Specification and Modelling of Embedded Systems

Prof. Dr. Holger Schlingloff Fraunhofer FIRST & Humboldt Universität

holger.schlingloff@first.fraunhofer.de

Holger Schlingloff

Professor of Software Engineering at Humboldt University, Berlin Research Director at the Fraunhofer Institute FIRST, Berlin

Structure of this Talk

- My personal background
- Current projects
- Research issues in system specification
 - Formalization of use case descriptions
 - Modelling of informal requirements

My History: From Theory into Practice

- Ph.D. work: completeness and expressivity of temporal logics
 e.g. models which are trees (not sequences or graphs):
 needs not only "nexttime" and "until", but also "sibling" operator
 yields first-order expressive completeness via separation
- Habilitation work: model checking of real-time temporal logics define temporal logic for timed Petri nets partial-order reduction technique for state explosion problem
- Work as managing director of Bremen Institute for Safe Systems model checking for industrial applications avionics interface of ISS, satellite charge control, UMTS protocol stack
- Fraunhofer: Specification, verification and testing of embedded systems

Present

- Specification
 - Modeling of causality
- Verification
 - Static analysis and model checking
- Testing theory
 - Model-based testing of embedded systems

Current Projects

- ETCS radio block centre as software product line
- Verification of Paediatric Ventricular Assistant Device
- DSL metamodelling for dishwasher controls
- Model-based design of a gas burner
- Model-based testing of a crane master control

"Real" Specifications I

Requirements can be given as

- contract specification
- use case descriptions
- algebraic or logical formula
- class descriptions with pre- and postconditions
- UML state diagrams
- timed or hybrid automata
- Matlab/Simulink files,
- Code / Pseudo-Code,

. . .

Use Case Descriptions

Requirements often are "use case descriptions" (standardized natural language)

Natural language is informal, imprecise, allows over/ under-specification, ...

- inconsistencies
- ambiguities
- incompleteness

Methodology of transforming textual use case descriptions into models to verify them

2. Typical and Critical Scenarios

2.1 Brake failure while brake is closed

This scenario is part of the realization of DriveWrp.FMon.Brake operation failure [1].

2.1.1 Preconditions

Brake is in state closing or closed, no Alarm E_FC_ELEVATOR_MECHANICAL_BRAKE_KB or _FC_ELEVATOR_MECHANICAL_BRAKE_KB1 during previous trip occurred. (Note: The case of an Alarm E_FC_ELEVATOR_MECHANICAL_BRAKE_KB or _FC_ELEVATOR_MECHANICAL_BRAKE_KB1 during a trip is handled in ch. 2.2)

2.1.2 Basic Flow

Seq-Nr	Description	Junction
1.	FC sends error E_FC_ELEVATOR_MECHANICAL_BRAKE_KB or E_FC_ELEVATOR_MECHANICAL_BRAKE_KB1 to the Drive component	
2.	The FC blocks itself	
3.	The Drive component logs the Error "Error Brake Partial Failure"	
4.	The Drive components sets the state of the monitoring function "MOB" in the MonitoringSupervisor to "Error"	
5.	The MonitoringSupervisor logs the Status "Breakdown"	
6.	The MonitoringSupervisor activates the service ESLN in the service handler	
7.	The ServiceHandler blocks the Drive interface and opens the door.	
8.	The Drive component sets the state of the monitoring function "MOB" in the MonitoringSupervisor to "ReadyForReset"	
9.	END SysUC	

Formalization of Use Case Descriptions

Task: transform this into a (semi-) formal representation

- Statecharts or state transition diagrams ?
- MSCs or sequence diagrams ?
- Petri nets or activity diagrams ?
- live sequence charts ?
- → use special metamodel of necessary constructs for intermediate format
- transform into appropriate representation with automated model transformation

Translation into Intermediate Format

Procedure:

- 1. Identification of system interfaces
- 2. Identification of system functions and reactions
- 3. Formalization of control flow
- 4. Formalization of individual steps
- 5. Translation of pre- and postconditions

User.selectMessageSlot(Slot) User.startRecording() if (Slot.full()) System.deleteMessageSlot(Slot) exception (System.exhaustMemory() || User.stopRecording()) System.recordMessage(Slot)

🚝 Use Case Validator Perspective -	- SoundRecorder.ucf - Eclipse Platform					
<u>File Edit Navigate Search Project ATL Editor Ucvalidator Editor Run Window Help</u>						
📬 • 🖫 📥 🖓 • 🎰 💁	•] 🔗] generate import] 🏷 🗘 • 🔿 •			🕆 🖪 Use Case Vali 🏻 🎽		
🔁 Navigator 🛛 📃 🗖	SoundRecorder.ucf		Action View 🛛	s! 👤 👥 🗖		
← → ☆ E SoundRecorder2 → B out.uml2 → SoundRecorder.di → SoundRecorder.di → SoundRecorder.ucf SoundRecorder.uml2 → SoundRecorder.uml2	Step Assigned Interaction Basic Path Basic Path The user selects a User.selectMessageSlot(Slot2. The user presses t User.startRecording() unnamed Switch Slot.full() If If System.deleteteMessageSlot System.deleteteMessageSlot The system starts r 	ot) lot(Slot)	 System recordMessage(Single) deleteteMessage: exhaustMemory() User startRecording() selectMessageSlo stopRecording() 	lotNo: Integer) Slot(SlotNo: Integer)) t(SlotNo: Integer)		
	Console X Properties		Parameter	Type A		
E- A Record a Mesage	org.atl.eclipse.adt.editor.console		ino parameters	no parameters n		
 → ◆ Basic Path → ◆ 1. The user selects a m → ◆ 2. The user presses the → ◆ unnamed Switch → ◆ 4. The system starts re 	Starte Generierung des .xmi Temporäres UCV-Modell erstellt: platform:/resource/SoundRec Generierung fertig platform:/resource/SoundRecorder/SoundRecorder.uml2 Generierung fertig, Ausgabemodell: /resource/SoundRecorder/		Variable View X3			

"Real" Specifications II: A Fuel Cell Controller

Task: Protect a value to freeze, by killing the engine. (The value controls the gas flow from the tank to the engine)

Informal specification:

- If the temperature sensor is more than 3s (short delay) "too cold" a quick stop occurs and the engine is shut off.
- If the temperature sensor was invalid and switches to valid again and during the following 3s the temperature is not warm a long delay of 15s is activated. In this state a "too cold" triggers the quick-stop after 15s (long delay). (Long delay replaces the initial short delay).
- If the temperature is "warm" then the 3s (short delay) is valid again.
- If the valid temperature switches to invalid the 3s (short delay) is valid again.
- If during the delay the valid temperature is not "too cold" for more than 0.2s the delay timer is reset to start a new delay period.

Definitions

- Temperature Sensor reads: warm, cold, tooCold, invalid
- Time Window: shortDelay (3s), longDelay (15s)
- Actions: quickStop

Design decisions

- State- or event-based modelling, e.g. of temperature sensor
- Modeling of timing and timers

Modelling with MTL and Timed Automata

Rule 1: If the temperature sensor is more than 3s "too cold" a quick stop occurs.

 $\Box(\texttt{tooCold} \land \Box_{\leq 3}(\neg\texttt{warm} \land \neg\texttt{cold} \land \neg\texttt{invalid}) \rightarrow \Box_{=3}\texttt{quickStop})$

Alternative

Rule 2: If the temperature sensor was invalid and switches to valid again and during the following 3s the temperature is not warm a long delay of 15s is activated. In this state a "too cold" triggers the quick-stop after 15s (long delay).

 $(\neg \texttt{valid} \ \mathcal{S} \ \texttt{invalid}) \land \texttt{valid} \land \Box_{\leq 3} \neg \texttt{warm} \rightarrow \texttt{longDelay}$

 $\begin{array}{l} (\texttt{longDelay} \land \texttt{tooCold} \land \square_{\leq 15} (\neg \texttt{warm} \land \neg \texttt{cold} \land \neg \texttt{invalid}) \rightarrow \square_{=15} \texttt{quickStop}) \\ (\neg \texttt{longDelay} \land \texttt{tooCold} \land \square_{\leq 3} (\neg \texttt{warm} \land \neg \texttt{cold} \land \neg \texttt{invalid}) \rightarrow \square_{=3} \texttt{quickStop}) \end{array}$

where valid \triangleq (warm \lor cold \lor tooCold)

Revision

Rule 5: If during the delay the valid temperature is not "too cold" for more than 0.2s the delay timer is reset to start a new delay period.

If during the delay the valid temperature is not "too cold" for *less* than 0.2s the delay timer is *not* reset and the current delay period is continued.

```
\begin{array}{l} (\neg \texttt{longDelay} \land \texttt{tooCold} \land \Box_{\leq 3}(\texttt{warm} \lor \texttt{cold} \lor \texttt{invalid} \rightarrow \diamondsuit_{<0.2}\texttt{tooCold}) \\ \rightarrow \Box_{=3}\texttt{quickStop}) \\ (\texttt{longDelay} \land \texttt{tooCold} \land \Box_{\leq 15}(\texttt{warm} \lor \texttt{cold} \lor \texttt{invalid} \rightarrow \diamondsuit_{<0.2}\texttt{tooCold}) \\ \rightarrow \Box_{=15}\texttt{quickStop}) \end{array}
```


Observations

- Mixture of declarative and state-based description
- New rules modify / alternate previous ones
 - compositional in TA
 - noncompositional in TL
- Formulation with a particular implementation in mind
- Formalization is used for
 - systems development, or
 - test generation
- How to evaluate the "quality" of a formalization? (validation, not verification)
 - simulation
 - test generation
 - test execution

UML-Modelling

C#-Modelling

Summary

- My personal background see http://www2.informatik.hu-berlin.de/~hs/
- Current projects maybe more next time
- Research issues in system specification
 - formalization of use case descriptions
 - UCV for interactively generating various UML-models
 - connection to consistency checker pending
 - Modelling of informal requirements
 - "revision" operation for formulas and models
 - metrics for quality of formalization

Thank you for your attention!

