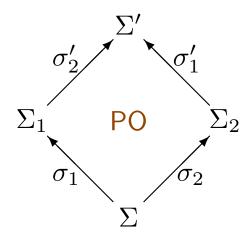


Fact: Amalgamation property holds for all pushouts of signature morphisms: for all $A_1 \in \mathbf{Alg}(\Sigma_1)$ and $A_2 \in \mathbf{Alg}(\Sigma_2)$ with $A_1|_{\sigma_1} = A_2|_{\sigma_2}$, there is a unique $A' \in \mathbf{Alg}(\Sigma')$ with $A'|_{\sigma_1'} = A_2$ and $A'|_{\sigma_2'} = A_1$.

UFF!!!

Interpolation

A logic has the *interpolation property* for a pushout of signature morphisms



if for all $\varphi_1 \in \mathbf{Sen}(\Sigma_1)$ and $\varphi_2 \in \mathbf{Sen}(\Sigma_2)$ such that $\sigma_2'(\varphi_1) \models_{\Sigma'} \sigma_1'(\varphi_2)$ there is an interpolant $\theta \in \mathbf{Sen}(\Sigma)$ such that $\varphi_1 \models_{\Sigma_1} \sigma_1(\theta)$ and $\sigma_2(\theta) \models_{\Sigma_2} \varphi_2$.

Fact: FOEQ has the interpolation property for all pushouts of pairs of morphisms, where at least one of the morphisms is injective on sorts.

Equational interpolation

Equational interpolation essentially holds when sets of interpolants are allowed

BUT:

Mind the nuances!

- Such equational interpolation holds when only algebras with no carriers empty are considered, and the signature morphisms are injective (on sorts).
- There may be no set of interpolants when algebras with some carriers empty are admitted, even if all signature morphisms are inclusions.
- In the general case we need to require surjectivity of reducts wrt signature morphisms involved (at least wrt σ_1).

Equational interpolation

Counterexample: $\Sigma = sorts \ s, s_1, s_2 \ opns \ a, b \colon s$

 $\Sigma_1 = \mathit{enrich} \ \Sigma \ \mathit{by} \ \mathit{opn} \ c \colon s_1$

 $\Sigma_2 = \mathit{enrich} \ \Sigma \ \mathit{by} \ \mathit{opn} \ f \colon s_1 o s_2$

Consider Σ_1 -equation $\forall x : s_2.a = b$ and Σ_2 -equation a = b.

Then $\forall x : s_2.a = b \models_{\Sigma_1 \cup \Sigma_2} a = b.$

BUT: there is no set Θ of Σ -equations such that $\forall x : s_2.a = b \models_{\Sigma_1} \Theta$ and $\Theta \models_{\Sigma_2} a = b$.

To show this, consider $A_1 \in \mathbf{Alg}(\Sigma_1)$ with $|A_1|_{s_2} = \emptyset$ and $a_{A_1} \neq b_{A_1}$, a subalgebra of $A_1|_{\Sigma}$ with the carrier of sort s_1 empty, and its Σ_2 -expansion $A_2 \in \mathbf{Alg}(\Sigma_2)$. Given a set of equational interpolants Θ as above, all these algebras satisfy Θ , and hence $A_2 \models_{\Sigma_2} a = b$ — contradiction.

Conclusions

Many-sorted universal algebra is essentially the same as in the classical single-sorted case

But watch out: technical nuances may differ!