Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

New directions in security by obscurity

Dusko Pavlovic

Royal Holloway, Oxford and Twente

September 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Notation: Attack

S. cames 1 × × ALL YOUR BASE TO LUCER × × × × 1 =

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

・ロト・日本・山田・山田・山口・

Assumption: Security reduction

Suppose that you are given a system C and a proof

P = NP

Would you consider system C secure?

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

・ロット 御マ キョット 前 ・ 今日 マ

Assumption: Security reduction

Suppose that you are given a system $\ensuremath{\mathcal{D}}$ and a proof

P ≠ NP

Would you consider system \mathcal{D} secure?

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

・ロト・日本・日本・日本・日本・日本

There is security by obscurity in cryptography obscurity Dusko Pavlovic Background Approach X-Direction Theorem **Y-Direction** Summarv System \mathcal{D} is secure enough to protect an account with \$1,000,000 Proof. Proving $P \neq NP$ yields \$1,000,000 from Clay Institute.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Security by

Directions

Background: What is obscurity in security?

Approach: Refining attacker models

X-Direction: Security by epistemic game theory

Y-Direction: Security by algorithmic information theory

Summary: Adaptive attacker meets adaptive defender

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

・ロト・日本・日本・日本・日本・日本

(Disclaimer)

▶ ...

I am not advocating or criticizing

- property rights over code or algorithms
- Imitations of surveillance disclosure
- cryptography export controls

The policy issues are not addressed in this research.

I formalize "obscurity" as a technical concept, and discuss its utility as a security resource.

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Directions

Background: What is obscurity in security?

Approach: Refining attacker models

X-Direction: Security by epistemic game theory

Y-Direction: Security by algorithmic information theory

Summary: Adaptive attacker meets adaptive defender

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction

Summary

・ロト・西ト・西ト・日・ つくぐ

What is security by obscurity?

Kerckhoffs' Principle

"The system must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience."

Jean Guillaume Auguste Victor François Hubert Kerckhoffs

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction

Summarv

What is security by obscurity?

Security by obscurity

Dusko Pavlovic

Background Approach

X-Direction

Y-Direction

Summary

Shannon's Maxim

"The enemy knows the system."

Claude Shannon

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Secure key vs obscure system

Lock can only be opened using the correct key

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Secure key vs obscure system

Security by obscurity

Dusko Pavlovic

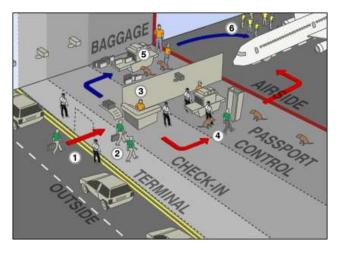
Background Approach X-Direction Y-Direction Summary

... and not by breaking the system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Outside cryptography

Security by obscurity


Dusko Pavlovic

Background Approach X-Direction Y-Direction

Summary

Outside cryptography

there is not much more to hide except the system

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction

Summary

・ロト・日本・日本・日本・日本・日本

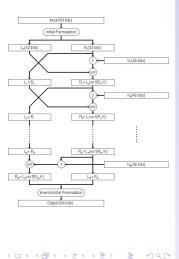
In cryptography

Security by obscurity

Dusko Pavlovic

Background

Approach

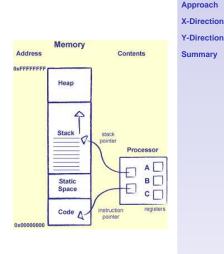

X-Direction

Y-Direction

Summary

keys = data

system = program



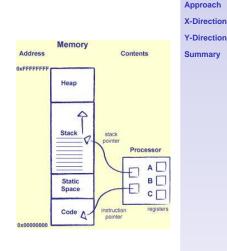
In computation

(Gödel, Von Neumann, Kleene)

keys = data = program

system = program = data

Security by obscurity


Dusko Pavlovic

Background

・ロト・日本・日本・日本・日本

In computation

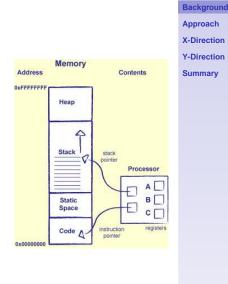
(Gödel, Von Neumann, Kleene)

- keys = data = program
 - data value encrypted
- system = program = data
 - programs view obfuscated

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Security by obscurity

Dusko Pavlovic


Background

In computation

(Gödel, Von Neumann, Kleene)

- keys = data = program
 - data variable encrypted
- system = program = data
 - programs view obfuscated

Theorem [Barak et al] Obfuscators do not exist.

Security by obscurity

Dusko Pavlovic

・ロト・日本・日本・日本・日本・日本

In poker

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

keys = hands of cards

system = tactics

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

In games

(Von Neumann-Morgenstern, Harsanyi, Aumann...)

keys = players' positions

system = players' types

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In games

(Von Neumann-Morgenstern, Harsanyi, Aumann...)

- keys = players' positions
 - (im)perfect information
- system = players' types
 - (in)complete information

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

In games

(Von Neumann-Morgenstern, Harsanyi, Aumann...)

- keys = players' positions
 - (im)perfect information
- system = players' types
 - (in)complete information

Kerckhoffs' Principle Security is a game of imperfect information.

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

In security games

(Kerckhoffs, Shannon)

keys <-- cryptanalysis

hard

- system <-- decompilation
 - easy

Kerckhoffs' Principle

Security is a game of imperfect information.

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction Summary

Directions

Background: What is obscurity in security?

Approach: Refining attacker models

X-Direction: Security by epistemic game theory

Y-Direction: Security by algorithmic information theory

Summary: Adaptive attacker meets adaptive defender

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Security is a game of information

→ System → Attack →

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

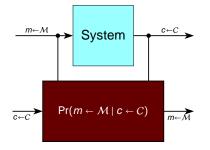
Summary

◆□ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○ ● ● ●

Shannon's attacker: computationally unbounded (omnipotent computer)

Security by obscurity

Dusko Pavlovic


Background

Approach

X-Direction

Y-Direction

Summary

If a source conveys some information, the attack will extract that information.

・ロト・日本・ モー・ モー うくぐ

Diffie-Hellman's attacker: computationally bounded (real computer)

$\xrightarrow{m \leftarrow \mathcal{M}} System \xrightarrow{c \leftarrow C}$ $Pr(m \leftarrow A(c) \mid c \leftarrow C)$ $\xrightarrow{m \leftarrow \mathcal{M}}$ $|A(x)| \leq \rho(|x|)$

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

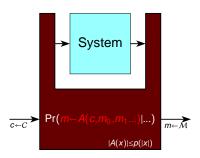
Summary

Public key determines the corresponding private key, but the attacker cannot compute one from the other.

Adaptive attacker: queries and controls the system (still a real computer computer)

Security by obscurity

Dusko Pavlovic


Background

Approach

X-Direction

Y-Direction

Summary

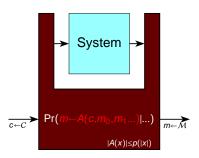
If there is a vulnerability, an attack algorithm will use it.

・ロト・日本・ モー・ モー うくぐ

Adaptive attacker: queries and controls the system (still a real computer computer)

Security by obscurity

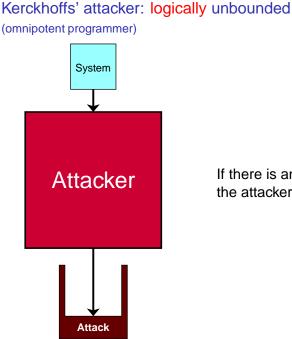
Dusko Pavlovic


Background

Approach

X-Direction

Y-Direction


Summary

If there is a vulnerability, an attack algorithm will use it.

But where do attack algorithms come from?

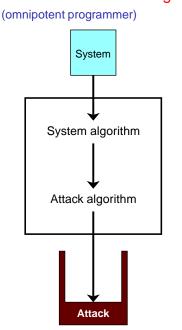
▲□▶▲□▶▲□▶▲□▶ □ のQ@

Security by obscurity

Dusko Pavlovic

Background

Approach


X-Direction

Y-Direction

Summary

If there is an attack, the attacker will find it.

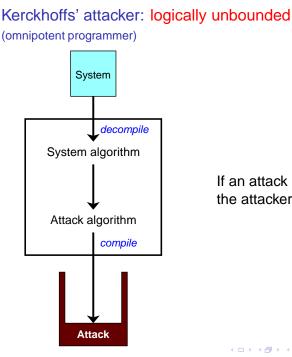
◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Kerckhoffs' attacker: logically unbounded

If an attack exists, the attacker will find it Security by obscurity

Dusko Pavlovic

Background


Approach

X-Direction

Y-Direction

Summary

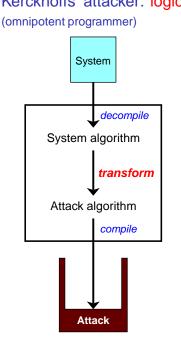
・ロト・西ト・田・・田・ ひゃぐ

If an attack exists, the attacker will find it.

Security by obscurity

Dusko Pavlovic

Background


Approach

X-Direction

Y-Direction

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

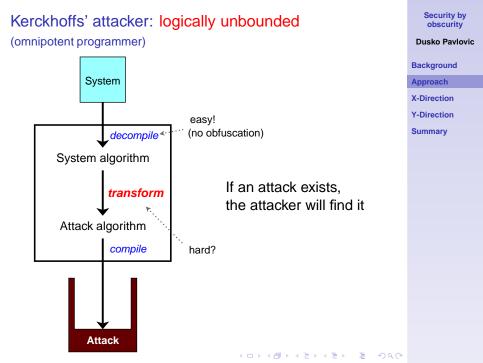
Kerckhoffs' attacker: logically unbounded (omnipotent programmer)

If an attack exists, the attacker will find it

Security by obscurity

Dusko Pavlovic

Background


Approach

X-Direction

Y-Direction

Summary

・ロト・西ト・西ト・日・ ウヘぐ

improve adaptation of system to attack

hinder adaptation of attack to system

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

◆□▶ ◆□▼ ◆ □ ▼ ▲ □ ▼ ◆ □ ▼

- improve adaptation of system to attack
 - use epistemic game theory in security
- hinder adaptation of attack to system
 - use algorithmic information theory in security

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

・ロト・西ト・ヨト・ヨー うへぐ

Directions

Background: What is obscurity in security?

Approach: Refining attacker models

X-Direction: Security by epistemic game theory

Y-Direction: Security by algorithmic information theory

Summary: Adaptive attacker meets adaptive defender

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

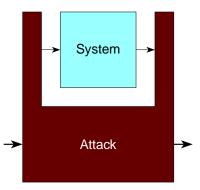
Summary

・ロト・日本・日本・日本・日本・日本・日本

X-Direction

Security by obscurity

Dusko Pavlovic

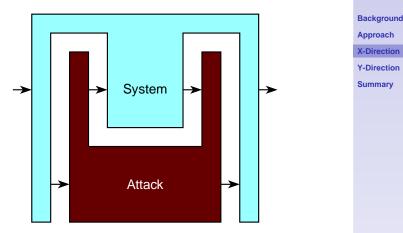

Background

Approach

X-Direction

Y-Direction

Summary


If the attacker queries the system

・ロト・西ト・田・・田・ ひゃぐ

X-Direction

Security by obscurity

If the attacker queries the system then the system should query the attacker

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Adaptive attacker (logically limited)

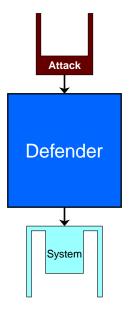
If there is an easy attack, the attacker will find it.

Security by obscurity

Dusko Pavlovic

Background

Approach


X-Direction

Y-Direction

Summary

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

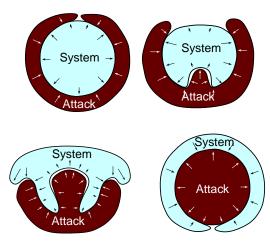
... should be met by an adaptive defender (logically limited)

If there is an easy defense the defender will find it.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Security by obscurity

Dusko Pavlovic


Background

Approach

X-Direction

Y-Direction

From fortification to adaptation

Obscurity is a problem and a tool.

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

・ロト・日本・日本・日本・日本・日本

Directions

Background: What is obscurity in security?

Approach: Refining attacker models

X-Direction: Security by epistemic game theory

Y-Direction: Security by algorithmic information theory

Summary: Adaptive attacker meets adaptive defender

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Y-Direction

Take into account attacker's logical limitations.

power	unbounded	bounded
computational	Shannon	Diffie-Hellman
rationality	Cournot	Simon
logical	Kerckhoffs	?????

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Y-Direction

Take into account attacker's logical limitations.

power	unbounded	bounded
computational	Shannon	Diffie-Hellman
rationality	Cournot	Simon
logical	Kerckhoffs	Bennett?

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Y-Direction

Take into account attacker's logical limitations.

power	unbounded	bounded
computational	Shannon	Diffie-Hellman
rationality	Cournot	Simon
logical	Kerckhoffs	Bennett?

computational complexity secrecy = logical complexity obscurity

Security by obscurity

Dusko Pavlovic

Background

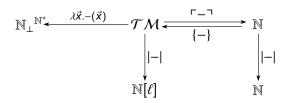
Approach

X-Direction

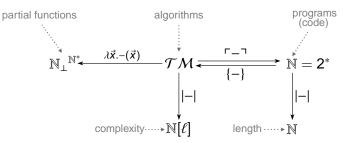
Y-Direction

Summary

Security by obscurity


Dusko Pavlovic

Background


Approach

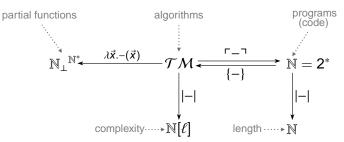
X-Direction

Y-Direction

Security by obscurity

Dusko Pavlovic

Background


Approach

X-Direction

Y-Direction

Summary

・ロト・日本・日本・日本・日本・日本

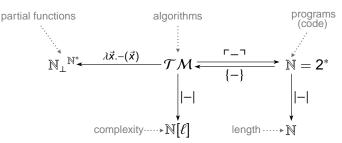
Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction


Y-Direction

Summary

programs represent algorithms

 $\lceil \{p\} \rceil = p \qquad \{ \lceil M \rceil \} = M$

・ロト・西ト・西ト・日・ つくぐ

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

programs represent algorithms

 $\lceil \{p\} \rceil = p \qquad \{ \lceil M \rceil \} = M$

there is a Universal Turing Machine U ∈ T M, such that for all M ∈ T M and all x ∈ N^{*} holds

$$U(\ulcorner M\urcorner, \vec{x}) \doteq M(\vec{x})$$

・ロト・日本・山田・山田・山口・

Assumptions

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

- ▶ N is a partial combinatory algebra
- ► *TM* are self-delimiting (i.e. the codes are prefix-free)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◆

Algorithmic distance

Definition

A program $p \in \mathbb{N}$ is (a, b)-informative if $\{p\}(a) = b$. Abbreviate $(\langle \rangle, a)$ -informative to *a*-informative

Definition

Algorithmic distance between $a, b \in \mathbb{N}$ is the length of the shortest (a, b)-informative program

$$C(a,b) = \bigwedge_{\{p\}(a)=b} |p|$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Algorithmic complexity

Definition (Solomonoff, Kolmogorov)

Algorithmic complexity of $a \in \mathbb{N}$ is the length of the shortest *a*-informative program

$$C(a) = \bigwedge_{\{p\}()=a} |p|$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Logical complexity

Definition (~C.H. Bennett)

Logical complexity of $a \in \mathbb{N}$ is the complexity of the simplest *a-informative* program

$$D(a) = \bigwedge_{\substack{\{p\}()=a\\C(p)=|a|}} |\{p\}|$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Logical depth

Remarks

- Logical depth measures complexity of evolutionary processes as computational processes.
- Logical depth of an organism is the time it takes it to evolve
 - A virus may be computationally simple, but logically deep
- PRIMES is computationally simple but logically deep

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Definition

Logical distance of $a, b \in \mathbb{N}$ is the complexity of the simplest (a, b)-*informative* program

$$D(a,b) = \bigwedge_{\substack{\{p\}(a)=b\\C(a,b)=|p|}} |\{p\}|$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Remark

D is almost a metric

$$egin{array}{rcl} D(a,a)&=&0\ D(a,b)+D(b,c)&\geq&D(a,c) \end{array}$$

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Remark

D is almost a metric

$$D(a, a) = 0$$

 $D(a, b) + D(b, c) \ge D(a, c)$

in fact a quasi-pseudo-metric

$$D(a,b) \neq D(b,a)$$

 $D(a,b) = 0 \Rightarrow a = b$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Remark

D is almost a metric

$$egin{array}{rcl} D(a,a)&=&0\ D(a,b)+D(b,c)&\geq&D(a,c) \end{array}$$

in fact a quasi-pseudo-metric

 $D(a,b) \neq D(b,a)$ $D(a,b) = 0 \Rightarrow a = b$

provided that the constants are factored out

$$D : \mathbb{N} \times \mathbb{N} \to \mathbb{N}[\ell] \twoheadrightarrow \mathbb{N}[\ell]/\mathbb{N}$$

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

・ロト・日本・日本・日本・日本・日本

Background

Ray Solomonoff (1960):

Inductive interpretation (explanation) of a given observation is the smallest program that generates it.

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Background

Ray Solomonoff (1960):

Inductive interpretation (explanation) of a given observation is the smallest program that generates it.

 A. Kolmogorov (1965), G. Chaitin (1968): Complexity of a bitstring is the length of the simplest program that outputs it.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Background

Ray Solomonoff (1960):

Inductive interpretation (explanation) of a given observation is the smallest program that generates it.

 A. Kolmogorov (1965), G. Chaitin (1968): Complexity of a bitstring is the length of the simplest program that outputs it.

Charles H. Bennett (1981):

Logical depth of an organism is the time complexity of the simplest evolutionary process that leads to it.

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Security application

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

Assure that D(s, a) is large for all attacks *a* on system *s*.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Obstacle

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Logical distance is not computable.

Obstacle

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- Logical distance is not computable.
 - Chaitin proved Gödel-style incompleteness.

Upshot

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

• There is security by obscurity, but it is **not provable**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへで

Upshot

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary

- There is security by obscurity, but it is **not provable**.
 - Kolmogorov: Most bitstrings are random
 - Martin-Löf: Most bitstrings cannot be proven random.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ □ ◆

Directions

Background: What is obscurity in security?

Approach: Refining attacker models

X-Direction: Security by epistemic game theory

Y-Direction: Security by algorithmic information theory

Summary: Adaptive attacker meets adaptive defender

Security by obscurity

Dusko Pavlovic

Background Approach X-Direction Y-Direction

Summary

・ロト・日本・日本・日本・日本・日本・日本

Summary

New directions in security by obscurity

- improve adaptation of system to attack
 - use epistemic game theory in security
- hinder adaptation of attack to system
 - use algorithmic information theory in security

Security by obscurity

Dusko Pavlovic

Background Approach

Approach

X-Direction

Y-Direction

Summary

・ロト・西ト・西ト・日・ つくぐ

Summary

Obstacles

- complexity of strategies with incomplete information
- incompleteness of theories of logical distance

Security by obscurity

Dusko Pavlovic

Background

Approach

X-Direction

Y-Direction

Summary