Social (complex) Networks Analysis

Complex NETWORKS BASICS

Rushed Kanawati

kanawati@sorbonne-paris-nord.fr
https://kanawati.fr
A
4
Université Sorbonne

Plan

(SOCIAL) INTERACTION NETWORKS

BACKGROUND: GRAPH THEORY

TOPOLOGICAL FEATURES OF COMPLEX NETWORKS

(RANDOM) NETWORKS MODELS

COMPLEX NETWORKS ANALYSIS TASKS

(1)
 (Social)
 Interaction
 Networks

Interaction networks

Graphs modelling direct/indirect interactions among actors.
Direct interactions:

- Friendship
- Proximity
- Message exchange
- ...

Indirect interactions:

- Affiliation share
- Preference share
- Similarity
-...

Social networks

Zachary Karate Club is a friendship-based network observed in the context of a Karate Club that have been split into two clubs after a dispute between the manger and the coach.

Social networks

Florentine families network : Marriage network among 16 Florentine families (values reflect wealth).

Social networks

Social network of tribes of the Gahuku-Gama alliance structure of the Eastern Central Highlands of New Guinea, from Kenneth Read (1954). The dataset contains a list of all links, where a link represents signed friendships between tribes.

Social networks

Advogato is a social community platform where users can explicitly express weighted trust relationships among themselves. The dataset contains a list of all of the user-to-user links.

$$
=-\frac{10}{2}
$$

Twitter network

Twitter Higgs Boson This dataset is used to study the spreading processes on Twitter before, during and after the announcement of the discovery of a new particle with the features of the elusive Higgs boson on 4th July 2012.

Co-authorship network

DBLP co-authorship network (1980-1984) authors are active for more than 10 years.

Movie rating network

MovieLens co-rating network: users that corate by rate 1 at least one movie

Other types of similar networks

http：／／networkrepository．com

Data \＆Network Collections．Find and interactively VISUALIZE and EXPLORE hundreds of network data

姣 ANIMAL SOCIAL NETWORKS	816	\rightleftarrows INTERACTION NETWORKS	（29）	SCIENTIFIC COMPUTING	11
〇 biological networks	（37）	ス infrastructure networks	（8）	cocial networks	77
brain networks	（116）	－LAbeled networks	105	f facebook networks	（114）
00° collaboration networks	（19）	massive network data	21	\square technological networks	12
ת cheminformatics	646	\％MISCELLANEOUS NETWORKS	2668	（\％）web graphs	36
55 citation networks	（4）	4 POWER NETWORKS	（8）	（1）dynamic networks	（115）
F ecology networks	（6）	（0）PROXIMITY NETWORKS	（13）	3 TEMPORAL Reachability	38
\＄economic networks	16	C generated graphs	221	IIII b boslib	36
\triangle email networks	（6）	．recommendation networks	36	剈 dimacs	78
C GRAPH 500	（8）	A road networks	（15）	（1）dimacsio	84
4 HETEROGENEOUS NETWORKS	15	\％RETWEET NETWORKS	（34）	且 non－relational ml data	（211）

Similarity graphs

ε - neighbourhood graph : $\{u, v\}$ are linked if $\operatorname{sim}(u, v) \geq \epsilon$
Complexity $\mathcal{O}\left(n^{2}\right)$
KNN-graph : Each item is connected to the K most similar items
Complexity $\mathcal{O}\left(n^{2}\right)$

Relative neighbourhood graph (RNG) :

Complexity $\mathcal{O}\left(n^{3}\right)$
$\{u, v\}$ are linked if $\operatorname{similarity}(u, v) \geq \max _{x}\{\operatorname{sim}(u, x), \operatorname{sim}(v, x)\} \forall x \neq u, v$

Similarity graphs: illustration

Figure: ϵ-threshold graph

Figure:
RNG graph

Figure:
Knn graph

Graphs

A graph $\mathbf{G}=\langle V(G), E(G)>$
$\mathbf{V}(\mathbf{G})$: set of \mathbf{V} ertices actors, nodes, sites, ...
$\mathbf{E (G)}$: set of Edges
links, ties, arcs, bonds ...

Graph: some types

Graph: some other types

https://en.wikipedia.org/wiki/Hyper graph

Throughout this course we only consider undirected binary simple graphs unless otherwise explicitly cited

Graph: Definitions

G is simple if it has no loops, neither multi-edges
$\mathrm{E}(\mathrm{G})=\left\{\left\{v_{i}, v_{j}\right\}: v_{i}, v_{j} \in V(G) \wedge v_{i} \neq v_{j}\right\}$
$\mathbf{n}_{\mathbf{G}}=|V(G)|$ is the order of G
$\mathbf{m}_{\mathbf{G}}=|E(G)|$ is the size of G
G is sparse if $m_{G} \sim n_{G}$ for $n_{G} \gg 1$

Graph: Illustration

$$
\begin{align*}
& V(G)=\{1,2,3,4,5\} \\
& n_{G}=5 \\
& E(G)=\{\{1,2\},\{1,3\},\{2,3\},\{2,4\},\{3,4\}\} \\
& m_{G}=5 \tag{5}
\end{align*}
$$

Graph: igraph code

```
>library(igraph)
>g <- graph(edges=c(1,2,2,3,1,3,3,4,2,4), n=5,
directed=FALSE)
>vcount(g) ## length(V(g))
[1] 5
>ecount(g) ## length(E(g))
[1] 5
```


Graph Density

Density = Probability of having a link between two randomly selected nodes
$\rho(G)=\frac{2 m_{G}}{n_{G}\left(n_{G}-1\right)} \in[0,1]$


```
> g <- graph(edges=c(1,2,2,3,1,3,3,4,2,4), n=5, directed=F'ALSE)
> graph.density(g)
\[
\rho(G)=0.5
\]
```


Complete Graph / Cliques

G is complete if each node is directly connected to each other node.
K_{n} : Complete graphs of order n


```
> k <-graph.full(5, directed=False)> graph.density(g)
> graph.density(k)
[1] 1
```

$$
\rho(G)=1
$$

Neighbourhood: definitions

$$
\begin{array}{ll}
\Gamma(v)=\left\{x_{i} \in V(G):\left\{v, x_{i}\right\} \in E(G)\right\} & \text { Open neighbourhood } \\
\overline{\Gamma(v)}=\Gamma(v) \cup\{v\} & \text { Closed neighbourhood } \\
d_{v}=|\Gamma(v)| & \text { Degree of vertex } v \\
\delta_{a v g}(G)=\frac{\sum_{v \in V(G)} d_{v}}{n_{G}}=\frac{2 m_{G}}{n_{G}} & \text { Average degree of } G
\end{array}
$$

Neighbourhood: Illustration

$$
\begin{aligned}
& \Gamma(2)=\{1,3,4\} \\
& \overline{\Gamma(} 2)=\{1,3,4\} \cup\{2\}=\{1,2,3,4\} \\
& d_{2}=|\Gamma(2)|=3 \\
& \delta_{\text {avg }}(G)=\frac{\Sigma_{v \in V(G)} d_{v}}{n_{G}}=\frac{2 m_{G}}{n_{G}}=\frac{2 * 5}{5}=2
\end{aligned}
$$

Neighbourhood: igraph code

```
> neighbors(g,2)
+ 3/5 vertices, from 18848b1:
[1] 1 3 4
> degree(g,2)
[1] 3
> degree(g)
[1] 2
```


Degree distribution

Scale-Free graph

Degree distribution: igraph code

```
> g <- graph.famous("zachary") # Karate club
> plot(g, vertex.label=NA, vertex.color="gold",
layout=layout_as_star)
> degree.distribution(g)
    [1] 0.00000000 0.02941176 0.32352941 0.17647059
0.17647059 0.08823529 0.05882353 0.00000000 0.00000000
[10] 0.02941176 0.02941176 0.00000000 0.0294117%
0.00000000 0.00000000 0.00000000 0.02941176 &.02941176
>plot(degree.distribution(g) , type="l")
> degree(g) %>% table() %>% plot(type="l")
[1] 0.00000000 0.02941176 \(0.32352941 \quad 0.17647059\) \(0.176470590 .088235290 .058823530 .00000000 \quad 0.00000900\)
[10] 0.02941176 0.02941176 0.00000000 0.02941176 \(0.000000000 .000000000 .00000000 \quad 0.02941176\) ¢.02941176 >plot(degree.distribution(g), type="l")
> degree(g) \%>\% table() \%>\% plot(type="l")
```


Degree distribution

Different graphs may have the same degree distribution

Paths: definitions

$$
\begin{gathered}
\sigma^{k}(u, v)=\left\{\left[x_{0}, x_{1}, \ldots, x_{k}\right]: x_{0}=u \wedge x_{k}=v \wedge\right. \\
\forall i, j x_{i}, x_{j} \in V(G) \wedge x_{i} \neq x_{j} \wedge \\
\left.\left\{x_{i}, x_{i+1}\right\} \in \mathrm{E}(\mathrm{G})\right\}
\end{gathered}
$$

Set of elementary paths of length k

 linking u and $v$$$
\begin{aligned}
& S P(u, v)=\min _{k} \sigma^{k}(u, v) \neq \phi \\
& d(u, v)=|\delta \in S P(u, v)| \\
& \delta(G)=\frac{\sum_{u, v \in V(G)} d(u, v)}{\binom{n}{2}}
\end{aligned}
$$

Set of shortest paths linking u and v
Geodesic distance between u and v

Average distance

Paths: Illustration

$$
\begin{aligned}
& \sigma^{3}(1,4)=\{[1,2,3,4],[1,3,2,4]\} \\
& \operatorname{SP}(1,4)=\sigma^{2}(1,4)=\{[1,3,4],[1,2,4]\} \\
& d(1,4)=2 \\
& \delta(G)=\frac{(1+1+2)+(1+1)+1}{6}=\frac{7}{6}=1.166667
\end{aligned}
$$

Paths: igraph code

```
>paths<-all_simple_paths(g, 1,4)
> paths[lapply(paths,length)==4] #\mp@subsup{\sigma}{}{3}(1,4)
[ [ 1] ]
+ 4/5 vertices, from 86325cf:
[1] 1 2 3 4
[ [ 2 ] ]
+ 4/5 vertices, from 86325cf:
[1]}1
```


Exercise : What is the complexity of computing all simple paths ?

Paths: igraph code

[^0]

Paths: Algorithms

Single source shortest paths

Graph type	Algorithm	Time complexity
Binary	Breadth First Search	$\mathcal{O}\left(n_{G}+m_{G}\right)$
Positive weighted undirected	Dijkstra (1959)	$\mathcal{O}\left(n_{G}^{2}\right)$
Positive weighted undirected	Fredman \& Tarjan (1987)	$\mathcal{O}\left(m_{G}+n_{G} \log \left(n_{G}\right)\right)$
\mathbb{N} weighted undirected	Thorup (1999)	$\mathcal{O}\left(m_{G}\right)$

Breadth First Search (BFS)

Paths: Algorithms

All pairs shortest paths

Graph type	Algorithm	Time complexity
Binary	Breadth First Search	$\mathcal{O}\left(n_{G}\left(n_{G}+m_{G}\right)\right)$
Positive weighted undirected	Floyed-Warshall (1962)	$\mathcal{O}\left(n_{G}^{3}\right)$
\mathbb{N} weighted undirected	Thorup (1999)	$\mathcal{O}\left(n_{G} m_{G}\right)$

Eccentricity, Diameter \& Radius

$$
\begin{aligned}
& \operatorname{ECC}(v \in V(G))=\max _{\{x \in V(G)\}} d(x, v) \\
& \operatorname{Diam}(G)=\max _{\{v \in V(G)\}} E C C(v) \\
& \operatorname{Radius}(G)=\min _{\{v \in V(G)\}} E C C(v) \\
& \operatorname{Radius}(G) \leq \operatorname{Diam}(G) \leq 2 \operatorname{Radius}(G) \quad \text { For connected graphs }
\end{aligned}
$$

Eccentricity, Diameter \& Radius: code igraph

```
> eccentricity(g)
[1] 2
> diameter(g)
[1] 3
> radius(g)
[1] 2
```


Connectedness

G is Connected iif $\forall v_{i}, v_{j} \in V(G) \exists k>1 ;\left|\sigma^{k}\left(v_{i}, v_{j}\right)\right| \neq \phi$
A graph may be composed of several connected components.
Giant component : a component with most of the vertices of the network.

Algorithm: BFS $\mathcal{O}\left(n_{G}+m_{G}\right)$

Connectedness: igraph code

```
> is_connected(g)
[1] FALSE
> clusters(g)
$membership
[1]
$csize
[1] 4 1
$no
[1] 2
```


Clustering coefficient

Probability of having a link between two nodes that share a common neighbour What is the probability that two friends of a given person are friends themselves?

Global version

$$
C C(G)=\frac{3 \times \# \Delta}{\# \wedge}
$$

Clustering coefficient: illustration

```
> transitivity(g). # global version
[1] 0.75
> transitivity(g,type="local")
[1] 1.0000000 0.6666667 0.6666667 1.0000000
NaN
```


Subgraphs

- G_{s} is a subgraph of G iif : $V\left(G_{s}\right) \subseteq V(G) \quad E\left(G_{s}\right) \subseteq E(G)$
- Induced subgraph : G_{s} is an induced subgraph of G on S if

$$
V\left(G_{S}\right)=S \subseteq V(G) \wedge E\left(G_{S}\right)=\left\{\left\{v_{i}, v_{j}\right\} \in E(G): v_{i}, v_{j} \in S\right\}
$$

```
> s <- c(1,2,3)
> gs <- induced.subgraph(g,s)
> plot(gs, vertex.color="gold", edge.curved=TRUE,
layout= layout_in_circle)
```


Special subgraphs : ego-network

An ego-network of a target node $v_{t} \in V(G)$ is the induced subgraph on the set $\left.\overline{\Gamma(} v_{t}\right)$

```
ego_network <- function(v,g){
    return(induced_subgraph(g,c(v,neighbors(g,v))))
}
```


Special subgraphs: cliques \& quasi cliques

- K-Clique : $G_{c}=\left(V\left(G_{c}\right) \subseteq V(G), E\left(G_{C}\right) \subseteq E(G)\right): n_{G_{c}}=k \wedge \rho\left(G_{c}\right)=1$
- K-plex : $G_{c}=\left(V\left(G_{c}\right) \subseteq V(G), E\left(G_{C}\right) \subseteq E(G)\right): \min _{\left\{v \in V\left(G_{c}\right)\right\}} d_{\left\{G_{c}\right\}}(v) \geq n_{G_{c}}-k$
- K-club : $G_{c}=\left(V\left(G_{c}\right) \subseteq V(G), E\left(G_{C}\right) \subseteq E(G)\right): \operatorname{Diam}\left(G_{c}\right) \leq k$
- K-core : $G_{c}=\left(V\left(G_{c}\right) \subseteq V(G), E\left(G_{C}\right) \subseteq E(G)\right) ; \forall v \in V\left(G_{c}\right): d_{v}^{\left\{G_{c}\right\}} \geq k$

Graph representation: Adjacency Matrix

2

$$
\begin{gathered}
a_{i j}=1 \text { if }\left\{v_{i}, v_{j}\right\} \in E(G) ; 0 \text { otherwise } \\
A_{G}=\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Adjacency Matrix: igraph code

```
>library(igraph)
```

>library(igraph)
>g <- graph(edges=c(1,2,2,3,1,3,3,4,2,4), n=5, directed=FALSE)
>g <- graph(edges=c(1,2,2,3,1,3,3,4,2,4), n=5, directed=FALSE)
>a <- as_adjacency_matrix(g)
>a <- as_adjacency_matrix(g)
> a
> a
5 x 5 sparse Matrix of class "dgCMatrix"
5 x 5 sparse Matrix of class "dgCMatrix"
[1,] . 1 1 . .
[1,] . 1 1 . .
[2,] 1 . 1 1 .
[2,] 1 . 1 1 .
[3,] 1 1 . 1.
[3,] 1 1 . 1.
[4,]. 1 1 . .
[4,]. 1 1 . .
[5,]
[5,]

Adjacency Matrix: igraph code


```
>a[1,5]<-1
> g <- graph_from_adjacency_matrix(a,
weighted=FALSE )
> plot(g, vertex.color="gold", edge.curved=TRUE,
layout= layout_in_circle)
```


Adjacency Matrix: some proprieties

- A_{G} is square symmetric matrix $\left(A_{G}=A_{G}^{t}\right)$
- $D_{G}=<d_{1}, \ldots, d_{n_{G}}>=A_{G} 1_{n_{G}}$
where $1_{n_{G}}$ is one vector of dimension n_{G}
- A_{G} has at most n real eigen values
- $\exists P: A_{G}=P^{-1} \Delta P$
${ }^{040} \cdot{ }^{202} A_{G}^{k}[i, j]$: number of de walks of length k^{k} between v_{i}, v_{j}

Graph representation: Incidence Matrix

2

$$
\begin{gathered}
b_{i j}=1 \text { if } v_{i} \text { is incident to edge } k ; \\
0 \text { otherwise }
\end{gathered}
$$

$$
B_{G}=\left(\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Graph representation: Edge List

The IJ-form of A_{G}
1,2
1,3
2,3
2,4
3,4

Suitable for sparse graphs

Small-World experiment (1967)

Satnley Milgram
(1933-1984)

- Goal: delivering letters to a Broker at Boston
- Source : Random selected persons from Boston area and also from Nebraska
- 217 letters have been sent : 64 has been received.
- Average path length : $\mathbf{5 . 2}$

Paul Erdös collaboration network

Paul Erdös

- A very productive Hungarian Mathematician who has published over 1500 scientific paper
- Erdös Number : distance from Erdös in co-authorship network
- https://www.oakland.edu/enp/
- Diameter of 2-Erdös is 5

Basic topological features

Social networks

Advogato

Social networks

Twitter Higgs Boson

SNA - Chapter 1 Complex Networks Basics (R. Kanawati)

Social networks

DBLP co-authorship network (1980-1984)

Social networks

Tribes of the Gahuku-Gama

Wikipedia network

Similarity network

Public sites accessibility in Bourget District, Paris Area

4

(Random)
Networks
Models

Erdös-Rényi model

$G_{\{n, p\}}$
n : number of nodes
p : probability of an edge
Complexity: $\mathcal{O}\left(n^{2}\right)$

Paul Erdös (1913-1996)

Alfréd Rényi (1921-1970)

Generated graphs properties (see lab 1)

- Low diameter
- Sparse
- Homogeneous degree distribution
- Low clustering coefficient

Molloy \& Reed Model

Force a heterogenous degree distribution, with random linking

- Low diameter
- Sparse
- Heterogenous degree distribution
- Low clustering coefficient
http://www.stevenstrogatz.com

Strogatz-Watts model

https://en.wikipedia.org/wiki/Duncan_J._Watts

Strogatz-Watts model

Generated graphs properties (see lab 1)

- Low diameter
- Sparse
- Homogeneous degree distribution
- High clustering coefficient

Preferential Attachment model

Preferential attachment law
Nodes are joining the network one by one.
The probability of node v_{i} to connect to a new comer is proportional to $d\left(v_{i}\right)$

Algorithm 2: BA generation (n nodes, $\left(n-n_{0}\right) \alpha+m_{0}$ edges)
Parameters: n, G, α (degree arriving node)
with G connected graph with n_{0} nodes and m_{0} edges
for i from $\left(n_{0}+1\right)$ to n do
add node i to G
num $=0 \quad / /$ num: number of links of i
while num $<\alpha$ do
draw $j \in \llbracket 0 ; i-1 \rrbracket$ with probability $\mathcal{P}(j)=\frac{k_{j}}{\sum_{d=0}^{1-1} k g}$
if $(i, j) \notin G$ then
add edge (i, j) in G
num++
end
end
end

Generated graphs properties (see lab 1)

- Low diameter
- Sparse
- Heterogenous degree distribution
- Very low clustering coefficient

Random Graph Models

	Sparsity	Low diameter	Hetergenous degree distribution	Hich clustering coefficint
Erdös-Renyei	∇	∇	x	x
Molloy \& Reed	∇	∇	∇	x
Strogatz \& Watts	∇	∇	X	∇
Albert \& Barbasi	∇	∇	v	x

Complex Networks Analysis

Node oriented tasks

- Compute node's importance
influence, vulnerability, Hub, Authority, ..
- Applications

Viral marketing
Influential nodes in social networks
Ranking web pages returned by a search engine
Important sites in the web
Where to vaccinate in priority to stop pandemic

Control nodes in human contact networks

Take home notes

Complex networks

- are everywhere
- are not random
- are not captured by a simple mathematical model
- share a set of untrivial topological features :
- sparsity
- low diameter
- heterogeneous degree distribution
- high clustering coefficient
- community structure
- analysis can allow gaining insights in a wide range of domains.

[^0]: > all_shortest_paths $(9,1,4)$
 \$res
 \$res[[1]]
 $+3 / 5$ vertices, from 86325cf:
 [1] 134
 \$res[[2]]
 $+3 / 5$ vertices, from 86325cf:
 [1] 124
 \$nrgeo \#shortest path length between source and each node
 [1] 111120
 \gg shortest.paths($9,1,4$)\# Geodesic distance
 [, 1]
 $[1] \quad$,
 > average.path.length(g,directed = FALSE, unconnected = TRUE)
 [1] 1.166667

