# Maximal Traces and Path-Based Coalgebraic Temporal Logics

#### Corina Cîrstea

#### Electronics and Computer Science University of Southampton

### Overview

- · logics for bisimulation well understood in a coalgebraic setting
- no coalgebraic semantics for path-based temporal specification logics:
  - CTL\* on transition systems
  - PCTL on probabilistic transition systems

#### This talk:

- maximal traces and computation paths
  - existing general theory of *finite* traces [Hasuo et. al.]
  - existing definition of *infinite* traces for  $T = \mathcal{P}$  [Jacobs '04]
- coalgebraic semantics for path-based temporal logics

## Finite Traces, Coalgebraically

[Hasuo et. al.] consider  $T \circ F$ -coalgebras, where:

- strong monad  $\mathcal{T}:\mathsf{C}\to\mathsf{C}$  describes the computation/branching type e.g.  $\mathcal{P},\,\mathcal{S}$
- functor  $F : C \rightarrow C$  describes the transition type
  - initial *F*-algebra gives possibile *finite* traces
     e.g. Id, A × Id, 1 + A × Id
- distributive law  $\lambda$  :  $F \circ T \Rightarrow T \circ F$  as parameter

### Restricted Transition Systems and CTL\*

- restricted transition systems are  $\mathcal{P}^+$ -coalgebras
- to each state, one associates a set of computation paths

CTL\*:

- path formulas:  $\varphi ::= \phi \mid \neg \varphi \mid \varphi \land \varphi \mid X\varphi \mid F\varphi \mid G\varphi \mid \varphi U\varphi$
- state formulas:  $\phi ::= tt \mid p \mid \neg \phi \mid \phi \land \phi \mid \mathbf{E}\varphi \mid \mathbf{A}\varphi$ 
  - **E** and **A** similar to  $\Diamond$  and  $\Box$  modalities . . .

## Probabilistic Transition Systems

probabilistic transition systems are *D*-coalgebras
 (*D*(*S*) = set of probability distributions over *S*)

#### Example



Some computation paths from  $s_0$ :  $s_0 \rightarrow s_1 \rightarrow s_1 \dots$   $s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_0 \rightarrow s_1 \rightarrow s_2 \dots$  $s_0 \rightarrow s_1 \rightarrow s_3 \rightarrow s_3 \dots$ 

 to each state, one associates a probability measure on the computation paths from that state

# The Logic PCTL

- path formulas:  $\varphi ::= \mathsf{X}\phi \mid \phi \mathsf{U}^{\leq t}\phi \qquad t \in \{0, 1, \ldots\} \cup \{\infty\}$
- state formulas:  $\phi ::= \operatorname{tt} | p | \neg \phi | \phi \land \phi | [\varphi]_{\geq q} | [\varphi]_{\geq q}$

#### Example



 $[tt \mathbf{U}^{\leq 3} fail]_{<0.1}$  $[(try \mathbf{U} succ)]_{\geq 1}$ 

## More Examples

- (restricted) labelled transition systems (LTSs) are  $\mathcal{P}^+(A \times Id)$ -coalgebras
- generative probabilistic transition systems (GPTSs) are  $\mathcal{D}(A \times Id)$ -coalgebras

For both LTSs and GPTSs, computation paths have the form

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

whereas infinite computation traces have the form

 $a_0 a_1 a_2 \dots$ 

#### **Towards Maximal Traces**

 the possible infinite traces for both LTSs and GPTSs are elements of *A*<sup>ω</sup> (the *final A* × \_-coalgebra):



• for an LTS/GPTS  $(S, \gamma)$ , the actual maximal traces should be *structured* according to the computation type:

$$tr_{\gamma}: S o \mathcal{P}^+(A^{\omega}) \quad \text{or} \quad tr_{\gamma}: S o \mathcal{D}(A^{\omega})$$

• in general, the maximal trace map should have the form:

$$tr_{\gamma}: S 
ightarrow T(Z)$$

#### Defining the Maximal Trace Map

Fix a  $T \circ F$ -coalgebra  $\gamma : S \to TFS$ .



Define  $tr_{\gamma}: S \to T(Z)$  from its finite approximants  $\gamma_i$ .

For existence of  $tr_{\gamma}$ , we need:

- $\gamma_i$ 's define a cone (true for *affine* monads)
- limiting property for T(Z)

### Defining the $\gamma_i s$





 $\gamma_{i+1}: \qquad S \xrightarrow{\gamma} TFS \xrightarrow{TF\gamma_i} TFTF^i 1 \xrightarrow{T\lambda_{Fi_1}} T^2F^{i+1} 1 \xrightarrow{\mu_{Fi+1_1}} TF^{i+1} 1$ 

For T affine, the  $\gamma_i$ s define a cone (also in KI(T)).

#### The Case of Non-deterministic Systems



• for  $T = \mathcal{P}^+$ , cone is only *weakly* limiting

 $\Rightarrow$  take *maximal* mediating map !

## The Case of Probabilistic Systems



- working with T = D over sets does not work:
  - probability measures needed to deal with uncountably many traces

 $\Rightarrow$  need to work with T = G over (standard Borel) measurable spaces

 resulting maximal trace map takes states to probability measures over maximal traces

# The Case of Probabilistic Systems (Cont'd)

- **1** start with a  $\mathcal{D} \circ F$ -coalgebra  $\gamma$  over Set
- **2** lift  $F : \text{Set} \to \text{Set}$  to  $\tilde{F} : \text{Meas} \to \text{Meas}$  (works for *certain polynomial* Fs)
- **3** obtain a  $\mathcal{G} \circ \tilde{F}$ -coalgebra  $\tilde{\gamma}$  over Meas, to which the definition can be applied:
  - we obtain a cone (for any *F* as above)
  - +  ${\mathcal G}:\mathsf{Meas}\to\mathsf{Meas}$  preserves the required limit

# From Maximal Traces to Maximal Executions

• view  $\mathcal{P}^+(A \times \_)$ -coalgebra:



as 
$$\mathcal{P}^+(S \times A \times _)$$
:



 obtain a maximal execution map exec<sub>γ</sub> : S → (S × A)<sup>ω</sup> as the maximal trace map of the new coalgebra !!

## Maximal Executions: Examples

Take  $T = \mathcal{P}^+$ .

•  $F = \_$  (restricted TSs):

*s*<sub>0</sub> *s*<sub>1</sub> *s*<sub>2</sub> . . .

•  $F = A \times \_$  (restricted LTSs):

 $s_0 a_1 s_1 a_2 s_2 \ldots$ 

•  $F = 1 + A \times (LTSs)$ :

 $s_0 a_1 s_1 a_2 s_2 \dots$  or  $s_0 a_1 s_1 \dots s_n$ 

#### Towards Path-Based Temporal Logics

 $T \circ F$ -coalgebra  $(X, \gamma)$  comes with execution map  $exec_{\gamma} : X \to T(Z_X)$ 

 $\implies$  use modalities for T to "quantify" over maximal executions

 $X \times F_{-}$ -coalgebra structure on maximal executions  $Z_X$  gives, for each execution:

- the first state,
- an *F*-structured successor.
- $\implies$  use modalities for F to talk about maximal executions

# From Coalgebraic Types to Path-Based Temporal Logics

- coalgebraic types come equipped with modal languages
  - $T = \mathcal{P}^+$ : modal operators  $\Box$  and  $\Diamond$ :

 $s \models \Box \phi$  iff  $s' \models \phi$  for all s' s.t.  $s \rightarrow s'$ 

 $s \models \Diamond \phi \quad \text{iff} \quad s' \models \phi \text{ for some } s' \text{ s.t. } s \rightarrow s'$ 

• T = D: modal operator  $L_p$ 

 $s \models L_{\rho} \phi \quad \text{iff} \quad \gamma(s)(\llbracket \phi \rrbracket) \ge p$ 

•  $F = A \times \_$ : modal operators *a* and X:

$$s \models a$$
 iff  $s \rightarrow (a, s')$ 

$$s \models \mathsf{X}\phi$$
 iff  $s \to (a, s')$  and  $s' \models \phi$ 

• our coalgebras have type  $T \circ F \ldots$ 

#### Path-Based Temporal Logics in a Nutshell

• maximal executions form an  $X \times F$ -coalgebra  $Z_X \to X \times FZ_X$ 

 $\implies$  use fixpoint logics for *F*-coalgebras to define path formulas:

- $\varphi ::= \operatorname{tt} | \operatorname{ff} | p^F | \phi | \varphi \land \varphi | \varphi \lor \varphi | [\lambda_F] \varphi | \mu p^F. \varphi | \nu p^F. \varphi$
- standard definition for  $(\varphi) \in P(Z_X)$
- use non-standard interpretation of modal operators for T:

 $\phi ::= \mathsf{tt} \mid \mathsf{ff} \mid p \mid \phi \land \phi \mid \phi \lor \phi \mid [\lambda_{\mathcal{T}}] \varphi$ 

• 
$$X \xrightarrow{\operatorname{exec}_{\gamma}} TZ_X$$

$$\llbracket \phi \rrbracket \in P(X) \stackrel{P(\operatorname{exec}_{\gamma})}{\longleftarrow} P(TZ_X) \stackrel{(\lambda_{\tau})_Z}{\longleftarrow} P(Z_X) \ni (\phi)$$

## LCTL\*

- $T = \mathcal{P}^{+} \text{ with modal operators } \Box, \Diamond$   $F = A \times \text{ Id with modal operators } a \ (a \in A), \ X$   $\implies \varphi \quad ::= \quad \text{tt} \mid \text{ff} \mid p^{F} \mid \phi \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid a \mid X\varphi \mid \mu p^{F}.\varphi \mid \nu p^{F}.\varphi$   $\phi \quad ::= \quad \text{tt} \mid \text{ff} \mid p \mid \phi \land \phi \mid \phi \lor \phi \mid \Box\varphi \mid \Diamond\varphi$ 
  - can refer to the next label along a path:
    - natural encoding of "a occurs along every path" as

 $\Box Fa ::= \Box \mu X.(a \lor \mathbf{X}X)$ 

compare above to

 $\mu X.(\langle -\rangle \mathsf{tt} \wedge [-a]X)$ 

# PCTL Coalgebraically

T = D with modal operator  $L_q$ 

F = Id with modal operator X

 $\implies \varphi ::= \operatorname{tt} |\operatorname{ff}| p^{F} |\phi| \varphi \wedge \varphi |\varphi \vee \varphi| \mathsf{X}\varphi |\mu p^{F} \varphi |\nu p^{F} \varphi$  $\phi ::= \operatorname{tt} |p| \neg \phi |\phi \wedge \phi | L_{q}\varphi$ 

Define:

- $\mathbf{X}\varphi ::= \mathbf{X}\varphi$
- $\varphi \mathbf{U}^{\infty} \psi ::= \mu X.(\psi \lor (\phi \land \mathbf{X}X))$
- $[\varphi]_{\geq q} ::= L_q \varphi$

Can also obtain version of PCTL on generative PTSs ....

#### Some Results

for *P*<sup>+</sup> ◦ *F*-coalgebras (*F* polynomial), traces are characterised by an *F*-coalgebra automaton

 $\Longrightarrow$  regular game for model-checking  $\mathit{linear}$  path-based logics [CALCO 2011]

• linear path-based logics sufficient to characterise traces

### Future Work

- other (non-affine) computational monads
  - e.g. the finite multiset monad and graded temporal logics
- automata-based coalgebraic model checking