Towards the Coalgebraic Guarded Fragment

Daniel Gorín Lutz Schröder

DFKI GmbH

IFIP Meeting, Winchester, 2011/09

Introduction

- The guarded fragment of FOL:
- Decidable (in EXPTIME if the arity of predicates is bounded)
- Contains the modal fragment
- Characterized by guarded bisimulation
- Here: analyse the guarded fragment modally
- Generalize this to the coalgebraic setting
- Partly speculative

Coalgebraic Modalities on one Slide

Kripke semantics, coalgebraically:

- \mathcal{P} : Set \rightarrow Set has coalgebras $\xi: X \rightarrow \mathcal{P}(X)=$ Kripke frames
- Putting

$$
\llbracket \square \rrbracket_{X}: 2^{X} \rightarrow 2^{\mathcal{P}(X)}, \quad A \mapsto\{B \in \mathcal{P}(X) \mid B \subseteq A\}
$$

have

$$
x \models_{\xi} \square \phi \quad \text { iff } \quad \xi(x) \in \llbracket \square \rrbracket_{X}\left(\left\{y \mid y \models_{\xi} \phi\right\}\right.
$$

Generalize this:

- Modal similarity type \wedge
- Models are coalgebras $\xi: X \rightarrow T X$ for functor T : Set \rightarrow Set
- Interpret $\odot \in \wedge$ by $\llbracket \subseteq \rrbracket_{X}: 2^{X} \rightarrow 2^{T X}$

Examples:

- Multiset functor $\mathcal{B}_{\mathbb{N}}$, multigraphs $\bullet \xrightarrow{n} \bullet$, graded modalities \diamond_{k}
- Distribution functor D, Markov chains, probabilistic modalities L_{p}
- Conditional logics, coalition logic/alternating-time logic, ...

The Guarded Fragment

Guarded quantification:

$$
\begin{gathered}
\forall \vec{y} \cdot a(\vec{x}, \vec{y}) \rightarrow \phi(\vec{x}, \vec{y}) \\
\exists \vec{y} \cdot a(\vec{x}, \vec{y}) \wedge \phi(\vec{x}, \vec{y})
\end{gathered}
$$

with $a(\vec{x}, \vec{y})$ atomic.
Here: restrict to modal correspondence language, i.e. at most binary predicates.

$$
\begin{aligned}
& S T_{x}(\square \phi)=\forall y . x R y \rightarrow S T_{y}(\phi) \\
& S T_{x}(\diamond \phi)=\exists y . x R y \wedge S T_{y}(\phi)
\end{aligned}
$$

The Guarded Fragment as a Modal Logic

$$
\begin{aligned}
\phi, \psi::= & a|i| \circlearrowleft|\diamond| \neg \phi|\phi \wedge \psi| \diamond \phi|\diamond \phi| \mathrm{A} \phi \mid @_{\circlearrowleft} \phi \\
& \left(\text { As a DL: } \mathcal{A L C H I O}+\left\{\circlearrowleft, \diamond, @_{\circlearrowleft}\right\} .\right)
\end{aligned}
$$

Models $M=(X, R, \pi)$ with (X, R) Kripke frame, $\pi: \mathrm{P} \cup \mathrm{N} \rightarrow \mathcal{P}(C)$ hybrid valuation.
$M, c, d \models \circlearrowleft$ iff $c=d$
$M, c, d \models{ }_{\diamond}$ iff Rdc
$M, c, d \models$ iff $R c d$
$M, c, d \models \diamond \phi$ iff $\exists e . R d e \wedge M, d, e \models \phi$
$M, c, d \models \phi$ iff $\exists e$. Red $\wedge M, d, e \models \phi$
$M, c, d \models \mathrm{~A} \phi$ iff $\forall e . M, e, e \models \phi$
iff $\forall e . e=e \rightarrow M, e, e \vDash \phi$
$M, c, d=@_{\circlearrowleft} \phi$ iff $M, c, c \models \phi$

Examples

(In DL notation)

The narcissist (Marx):

\exists loves. \circlearrowleft
The nice guy:

$$
\forall \mathrm{knows}^{-1} .(\text { sane } \rightarrow \text { ᄏlikes })
$$

What is this coalgebraically?

- $\mathcal{A L C H O}$ with general TBoxes \Longrightarrow Coalgebraic DL (Schröder/Pattinson/Kupke IJCAI 2009)
- O: clear
$-{ }_{\diamond}$ and less clear
- Inverses: even less.

Start with the Clear Part

$\mathrm{CDL}+\left\{\circlearrowleft, @_{\circlearrowleft}\right\}:$

$$
\phi::=\perp|i| \circlearrowleft|\neg \phi| \phi_{1} \wedge \phi_{2}|\circlearrowleft \phi| @_{i} \phi \mid @_{\circlearrowleft} \phi \quad(\varrho \in \Lambda)
$$

Prove FMP/EXPTIME via global caching:

- ϕ satisfiable, Σ closure of ϕ under subformulas, ᄀ, @, \circlearrowleft-instantiation
- $\Sigma^{\prime} \subseteq \Sigma$ closed formulas
- $K \subseteq @_{N} \Sigma^{\prime}$ @-theory
- $S_{K}=$ max. satisfiable subsets of Σ^{\prime} above K

Start with the Clear Part

$\mathrm{CDL}+\left\{\circlearrowleft, @_{\odot}\right\}:$

$$
\phi::=\perp|i| \circlearrowleft|\neg \phi| \phi_{1} \wedge \phi_{2}|\circlearrowleft \phi| @_{i} \phi \mid @_{\circlearrowleft} \phi \quad(\varrho \in \Lambda)
$$

Prove FMP/EXPTIME via global caching:

- ϕ satisfiable, Σ closure of ϕ under subformulas, $\neg, ~ @, ~ \circlearrowleft$-instantiation
- $\Sigma^{\prime} \subseteq \Sigma$ closed formulas
- $K \subseteq @_{N} \Sigma^{\prime}$ @-theory
- $S_{K}=$ max. satisfiable subsets of Σ^{\prime} above K
- S_{K} does not suffice to interpret
- Two different states can have the same Σ^{\prime}-theory (unless they are named)

Duplicating States

Put $K_{i}=\left\{\phi \mid @_{i} \phi \in K\right\}, S_{N}=\left\{K_{i} \mid i \in \Sigma\right\}$. Then

$$
\bar{S}_{K}=S_{N} \cup 2 \times\left(S_{K}-S_{N}\right) ; \quad I: \bar{S}_{K} \rightarrow S_{K}
$$

Pseudoextension $[\rho]_{X}$ for $x \in \bar{S}_{K}$:

$$
\begin{aligned}
{[\circlearrowleft]_{x} } & =\{x\} \\
{\left[@_{\circlearrowleft} \rho\right]_{x} } & =\left\{y \in \bar{S}_{K} \mid x \in[\rho]_{x}\right\} \\
{\left[@_{i} \rho\right]_{x} } & =\left\{y \in \bar{S}_{K} \mid K_{i} \in[\rho]_{K_{i}}\right\}=\left\{y \in \bar{S}_{K} \mid \rho(i) \in K_{i}\right\} \\
{[\circlearrowleft \rho]_{x} } & =\left\{y \in \bar{S}_{K} \mid \circlearrowleft \rho \in I(y)\right\} .
\end{aligned}
$$

\rightarrow Intuitively clear but technically too complex.

Match up with Open Formulas

For $A \subseteq \Sigma$ (open formulas)

$$
S_{K, A}=\text { max. sat. subsets of } \Sigma \text { over } K \cup @_{\circlearrowleft} A
$$

For $x \in \bar{S}_{K}$, define $r_{X}: S_{K, A} \rightarrow \bar{S}_{K}:$

$$
\begin{aligned}
& r_{A, \varepsilon}(B)= \begin{cases}K_{i} & \text { if } i \in B \text { for some } i \in N \\
\left(\varepsilon \leftrightarrow(\circlearrowleft \in B), B \cap \Sigma^{\prime}\right) & \text { otherwise. }\end{cases} \\
& r_{K_{i}}(B)= \begin{cases}K_{i} & i \in B \\
\left(\perp, B \cap \Sigma^{\prime}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

Key lemma:

$$
r_{x}^{-1}[\rho]_{x}=\left\{B \in S_{K, A} \mid \rho \in B\right\} .
$$

Inverses

- Generally: ??
- Seems clear at least for multigraphs:

$$
F: a \xrightarrow{n} b \quad P: b \xrightarrow{n} a
$$

- But: this is modally indistinguishable from causally coherent frames

$$
F: a \xrightarrow{>0} b \quad \text { iff } \quad P: b \xrightarrow{>0} a
$$

- (Aside: we have used this to prove the FMP for $\mathcal{A L C H I Q}$)
- Current summary: inverses are not coalgebraic

Another Look at

Can see \diamond as an instance of \diamond^{*}, where

$$
\begin{array}{r}
M, c, d \models \diamond \phi \text { iff } \exists e . R e d \wedge M, d, e \models \phi \\
M, c, d \models \diamond^{*} \phi \text { iff } \exists e . R e d \wedge M, c, e \models \phi
\end{array}
$$

Then ${ }_{\diamond}=\diamond^{*} \circlearrowleft$.
Can we add \diamond^{*} to the language?

I-me

(Marx)

- Single-variable fragment of $\mathcal{H}(@, \downarrow)$:-)
- I names the current state, later referred to as me.

Examples:

$$
\begin{aligned}
\text { narcissist } & =I . \exists \text { loves. } \text { me } \\
\text { niceGuy } & =I . \forall \text { knows }^{-1} .(\text { sane } \rightarrow \exists \text { likes. me }) \\
\text { stepMother } & =I . \exists \text { hasSpouse } . \exists \text { hasChild } . \text { hasChild }{ }^{-1} . \neg \text { me }
\end{aligned}
$$

Encoding I-me

- I distributes over Boolean operations
$-1 . \Delta \sim \diamond$
$-\diamond \sim \diamond^{*}$

Unrestricted I-me is undecidable!
Open problem: can we find suitable restrictions on I-me?

That's it.

Thanks for your attention!

