
© Fraunhofer FIRST

Prof. Dr. Holger Schlingloff

Fraunhofer FIRST & Humboldt Universität

holger.schlingloff@first.fraunhofer.de

Specification and Modelling

of Embedded Systems

© H. Schlingloff 2011 Seite 2 /21

Professor of Software Engineering at Humboldt University, Berlin

Research Director at the Fraunhofer Institute FIRST, Berlin

Holger Schlingloff

© H. Schlingloff 2011 Seite 3 /21

Structure of this Talk

• My personal background

• Current projects

• Research issues in system specification

• Formalization of use case descriptions

• Modelling of informal requirements

© H. Schlingloff 2011 Seite 4 /21

My History: From Theory into Practice

– Ph.D. work: completeness and expressivity of temporal logics

e.g. models which are trees (not sequences or graphs):

needs not only “nexttime” and “until”, but also “sibling” operator

yields first-order expressive completeness via separation

– Habilitation work: model checking of real-time temporal logics

define temporal logic for timed Petri nets

partial-order reduction technique for state explosion problem

– Work as managing director of Bremen Institute for Safe Systems

model checking for industrial applications

avionics interface of ISS, satellite charge control, UMTS protocol stack

– Fraunhofer: Specification, verification and testing of embedded systems

© H. Schlingloff 2011 Seite 5 /21

Present

– Specification

· Modeling of causality

– Verification

· Static analysis and model checking

– Testing theory

· Model-based testing of embedded systems

Specification

TestingVerification

© H. Schlingloff 2011 Seite 6 /21

Current Projects

– ETCS radio block centre as software product line

– Verification of Paediatric Ventricular Assistant Device

– DSL metamodelling for dishwasher controls

– Model-based design of a gas burner

– Model-based testing of a crane master control

© H. Schlingloff 2011 Seite 7 /21

„Real“ Specifications I

Requirements can be given as

• contract specification

• use case descriptions

• algebraic or logical formula

• class descriptions

with pre- and postconditions

• UML state diagrams

• timed or hybrid automata

• Matlab/Simulink files,

• Code / Pseudo-Code,

• …

© H. Schlingloff 2011 Seite 8 /21

Use Case Descriptions

Requirements often are

“use case descriptions”

(standardized natural

language)

Natural language is informal,

imprecise, allows over/

under-specification, …

• inconsistencies

• ambiguities

• incompleteness

Methodology of

transforming textual use

case descriptions into

models to verify them

© H. Schlingloff 2011 Seite 9 /21

Formalization of Use Case Descriptions

Example Use Case “Start Record”

Basic Path

1. The user selects a message slot from the message directory.

2. The user presses the ‘record’ button.

3. If the message slot already stores a message,
it is deleted.

4. The system starts recording the sound from the
microphone until the user presses the ‘stop’ button,
or the memory is exhausted.

Sequence

Case

Exit

Exception

Actor
Action

other constructs: loops, iterations, includes, substeps

© H. Schlingloff 2011 Seite 10 /21

Task: transform this into a (semi-) formal representation

• Statecharts or state transition diagrams ?

• MSCs or sequence diagrams ?

• Petri nets or activity diagrams ?

• live sequence charts ?

 use special metamodel of necessary constructs for intermediate format

 transform into appropriate representation with automated model

transformation

© H. Schlingloff 2011 Seite 11 /21

Translation into Intermediate Format

User.selectMessageSlot(Slot)

User.startRecording()

if (Slot.full())

System.deleteMessageSlot(Slot)

exception (System.exhaustMemory() || User.stopRecording())

System.recordMessage(Slot)

Procedure:

1. Identification of system interfaces

2. Identification of system functions and reactions

3. Formalization of control flow

4. Formalization of individual steps

5. Translation of pre- and postconditions

© H. Schlingloff 2011 Seite 12 /21

Use Case Validator

© H. Schlingloff 2011 Seite 13 /21

„Real“ Specifications II: A Fuel Cell Controller

Task: Protect a valve to freeze, by killing the engine.(The valve controls the gas

flow from the tank to the engine)

Informal specification:

• If the temperature sensor is more than 3s (short delay) "too cold" a quick stop occurs

and the engine is shut off.

• If the temperature sensor was invalid and switches to valid again and during the

following 3s the temperature is not warm a long delay of 15s is activated. In this state

a "too cold" triggers the quick-stop after 15s (long delay). (Long delay replaces the

initial short delay).

• If the temperature is “warm" then the 3s (short delay) is valid again.

• If the valid temperature switches to invalid the 3s (short delay) is valid again.

• If during the delay the valid temperature is not "too cold" for more than 0.2s the

delay timer is reset to start a new delay period.

© H. Schlingloff 2011 Seite 14 /21

Analysis

Definitions

• Temperature Sensor reads: warm, cold, tooCold, invalid

• Time Window: shortDelay (3s), longDelay (15s)

• Actions: quickStop

Design decisions

• State- or event-based modelling, e.g. of temperature sensor

• Modeling of timing and timers

© H. Schlingloff 2011 Seite 15 /21

Modelling with MTL and Timed Automata

Rule 1: If the temperature sensor is more than 3s "too cold" a quick stop occurs.

© H. Schlingloff 2011 Seite 16 /21

Alternative

Rule 2: If the temperature sensor was invalid and switches to valid again and during the

following 3s the temperature is not warm a long delay of 15s is activated. In this state

a "too cold" triggers the quick-stop after 15s (long delay).

© H. Schlingloff 2011 Seite 17 /21

Revision

Rule 5: If during the delay the valid temperature is not "too cold" for more than 0.2s the

delay timer is reset to start a new delay period.

If during the delay the valid temperature is not "too cold" for less than 0.2s the delay

timer is not reset and the current delay period is continued.

© H. Schlingloff 2011 Seite 18 /21

Observations

• Mixture of declarative and state-based description

• New rules modify / alternate previous ones

• compositional in TA

• noncompositional in TL

• Formulation with a particular implementation in mind

• Formalization is used for

• systems development, or

• test generation

• How to evaluate the “quality” of a formalization? (validation, not verification)

• simulation

• test generation

• test execution

© H. Schlingloff 2011 Seite 19 /21

UML-Modelling

© H. Schlingloff 2011 Seite 20 /21

C#-Modelling

© H. Schlingloff 2011 Seite 21 /21

Summary

• My personal background – see http://www2.informatik.hu-berlin.de/~hs/

• Current projects – maybe more next time

• Research issues in system specification

• formalization of use case descriptions

• UCV for interactively generating various UML-models

• connection to consistency checker pending

• Modelling of informal requirements

• “revision” operation for formulas and models

• metrics for quality of formalization

Thank you for your attention!

