Similarités topologiques de nœuds dans les graphes de terrain

Rushed Kanawati

LIPN, CNRS UMR 7030
Université Paris Sorbonne Cité
http://lipn.fr/~kanawati
rushed.kanawati@lipn.univ-paris13.fr

January 21, 2014

Plan

Motivation & Applications

Similarités topologiques

Problèmes

1 Problème 1 : Mesurer la similarité entre deux nœuds d'un graphe

2 Problème 2 : Mesurer la similarité entre nœuds appartenant à deux graphes ayant le même nombre de nœuds (problème de mise en correspondance de graphes)

Applications

- 1 Prévision de labels/fonctions d'un nœud
- 2 Prévision de liens (recommendation)
- 3 Détection de communautés.

Prévision de labels/fonctions I

Problème

Soit G un graph pour lequel on connait la classification/fonction de certains de ses nœuds.

Nous cherchons à trouver les labels/fonctions des nœuds non classifiés.

Prévision de labels/fonctions II

Approche

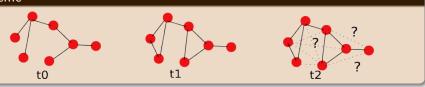
1 Initialiser une matrice de similarité S_{ii} entre les nœuds avec :

$$S_{ij} = \begin{cases} s_{ij} & \text{la similarit\'e fonctionnelle si i et j sont classifi\'es} \\ \delta_{ij} & \text{si i ou j n'est pas encore classifi\'e} \end{cases}$$

2 Mettre à jour les entrées S_{ij} d'une manière itérative pour i ou j non classifié en appliquant la règle : la classe d'un nœud i est la classe du nœud le plus similaire à i

Prévision de liens

Problème

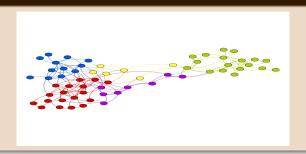


Approche

- 1 Soit $G_t = \langle V, E \rangle$ un graphe **connexe**.
- 2 Soit $sim^m(x, y)$ une mesure de similarité dyadique,
 - Soit $\mathcal{L} = \{(x, y) : x \in V, y \in V, (x, y) \notin E\}$
 - 4 On trie \mathcal{L} en fonction de sim^m , le k-top couples sont prédits.
- 5 Evaluation : Précision/ Rappel en fonction des liens établis dans G_{t+1} .

Détection de communautés

Problème



Approche

- Calculer la matrice de similarité $S_{ij} = sim^m(i,j)$
- 2 Appliquer un algorithme de clustering sur S_{ij} (ex. K-means, DBSCAN, CAH)

Notations: Rappel

Un graphe $G = \langle V, E \subseteq V \times V \rangle$:

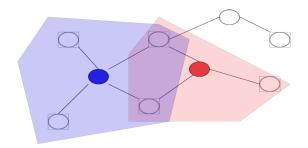
V est l'ensemble de nœudes (i.e. acteurs sociaux) E est l'ensemble de liens sociaux.

Notations:

- ❖ A_G est la matrice d'adjacence de G: $a_{ij} \neq 0$ si les nœuds $(v_i, v_i) \in E$, 0 sinon.
- $\Gamma(v)$ est l'ensemble de voisins de v.
 - $\Gamma(v) = \{x \in V : (x, v) \in E\}.$
- ♦ Le degré d'un nœud $d(v) = || \Gamma(v) ||$
- d(x,y) est la distance géodésique entre les deux nœuds x et y.

Similarité structurelle : Définition I

- ◆ Chaque nœud est similaire à lui même.
- Deux nœuds sont similaires si ils ont des voisins similaires.



Mesures centrées voisinage commun I

Voisins communs (VC)

$$sim^{VC}(x, y) = \parallel \Gamma(x) \cap \Gamma(y) \parallel$$

 A_G^2

Jaccard

$$sim^{Jaccard}(x,y) = \frac{\|\Gamma(x) \cap \Gamma(y)\|}{\|\Gamma(x) \cup \Gamma(y)\|}$$

igraph.Graph.similarity_jaccard

Mesures centrées voisinage commun II

Cosine (ou indice de Salton)

$$sim^{cos}(x,y) = \frac{\|\Gamma(x) \cap \Gamma(y)\|}{\sqrt{\|\Gamma(x)\| \times \|\Gamma(y)\|}}$$

Adamic-Adar (AA)

$$sim^{AA}(x,y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log(\|\Gamma(z)\|)}$$

 $igraph. Graph. similarity_inverse_log_weighted$

Mesures centrées voisinage commun III

Allocation de ressource (RA)

$$sim^{RA}(x,y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\|\Gamma(z)\|}$$

Densité du voisinage commun (ND)

$$sim^{ND}(x,y) = \frac{2 \times \|\{(u,v) \in Eu, v \in \Gamma(x) \cap \Gamma(y)\}\|}{\|\Gamma(x) \cap \Gamma(y)\| \times (\|\Gamma(x) \cap \Gamma(y)\| - 1)}$$

Sørensen Index (Dice)

$$sim^{Sørensen}(x,y) = \frac{2 \times \|\Gamma(x) \cap \Gamma(y)\|}{\|\Gamma(x)\| + \|\Gamma(y)\|}$$

igraph.Graph.similarity_dice

Mesures centrées voisinage commun IV

HPI (Hub Promoted Index)

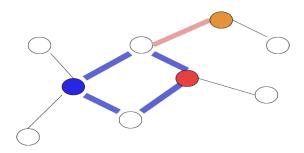
$$sim^{HPI}(x,y) = \frac{\|\Gamma(x) \cap \Gamma(y)\|}{\min(\|\Gamma(x)\|, \|\Gamma(y)\|)}$$

HDI (Hub Depressed Index)

$$sim^{HPI}(x, y) = \frac{\|\Gamma(x) \cap \Gamma(y)\|}{max(\|\Gamma(x)\|, \|\Gamma(y)\|)}$$

Similarité structurelle : Définition II

- Chaque nœud est similaire à lui même.
- Deux nœuds sont similaires si ils sont connectés par des chemins courts.



Mesures centrées chemins

- 1 Mesures basées sur les distances géodésiques
- 2 Mesures basées sur les marches aléatoires

Mesures centrées chemins I

Proximité

$$sim^{proxi}(x,y) = \frac{1}{dist(x,y)}$$

igraph.Graph.shortest_paths

Katz

- $sim^{katz}(x,y) = \sum_{l=1}^{\infty} \beta^l \times \| \sigma^l(x,y) \|$
- $\sigma^{I}(x,y)$: nombre de chemins reliant x à y de longueur I.
- β << 1
 </p>
- Version Matricielle : $sim^{Katz} = (I \beta \times A_G)^{-1} I$
- Version tronquée : $sim^{t-katz} = \sum_{l=1}^{l_{max}} \beta^l A^l$

Mesures centrées chemins II

Indice de chemins locaux (LPI)

$$sim^{LPI} = A^2 + \epsilon A^3$$

Intermédiarité de chemin (PBC)

Soit $\sigma^{dist(x,y)}(x,y)$ l'ensemble de plus courts chemins reliant x et y

l'intermédiarité d'un chemin $p \in \sigma^{dist(x,y)}(x,y)$:

$$BC(p) = \sum_{i,j \in V} \frac{\|\sigma^{dist(i,j)}(i,j|p)\|}{\|\sigma^{dist(i,j)}(i,j)\|}$$

$$sim^{PBC}(x, y) = \max_{p \in \sigma^{dist(x, y)}(x, y)} BC(p)$$

Mesures basées sur les marches aléatoires I

Temps de commutation moyen (CT)

Le temps moyen d'un marcheur alésoir d'aller de x à y puis revenir à x

$$sim^{CT}(x,y) = \frac{1}{L_{xx}^{+} + L_{yy}^{+} + 2L_{xy}^{+}}$$

où $L^+ = (D - A)^{-1}$ est le pseudo-inverse de la matrice laplacienne du graphe cible.

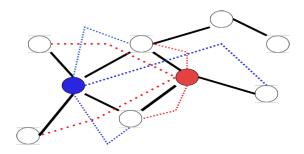
Indice de forêt de marices (MFI)

Le ratio du nombre d'arbres recouvrants (de marches aléatoires) enracinés dans x et contant y sur le nombre total de forêts recouvrant dans le graphe.

$$sim^{MFI} = (I + L)^{-1}$$

Similarité structurelle : Définition III

- Chaque nœud est similaire à lui même.
- Deux nœuds sont similaires si chacun est similaire aux voisins de l'autre.



TP 2: I

- 1 Sur le site du cours; télécharger les deux graphes (en mode pickle) : dblp72-75 et dplp72-77
- 2 Ecrire une fonction python/igraph get_giant_cc qui permet de générer le sous-graphe d'un graphe correspondant au plus grand composante connexe d'un graphe passé en paramètre.
- 3 Ecrire une fonction qui permet de retrouver les nouveaux liens qui apparaissent dans le graphe dplp72-77 qui lient des nœuds qui se trouvent dans le plus grand composante connexe de dblp72-75
- 4 Développer des fonctions python/igraph pour le calcul des similarités suivantes : RA, ND, HPI, HDI, Katz tronquée, LPI

TP 2: II

Comparer les précisions de prévision de liens appliqué sur le graphe dblp72-75, obtenus par l'emploi de similarité développées dans la question précédente, et aussi les similarités : Jaccard, Adamic-Adar, Dice. La précision est à calculer en fonction des liens retrouvés dans la question 2