Box-Total Dual Integrality and Edge-Connectivity

Michele Barbato • Roland Grappe •
Mathieu Lacroix • Emiliano Lancini

Received: date / Accepted: date

Abstract

Given a graph $G=(V, E)$ and an integer $k \geq 1$, the graph $H=(V, F)$, where F is a family of elements (with repetitions allowed) of E, is a k-edgeconnected spanning subgraph of G if H cannot be disconnected by deleting any $k-1$ elements of F. The convex hull of incidence vectors of the k-edge-connected subgraphs of a graph G forms the k-edge-connected subgraph polyhedron of G. We prove that this polyhedron is box-totally dual integral if and only if G is seriesparallel. In this case, we also provide an integer box-totally dual integral system describing this polyhedron.

Keywords Box-total dual integrality • k-edge connected subgraph • Polyhedron . Series-parallel graph

1 Introduction

Totally dual integral systems, introduced in the late 70 's, are strongly connected to min-max relations in combinatorial optimization [34. A rational system of linear inequalities $A x \geq b$ is totally dual integral (TDI) if the maximization problem in the linear programming duality

$$
\min \left\{c^{\top} x: A x \geq b\right\}=\max \left\{b^{\top} y: A^{\top} y=c, y \geq \mathbf{0}\right\}
$$

[^0]admits an integer optimal solution for each integer vector c such that the optimum is finite. Every rational polyhedron can be described by a TDI system [28]. For instance, the polyhedron $\{x: A x \geq b\}$ can be described by TDI systems of the form $\frac{1}{q} A x \geq \frac{1}{q} b$ for certain positive q. However, a polyhedron is integer if and only if it can be described by a TDI system with only integer coefficients [23,28]. Integer TDI systems yield min-max results that may have combinatorial interpretation.

A stronger property is box-total dual integrality: a system $A x \geq b$ is box-totally dual integral (box-TDI) if $A x \geq b, \ell \leq x \leq u$ is TDI for all rational vectors ℓ and u (possibly with infinite components). General properties of such systems can be found in Cook [12] and Chapter 22.4 of Schrijver [34]. Note that, although every rational polyhedron can be described by a TDI system, not every polyhedron can be described by a box-TDI system. A polyhedron which can be described by a box-TDI system is called a box-TDI polyhedron. As proved by Cook [12, every TDI system describing such a polyhedron is actually box-TDI.

Recently, several new box-TDI systems have been exhibited. Chen, Ding, and Zang [6] characterized box-Mengerian matroid ports. Ding, Tan, and Zang 18 characterized the graphs for which the Edmonds' system defining the matching polytope [21] is box-TDI. Ding, Zang, and Zhao [19] exhibited new subclasses of box-perfect graphs. Cornaz, Grappe, and Lacroix [14] provided several box-TDI systems in series-parallel graphs. Barbato, Grappe, Lacroix, Lancini, and Wolfler Calvo [3] gave the minimal box-TDI system with integer coefficients for the flow cone for series-parallel graphs. For these graphs, Chen, Ding, and Zang [7] provided a box-TDI system describing the 2-edge-connected spanning subgraph polyhedron.

In this paper, we are interested in integrality properties of systems related to k-edge-connected spanning subgraphs. A k-edge-connected spanning subgraph of a graph $G=(V, E)$ is a graph $H=(V, F)$, with F being a collection of elements of E where each element can appear several times, that remains connected after the removal of any $k-1$ edges.

These objects model a kind of failure resistance of telecommunication networks. More precisely, they represent networks which remain connected when $k-1$ links fail. The underlying network design problem is the k-edge-connected spanning subgraph problem (k-ECSSP): given a graph G and positive edge costs, find a k-edgeconnected spanning subgraph of G of minimum cost. Special cases of this problem are related to classical combinatorial optimization problems. The 2-ECSSP is a well-studied relaxation of the traveling salesman problem [24] and the 1-ECSSP is nothing but the well-known minimum spanning tree problem. While this latter is polynomial-time solvable, the k-ECSSP is NP-hard for every fixed $k \geq 2$ [27].

Different algorithms have been devised in order to deal with the k-ECSSP, such as branch-and-cut procedures [4] [15], approximation algorithms [8] [26], cutting plane algorithms 30, and heuristics [11. In 36, Winter introduced a linear-time algorithm solving the 2-ECSSP on series-parallel graphs. Most of these algorithms rely on polyhedral considerations.

Given a graph $G=(V, E)$, the convex hull of incidence vectors of all the families of E inducing a k-edge-connected spanning subgraph of G forms a polyhedron, hereafter called the k-edge-connected spanning subgraph polyhedron of G and denoted by $P_{k}(G)$. Cornuéjols, Fonlupt, and Naddef [16] gave a system describing $P_{2}(G)$ when G is series-parallel. Vandenbussche and Nemhauser 35] characterized
in terms of forbidden minors the graphs for which this system describes $P_{2}(G)$. Chopra [10 described $P_{k}(G)$ for outerplanar graphs when k is odd. Didi Biha and Mahjoub [17 extended these results to series-parallel graphs for all $k \geq 2$. By a result of Baïou, Barahona, and Mahjoub [1], the inequalities in these descriptions can be separated in polynomial time, which implies that the k-ECSSP is solvable in polynomial time for series-parallel graphs.

When studying k-edge-connected spanning subgraphs of a graph G, we can add the constraint that each edge of G can be taken at most once. We denote the corresponding polyhedron by $Q_{k}(G)$. Barahona and Mahjoub [2] described $Q_{2}(G)$ for Halin graphs. Further polyhedral results for the case $k=2$ have been obtained by Boyd and Hao [5] and Mahjoub [32] 33]. Grötschel and Monma [29] described several classes of facets of $Q_{k}(G)$. Moreover, Fonlupt and Mahjoub [25] extensively studied the extremal points of $Q_{k}(G)$ and characterized the class of graphs for which this polytope is described by cut inequalities and $\mathbf{0} \leq x \leq \mathbf{1}$.

The polyhedron $P_{1}(G)$ is known to be box-TDI for all graphs 31. For seriesparallel graphs, the system given in 16] describing $P_{2}(G)$ is not TDI. Chen, Ding, and Zang [7] showed that dividing it by 2 yields a TDI system for such graphs. Actually, they proved that this system is box-TDI if and only if the graph is series-parallel.

Contributions. Our starting point is the result of Chen, Ding, and Zang [7]. First, their result implies that $P_{2}(G)$ is a box-TDI polyhedron for series-parallel graphs. However, this leaves open the question of the box-TDIness of $P_{2}(G)$ for non seriesparallel graphs. More generally, for which integers k and graphs G is $P_{k}(G)$ a box-TDI polyhedron?

We answer this question by proving that, for $k \geq 2, P_{k}(G)$ is a box-TDI polyhedron if and only if G is series-parallel. Note that this work is one of the first ones that proves the box-TDIness of a polyhedron without giving a box-TDI system describing it. Instead, our proof is based on the recent matricial characterization of box-TDI polyhedra given by Chervet, Grappe, and Robert 9 .

By 34, Theorem 22.6], there exists a TDI system with integer coefficients describing $P_{k}(G)$. For series-parallel graphs, the system provided by Chen, Ding, and Zang [7] has noninteger coefficients. Moreover, the system given by Didi Biha and Mahjoub 17 describing $P_{k}(G)$ when k is even is not TDI. When $k \geq 2$ and G is series-parallel, which combinatorial objects yield an integer TDI system describing $P_{k}(G)$?

We answer this question by exhibiting integer TDI systems based on multicuts. When k is even, we use multicuts to provide an integer TDI system for $P_{k}(G)$ when G is series-parallel. Our proof relies on the standard constructive characterization of series-parallel graphs. When k is odd, we prove that the description of $P_{k}(G)$ given by Didi Biha and Mahjoub [17] based on multicuts is TDI if and only if the graph is series-parallel. For this case, our proof relies on new properties of the set of degree 2 vertices in simple series-parallel graphs stated in Lemma 2.3 .

The box-totally dual integral characterization of $P_{k}(G)$ implies that these systems are actually box-TDI if and only if G is series-parallel. By definition of box-TDIness, adding $x \leq \mathbf{1}$ to these systems yields box-TDI systems for $Q_{k}(G)$ for series-parallel graphs.

Outline. In Section 2 we give the definitions and preliminary results used throughout the paper. In Section 3] we prove that, for $k \geq 2, P_{k}(G)$ is a box-TDI polyhedron if and only if G is series-parallel. In Section 4 we provide a TDI system with integer coefficients describing $P_{k}(G)$ when G is series-parallel and $k \geq 2$ is even. In Section 5, we show the TDIness of the system given by Didi Biha and Mahjoub [17] that describes $P_{k}(G)$ for G series-parallel and $k \geq 3$ odd.

2 Definitions and Preliminary Results

This section is devoted to the definitions, notation, and preliminary results used throughout the paper.

2.1 Graphs and Combinatorial Objects

Given a set E, a family of E is a collection of elements of E where each element can appear multiple times. The incidence vector of a family F of E is the vector χ^{F} of \mathbb{Z}_{+}^{E} such that e^{\prime} s coordinate is the multiplicity of e in F for all e in E. Since there is a bijection between families and their incidence vectors, we will often use the same terminology for both.

Given a graph $G=(V, E)$ and the incidence vector $z \in \mathbb{Z}_{+}^{E}$ of a family F of E, $G(z)$ denotes the graph (V, F).

Let $G=(V, E)$ be a loopless undirected graph. Two edges of G are parallel if they share the same endpoints, and G is simple if it does not have parallel edges. A graph is 2-connected if it cannot be disconnected by removing a vertex. The graph obtained from two disjoint graphs by identifying two vertices, one of each graph, is called a 1-sum. A 2 -connected graph is trivial if it is composed of a single edge. We denote by K_{n} the complete graph on n vertices, that is the simple graph with n vertices and one edge between each pair of vertices. Given an edge e of G, we denote by $G \backslash e$ (respectively G / e) the graph obtained by removing (respectively contracting) the edge e, where contracting an edge $u v$ consists in removing it and identifying u and v. Similarly, we denote by $G \backslash v$ the graph obtained form G by removing the vertex v, and by $G[W]$ the graph induced by W, that is, the graph obtained by removing all vertices not in the vertex subset W. Given a vector $x \in \mathbb{R}^{E}$ and a subgraph H of G, we denote by $x_{\mid H}$ the vector obtained by restricting x to the components associated with the edges of H.

A subset of edges of G is called a circuit if it induces a connected graph in which every vertex has degree 2. Given a subset U of V, the cut $\delta(U)$ is the set of edges having exactly one endpoint in U. A bond is a minimal nonempty cut. Given a partition $\left\{V_{1}, \ldots, V_{n}\right\}$ of V, the set of edges having endpoints in two distinct V_{i} 's is called a multicut and is denoted by $\delta\left(V_{1}, \ldots, V_{n}\right)$. We denote respectively by \mathcal{M}_{G} and \mathcal{B}_{G} the set of multicuts and the set of bonds of G. For every multicut M, there exists a unique partition $\left\{V_{1}, \ldots, V_{d_{M}}\right\}$ of vertices of V such that $M=\delta\left(V_{1}, \ldots, V_{d_{M}}\right)$, and $G\left[V_{i}\right]$ is connected for all $i=1, \ldots, d_{M}$. We say that d_{M} is the order of M and $V_{1}, \ldots, V_{d_{M}}$ are the classes of M. Multicuts are characterized in terms of circuits, as stated in the following.

Lemma 2.1 ([13]) A set of edges M is a multicut if and only if $|M \cap C| \neq 1$ for all circuits C of G.

We denote the symmetric difference of two sets S and T by $S \triangle T$. It is wellknown that the symmetric difference of two cuts is a cut. Moreover, the following result holds.

Observation 2.2 Let G be a graph, v be a degree 2 vertex of G, and M be a multicut such that $|M \cap \delta(v)|=1$. Then, $M \cup \delta(v)$ and $M \triangle \delta(v)$ are multicuts. Moreover, $d_{M \cup \delta(v)}=d_{M}+1$, and $d_{M \triangle \delta(v)}=d_{M}$.

A graph is series-parallel if its nontrivial 2-connected components can be constructed from a circuit of length 2 by repeatedly adding edges parallel to an existing one, and subdividing edges, that is, replacing an edge by a path of length two. Equivalently, series-parallel graphs are those having no K_{4}-minor [20].

By construction, simple nontrivial 2-connected series-parallel graphs have at least one degree 2 vertex. Moreover, these vertices satisfy the following.

Lemma 2.3 For a simple nontrivial 2-connected series-parallel graph, at least one of the following holds:
(i) two degree 2 vertices are adjacent,
(ii) a degree 2 vertex belongs to a circuit of length 3,
(iii) two degree 2 vertices belong to the same circuit of length 4 .

Proof We proceed by induction, the base case is K_{3} for which (i) holds.
Let G be a simple 2-connected series-parallel graph. Since G is simple, it can be built from a series-parallel graph H by subdividing an edge e into a path f, g. Let v be the degree 2 vertex added with this operation. By the induction hypothesis, either H is not simple, or one among (ii), (iii), and (iii) holds for H. Hence, there are four cases.
Case 1: H is not simple. Since G is simple, e is parallel to exactly one edge h. Hence, f, g, h is a circuit of G length 3 containing v, thus (iii) holds for G.
Case 2: (i) holds for H. Then, it holds for G.
Case 3: (iii) holds for H. Let C be a circuit of H of length 3 containing a degree 2 vertex, say w. If $e \notin C$, then (iii) holds for G. Otherwise, by subdividing e, we obtain a circuit of length 4 containing v and w, and hence (iii) holds for G.
Case 4: (iiii) holds for H. Let C be a circuit of H of length 4 containing two degree 2 vertices. If $e \notin C$, then (iiii) holds for G. Otherwise, by subdividing e, we obtain a circuit of length 5 containing three degree 2 vertices. Then, at least two of them are adjacent, and so (i) holds for G.

2.2 Box-Total Dual Integrality

Let $A \in \mathbb{R}^{m \times n}$ be a full-row rank matrix. This matrix is equimodular if all its $m \times m$ non-zero determinants have the same absolute value. The matrix A is facedefining for a face F of a polyhedron $P \subseteq \mathbb{R}^{n}$ if $\operatorname{aff}(F)=\left\{x \in \mathbb{R}^{n}: A x=b\right\}$ for some $b \in \mathbb{R}^{m}$, where aff (F) denotes the affine hull of F. Such matrices are the face-defining matrices of P.

Theorem 2.4 ([9, Theorem 1.4]) Let P be a polyhedron. Then, the following statements are equivalent:
(i) P is box-TDI.
(ii) Every face-defining matrix of P is equimodular.
(iii) Each face of P has an equimodular face-defining matrix.

In Theorem 2.4, the equivalence of conditions (ii) and (iii) follows from the following observation.

Observation 2.5 ([9, Observation 4.10]) Let F be a face of a polyhedron. If a face-defining matrix for F is equimodular, then so are all the face-defining matrices for F.

We will also use the following.
Observation 2.6 Let $A \in \mathbb{R}^{I \times J}$ be a full row rank matrix and $j \in J$. If A is equimodular, then so are following two matrices:
(i) $\left[\begin{array}{c}A \\ \pm \chi^{j}\end{array}\right]$ if it is full row-rank,
(ii) $\left[\begin{array}{cc}A & \mathbf{0} \\ \pm \chi^{j} & \pm 1\end{array}\right]$.

Observation 2.7 ([9, Observation 4.11]) Let $P \subseteq \mathbb{R}^{n}$ be a polyhedron and let $F=\{x \in P: B x=b\}$ be a face of P. If B has full-row rank and $n-\operatorname{dim}(F)$ rows, then B is face-defining for F.

2.3 The k-Edge-Connected Spanning Subgraph Polyhedron

Note that $P_{k}(G)$ is the dominant of the convex hull of incidence vectors of all the families of E containing at most k copies of each edge and inducing a k -edge-connected spanning subgraph of G. Since the dominant of a polyhedron is a polyhedron, $P_{k}(G)$ is a full-dimensional polyhedron even though it is the convex hull of an infinite number of points.

From now on, we assume that $k \geq 2$. Didi Biha and Mahjoub 17 gave a complete description of $P_{k}(G)$ for all k, when G is series-parallel.

Theorem 2.8 ([17]) Let G be a series-parallel graph and h be a positive integer. Then, $P_{2 h}(G)$ is described by:

$$
\text { (1) }\left\{\begin{array}{l}
x(D) \geq 2 h \quad \text { for all cuts } D \text { of } G, \tag{1a}\\
x \geq \mathbf{0},
\end{array}\right.
$$

and $P_{2 h+1}(G)$ is described by:

$$
\text { (2) }\left\{\begin{array}{l}
x(M) \geq(h+1) d_{M}-1 \quad \text { for all multicuts } M \text { of } G, \tag{2a}\\
x \geq \mathbf{0}
\end{array}\right.
$$

Since the incidence vector of a multicut $\delta\left(V_{1}, \ldots, V_{\ell}\right)$ of order ℓ is the halfsum of the incidence vectors of the bonds $\delta\left(V_{1}\right), \ldots, \delta\left(V_{\ell}\right)$, we can deduce another description of $P_{2 h}(G)$.

Corollary 2.9 Let G be a series-parallel graph and h be a positive integer. Then, $P_{2 h}(G)$ is described by:

$$
\text { (3) }\left\{\begin{array}{l}
x(M) \geq h d_{M} \quad \text { for all multicuts } M \text { of } G, \tag{3a}\\
x \geq \mathbf{0} .
\end{array}\right.
$$

We call constraints 2a and 3a partition constraints. A multicut M is tight for a point of $P_{k}(G)$ if this point satisfies with equality the partition constraint 2a (respectively (3a) associated with M when k is odd (respectively even). Moreover, M is tight for a face F of $P_{k}(G)$ if it is tight for all the points of F.

The following results give some insights on the structure of tight multicuts.
Theorem 2.10 ([17, Theorem 2.3 and Lemma 3.1]) Let x be a point of $P_{2 h+1}(G)$, and let $M=\delta\left(V_{1}, \ldots, V_{d_{M}}\right)$ be a multicut tight for x. Then, the following hold:
(i) if $d_{M} \geq 3$, then $x\left(\delta\left(V_{i}\right) \cap \delta\left(V_{j}\right)\right) \leq h+1$ for all $i \neq j \in\left\{1, \ldots, d_{M}\right\}$.
(ii) $G \backslash V_{i}$ is connected for all $i=1, \ldots, d_{M}$.

Lemma 2.11 Let v be a degree 2 vertex of G and M be a multicut of G strictly containing $\delta(v)=\{u v, v w\}$. If M is tight for a point of $P_{k}(G)$ with $k \geq 2$, then both $M \backslash u v$ and $M \backslash v w$ are multicuts of G of order $d_{M}-1$.

Proof It suffices to show that u and w belong to different classes of $M=\delta\left(v, V_{2}, \ldots, V_{d_{M}}\right)$. Suppose that $u, w \in V_{2}$. Then M is the union of the two multicuts $\delta(v)$ and $M^{\prime}=\delta\left(v \cup V_{2}, \ldots, V_{d_{M}}\right)$. Since $d_{\delta(v)}+d_{M^{\prime}}=d_{M}+1$, the sum of the partition inequalities associated with $\delta(v)$ and M^{\prime} implies that the partition inequality associated with M is tight for no point of $P_{k}(G)$ for every $k \geq 2$.

Chopra [10] gave sufficient conditions for an inequality to be facet-defining for $P_{k}(G)$. The following proposition is a direct consequence of Theorems 2.4 and 2.6 of [10].
Lemma 2.12 Let G be a connected graph having a K_{4}-minor. Then, there exist two disjoint nonempty subsets of edges of G, E^{\prime} and $E^{\prime \prime}$, and a rational b such that

$$
\begin{equation*}
x\left(E^{\prime}\right)+2 x\left(E^{\prime \prime}\right) \geq b \tag{4}
\end{equation*}
$$

is a facet-defining inequality of $P_{2 h+1}(G)$.

Chen, Ding, and Zang [7] provided a box-TDI system for $P_{2}(G)$ for seriesparallel graphs.
Theorem 2.13 ([7, Theorem 1.1]) The system:

$$
\left\{\begin{array}{l}
\frac{1}{2} x(D) \geq 1 \quad \text { for all cuts } D \text { of } G, \tag{5}\\
x \geq \mathbf{0}
\end{array}\right.
$$

is box-TDI if and only if G is a series-parallel graph.
This result proves that the polyhedron $P_{2}(G)$ is box-TDI for all series-parallel graphs, and gives a TDI system describing this polyhedron in this case. However, Theorem 2.13 is not sufficient to state that $P_{2}(G)$ is a box-TDI polyhedron if and only if G is series-parallel.

3 Box-TDIness of $P_{k}(G)$

In this section we show that, for $k \geq 2, P_{k}(G)$ is a box-TDI polyhedron for a connected graph G if and only if G is series-parallel. Since $P_{k}(G)=\emptyset$ when G is not connected, we assume from now on that G is connected.

When $k \geq 2, P_{k}(G)$ is not always box-TDI, as stated in Lemma 3.1 Indeed, by Theorem 2.4 if a polyhedron has a nonequimodular face-defining matrix, then it is not box-TDI. The proof of Lemma 3.1 exhibits such a matrix when G has a K_{4}-minor. This follows from the existence of a particular facet-defining inequality when k is odd, as shown by Chopra [10. When k is even, we build a nonequimodular face-defining matrix based on the structure of cuts in a K_{4}-minor.

Lemma 3.1 For $k \geq 2$, if $G=(V, E)$ has a K4-minor, then $P_{k}(G)$ is not boxTDI.

Proof When $k=2 h+1$ is odd, Lemma 2.12 shows that there exists a facetdefining inequality that is described by a nonequimodular matrix as $P_{k}(G)$ is full-dimensional. Thus, $P_{k}(G)$ is not box-TDI by Statement (ii) of Theorem 2.4

We now prove the case when k is even. Since G has a K_{4}-minor, there exists a partition $\left\{V_{1}, \ldots, V_{4}\right\}$ of V such that $G\left[V_{i}\right]$ is connected and $\delta\left(V_{i}, V_{j}\right) \neq \emptyset$ for all $i<j \in\{1, \ldots, 4\}$. We now prove that the matrix A whose three rows are $\chi^{\delta\left(V_{i}\right)}$ for $i=1,2,3$ is a face-defining matrix of $P_{k}(G)$ which is not equimodular. This will end the proof by Statement (iii) of Theorem 2.4 .

Let $e_{i j}$ be an edge in $\delta\left(V_{i}, V_{j}\right)$ for all $i<j \in\{1, \ldots, 4\}$. The submatrix of A formed by the columns associated with edges $e_{i j}$ is the following:

$$
\begin{gathered}
\\
\chi^{\delta\left(V_{1}\right)} \\
\chi^{\delta\left(V_{2}\right)} \\
\chi^{\delta\left(V_{3}\right)}
\end{gathered} \begin{array}{cccccc}
e_{12} & e_{13} & e_{23} & e_{14} & e_{24} & e_{34} \\
{\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]}
\end{array}
$$

The matrix A is not equimodular as the first three columns form a matrix of determinant -2 whereas the last three ones give a matrix of determinant 1.

By Observation 2.7, to show that A is face-defining, it is enough to exhibit $|E|-2$ affinely independent points of $P_{k}(G)$ satisfying $x\left(\delta\left(V_{i}\right)\right)=k$ for $i=1,2,3$.

Let $D_{1}=\left\{e_{12}, e_{14}, e_{23}, e_{34}\right\}, D_{2}=\left\{e_{12}, e_{13}, e_{24}, e_{34}\right\}, D_{3}=\left\{e_{13}, e_{14}, e_{23}, e_{24}\right\}$ and $D_{4}=\left\{e_{14}, e_{24}, e_{34}\right\}$. First, we define the points $S_{j}=\sum_{i=1}^{4} k \chi^{E\left[V_{i}\right]}+\frac{k}{2} \chi^{D_{j}}$, for $j=1,2,3$, and $S_{4}=\sum_{i=1}^{4} k \chi^{E\left[V_{i}\right]}+k \chi^{D_{4}}$. Note that they are affinely independent.

Now, for each edge $e \notin\left\{e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\right\}$, we construct the point S_{e} as follows. When $e \in E\left[V_{i}\right]$ for some $i=1, \ldots, 4$, we define $S_{e}=S_{4}+\chi^{e}$. Adding the point S_{e} maintains affine independence as S_{e} is the only point not satisfying $x_{e}=k$. When $e \in \delta\left(V_{i}, V_{j}\right)$ for some i, j, we define $S_{e}=S_{\ell}-\chi^{e_{i j}}+\chi^{e}$, where S_{ℓ} is S_{1} if $e \in \delta\left(V_{1}, V_{4}\right) \cup \delta\left(V_{2}, V_{3}\right)$ and S_{2} otherwise. Affine independence comes because S_{e} is the only point involving e.

In total, we built $4+|E|-6=|E|-2$ affinely independent points.
The following theorem characterizes the class of graphs for which $P_{k}(G)$ is boxTDI. The case k even is obtained using the box-TDIness for $k=2$ and the fact that integer dilations maintain box-TDIness. For the case k odd, on the contrary
to what is generally done, the proof does not exhibit a box-TDI system describing $P_{k}(G)$. For this case, the proof is by induction on the number of edges of G. We prove that series-parallel operations preserve the box-TDIness of the polyhedron. The most technical part of the proof is the subdivision of an edge $u w$ into two edges $u v$ and $v w$. We proceed by contradiction: by Theorem 2.4. we suppose that there exists a face F of $P_{k}(G)$ defined by a nonequimodular matrix. We study the structure of the inequalities corresponding to this matrix. In particular, we show that they are all associated with multicuts, and that these multicuts contain either both $u v$ and $v w$, or none of them - see Claims 3.1, 3.2, and 3.3. These last results allow us to build a nonequimodular face-defining matrix for the smaller graph, which contradicts the induction hypothesis.

Theorem 3.2 For $k \geq 2, P_{k}(G)$ is a box-TDI polyhedron if and only if G is series-parallel.

Proof Necessity follows from Lemma 3.1. Let us now prove sufficiency. When $k=2$, the box-TDIness of System (5) has been shown by Chen, Ding, and Zang [7]. This implies box-TDIness for all even k : multiplying the right-hand side of a box-TDI system by a positive rational preserves its box-TDIness 34 Section 22.5]. The system obtained by multiplying by $\frac{k}{2}$ the right-hand side of System (5) describes $P_{k}(G)$ when k is even. Hence, the latter is a box-TDI polyhedron.

The rest of the proof is devoted to the case where $k=2 h+1$ for some $h \geq 1$. To this end, we prove that for every face of $P_{2 h+1}(G)$ there exists an equimodular face-defining matrix. The characterization of box-TDIness given in Theorem 2.4 concludes. We proceed by induction on the number of edges of G.

If G is trivial, then $P_{2 h+1}(G)=\left\{x \in \mathbb{R}_{+}: x \geq 2 h+1\right\}$ is box-TDI. If G is the circuit $\{e, f\}$, then $P_{2 h+1}(G)=\left\{x_{e}, x_{f} \in \mathbb{R}_{+}: x_{e}+x_{f} \geq 2 h+1\right\}$ is also box-TDI.
(1-sum) Let G be the 1-sum of two series-parallel graphs $G^{\prime}=\left(W^{\prime}, E^{\prime}\right)$ and $G^{\prime \prime}=\left(W^{\prime \prime}, E^{\prime \prime}\right)$. By induction, there exist two box-TDI systems $A^{\prime} y \geq b^{\prime}$ and $A^{\prime \prime} z \geq b^{\prime \prime}$ describing respectively $P_{2 h+1}\left(G^{\prime}\right)$ and $P_{2 h+1}\left(G^{\prime \prime}\right)$. If v is the vertex of G obtained by the identification, $G \backslash v$ is not connected, hence, by Statement (ii) of Theorem 2.10, a multicut M of G is tight for a face of $P_{2 h+1}(G)$ only if $M \subseteq E^{\prime}$ or $M \subseteq E^{\prime \prime}$. It follows that for every face F of $P_{2 h+1}(G)$ there exist faces F^{\prime} and $F^{\prime \prime}$ of $P_{2 h+1}\left(G^{\prime}\right)$ and $P_{2 h+1}\left(G^{\prime \prime}\right)$ respectively, such that $F=F^{\prime} \times F^{\prime \prime}$. Then $P_{2 h+1}(G)=\left\{(y, z) \in \mathbb{R}_{+}^{E^{\prime}} \times \mathbb{R}_{+}^{E^{\prime \prime}}: A^{\prime} y \geq b^{\prime}, A^{\prime \prime} z \geq b^{\prime \prime}\right\}$ and so it is box-TDI.
(Parallelization) Let $G=(V, E)$ be obtained from a series-parallel graph G^{\prime} by adding an edge g parallel to an edge f of G^{\prime} and suppose that $P_{2 h+1}\left(G^{\prime}\right)$ is box-TDI. Let $A^{\prime} x \geq b$ be a box-TDI system describing $P_{2 h+1}\left(G^{\prime}\right)$. Note that $P_{2 h+1}(G)$ is described by $A x \geq b, x_{f} \geq 0, x_{g} \geq 0$, where A is the matrix obtained by duplicating f 's column. By Theorem 22.10 of 34, the system $A x \geq b$ is boxTDI, hence so is $A x \geq b, x_{f} \geq 0, x_{g} \geq 0$. Thus, $P_{2 h+1}(G)$ is a box-TDI polyhedron.
(Subdivision) Let $G=(V, E)$ be obtained by subdividing an edge $u w$ of a seriesparallel graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ into a path of length two $u v, v w$. By contradiction, suppose there exists a nonempty face $F=\left\{x \in P_{2 h+1}(G): A_{F} x=b_{F}\right\}$ such that A_{F} is a face-defining matrix for F which is not equimodular. Take such a face with maximum dimension. Then, every submatrix of A_{F} which is face-defining for a face of $P_{2 h+1}(G)$ is equimodular. We may assume that A_{F} is defined by
the partition constraints 2 aa associated with the set of multicuts \mathcal{M}_{F} and the nonnegativity constraints associated with the set of edges \mathcal{E}_{F}.

Claim 3.1 $\mathcal{E}_{F}=\emptyset$.
Proof Suppose there exists an edge $e \in \mathcal{E}_{F}$. Let $H=G \backslash e$ and let $A_{F_{H}} x=$ $b_{F_{H}}$ be the system obtained from $A_{F} x=b_{F}$ by removing the column and the nonnegativity constraint associated with e. Since the matrix A_{F} is of full row rank, so is $A_{F_{H}}$. Since $e \in \mathcal{E}_{F}$, for all multicuts M tight for F not containing e, $M \cup e$ is not a multicut. Hence $M \backslash e$ is a multicut of H of order d_{M}, for all M in \mathcal{M}_{F}. Hence, the set $F_{H}=\left\{x \in P_{2 h+1}(H): A_{F_{H}} x=b_{F_{H}}\right\}$ is a face of $P_{2 h+1}(H)$. Moreover, deleting e 's coordinate of $\operatorname{aff}(F)$ gives aff $\left(F_{H}\right)$ so $A_{F_{H}}$ is face-defining for F_{H}. By the induction hypothesis, $A_{F_{H}}$ is equimodular. Since maximal invertible square submatrices of A_{F} are in bijection with those of $A_{F_{H}}$ and have the same determinant in absolute value, A_{F} is equimodular, a contradiction.

Claim 3.2 For $e \in\{u v, v w\}$, at least one multicut of \mathcal{M}_{F} different from $\delta(v)$ contains e.

Proof By contradiction, suppose for instance that $u v$ belongs to no multicut of \mathcal{M}_{F} different from $\delta(v)$.

First, suppose that $\delta(v)$ does not belong to \mathcal{M}_{F}. Then, the column of A_{F} associated with $u v$ is zero. Let A_{F}^{\prime} be the matrix obtained from A_{F} by removing this column. Every multicut of G not containing $u v$ is a multicut of G^{\prime} (relabelling $v w$ by $u w$), so the rows of A_{F}^{\prime} are associated with multicuts of G^{\prime}. Thus, $F^{\prime}=$ $\left\{x \in P_{k}\left(G^{\prime}\right): A_{F}^{\prime} x=b_{F}\right\}$ is a face of $P_{2 h+1}\left(G^{\prime}\right)$. Removing $u v$'s coordinate from the points of F gives a set of points of F^{\prime} of affine dimension at least $\operatorname{dim}(F)-1$. Since A_{F}^{\prime} has the same rank as A_{F} and has one column fewer than A_{F}, then A_{F}^{\prime} is face-defining for F^{\prime} by Observation 2.7. By the induction hypothesis, A_{F}^{\prime} is equimodular. Since adding a column of zeros preserves equimodularity, A_{F} is also equimodular.

Suppose now that $\delta(v)$ belongs to \mathcal{M}_{F}. Then, the column of A_{F} associated with $u v$ has zeros in each row but $\chi^{\delta(v)}$. Let $A_{F}^{\star} x=b_{F}^{\star}$ be the system obtained from $A_{F} x=b_{F}$ by removing the equation associated with $\delta(v)$. Then $F^{\star}=\{x \in$ $\left.P_{k}(G): A_{F}^{\star} x=b_{F}^{\star}\right\}$ is a face of $P_{k}(G)$ of dimension $\operatorname{dim}(F)+1$. Indeed, it contains F and $z+\alpha \chi^{u v} \notin F$ for every point z of F and $\alpha>0$. Hence, A_{F}^{\star} is face-defining for F^{\star}. This matrix is equimodular by the maximality assumption on F, and so is A_{F} by Statement (ii) of Observation 2.6

Claim 3.3 $|M \cap \delta(v)| \neq 1$ for every multicut $M \in \mathcal{M}_{F}$.
Proof Suppose there exists a multicut M tight for F such that $|M \cap \delta(v)|=1$. Without loss of generality, suppose that M contains $u v$ but not $v w$. Then, $F \subseteq$ $\left\{x \in P_{2 h+1}(G): x_{v w} \geq x_{u v}\right\}$ because of the partition inequality (2a) associated with the multicut $M \triangle \delta(v)$. Moreover, the partition inequality associated with $\delta(v)$ and the integrality of $P_{2 h+1}(G)$ imply $F \subseteq\left\{x \in P_{2 h+1}(G): x_{v w} \geq h+1\right\}$. The proof is divided into two cases.

Case 1: $F \subseteq\left\{x \in P_{2 h+1}(G): x_{v w}=h+1\right\}$. We prove this case by exhibiting an equimodular face-defining matrix for F. By Observation 2.5, this implies that A_{F} is equimodular, which contradicts the assumption on F.

Equality $x_{v w}=h+1$ can be expressed as a linear combination of equations of $A_{F} x=b_{F}$. Let $A_{F}^{\prime} x=b_{F}^{\prime}$ denote the system obtained by replacing an equation of $A_{F} x=b_{F}$ by $x_{v w}=h+1$ in such a way that the underlying affine space remains unchanged. Denote by \mathcal{N} the set of multicuts of \mathcal{M}_{F} containing $v w$ but not $u v$. If $\mathcal{N} \neq \emptyset$, then let N be in \mathcal{N}. We now modify the system $A_{F}^{\prime} x=b_{F}^{\prime}$ by performing the following operations.

1. For all $M \in \mathcal{M}_{F}$ strictly containing $\delta(v)$, replace the equation associated with M by the partition constraint 2 a associated with $M \backslash v w$ set to equality, that is, $x(M \backslash v w)=(h+1) d_{M \backslash v w}-1$.
2. If $\delta(v) \in \mathcal{M}_{F}$, then replace the equation associated with $\delta(v)$ by the box constraint $x_{u v}=h$.
3. If $\mathcal{N} \neq \emptyset$, then replace the equation associated with N by the box constraint $x_{u v}=h+1$.
4. For all $M \in \mathcal{N} \backslash N$, replace the equation associated with M by the partition constraint 2a associated with $M \triangle \delta(v)$ set to equality, that is, $x(M \triangle \delta(v))=$ $(h+1) d_{M \triangle \delta(v)}-1$.
These operations do not change the underlying affine space. Indeed, for every multicut M strictly containing $\delta(v)$ and tight for F, the set $M \backslash v w$ is a multicut tight for F by Lemma 2.11 and $F \subseteq\left\{x \in P_{2 h+1}(G): x_{v w}=h+1\right\}$. If $\delta(v)$ is tight for F, then $F \subseteq\left\{x \in P_{2 h+1}(G): x_{u v}=h\right\}$ because $F \subseteq\left\{x \in P_{2 h+1}(G): x_{v w}=\right.$ $h+1\}$. For $M \in \mathcal{N}$, by Observation 2.2 , the set $M \triangle \delta(v)$ is a multicut of order d_{M}. The tightness of the constraint 2a) associated with N and the constraint 2a) associated with $M \triangle \delta(v)$ imply that $F \subseteq\left\{x \in P_{2 h+1}(G): x_{v w} \leq x_{u v}\right\}$. Since $F \subseteq\left\{x \in P_{2 h+1}(G): x_{v w} \geq x_{u v}\right\}$, we have $F \subseteq\left\{x \in P_{2 h+1}(G): x_{u v}=h+1\right\}$ and $M \triangle \delta(v)$ is tight for F. It follows that, if $\delta(v) \in \mathcal{M}_{F}$, then $\mathcal{N}=\emptyset$. Therefore, at most one among Operations 2 and 3 is applied so the rank of the matrix remains unchanged.

Let $A_{F}^{\prime \prime} x=b_{F}^{\prime \prime}$ be the system obtained by removing the equation $x_{v w}=h+1$ from $A_{F}^{\prime} x=b_{F}^{\prime}$. By construction, $A_{F}^{\prime \prime} x=b_{F}^{\prime \prime}$ is composed of constraints 2a) set to equality and possibly $x_{u v}=h$ or $x_{u v}=h+1$. Moreover, the column of $A_{F}^{\prime \prime}$ associated with $v w$ is zero. Let $F^{\prime \prime}=\left\{x \in P_{2 h+1}(G): A_{F}^{\prime \prime} x=b_{F}^{\prime \prime}\right\}$. For every point z of F and $\alpha \geq 0, z+\alpha \chi^{v w}$ belongs to $F^{\prime \prime}$ because the column of $A_{F}^{\prime \prime}$ associated with $v w$ is zero, and $z+\alpha \chi^{v w} \in P_{2 h+1}(G)$. This implies that $\operatorname{dim}\left(F^{\prime \prime}\right) \geq \operatorname{dim}(F)+1$.

If $F^{\prime \prime}$ is a face of $P_{2 h+1}(G)$, then $A_{F}^{\prime \prime}$ is face-defining for $F^{\prime \prime}$ by Observation 2.7 and because A_{F}^{\prime} is face-defining for F. By the maximality assumption on $F, A_{F}^{\prime \prime}$ is equimodular, and hence so is A_{F}^{\prime} by Statement (i) of Observation 2.6 .

Otherwise, by construction, $F^{\prime \prime}=F^{\star} \cap\left\{x \in \mathbb{R}^{E}: x_{u v}=t\right\}$ where F^{\star} is a face of $P_{2 h+1}(G)$ strictly containing F and $t \in\{h, h+1\}$. Therefore, there exists a face-defining matrix for $F^{\prime \prime}$ given by a face-defining matrix for F^{\star} and the row $\chi^{u v}$. Such a matrix is equimodular by the maximality assumption of F and Statement (i) of Observation 2.6 Hence, $A_{F}^{\prime \prime}$ is equimodular by Observation 2.5 . and so is A_{F}^{\prime} by Statement (i) of Observation 2.6 .

Case 2: $F \nsubseteq\left\{x \in P_{2 h+1}(G): x_{v w}=h+1\right\}$. Thus, there exists $z \in F$ such that $z_{v w}>h+1$. By Claim 3.2, there exists a multicut $N \neq \delta(v)$ containing $v w$ which is tight for F. By Statement (i) of Theorem 2.10, the existence of z implies that N is a bond, hence it does not contain $u v$. The set $L=N \triangle \delta(v)$ is a bond of G. The partition inequality (2a) associated with L implies that $F \subseteq$
$\left\{x \in P_{2 h+1}(G): x_{v w}=x_{u v}\right\}$ and L is tight for F. Moreover, N is the unique multicut tight for F containing $v w$. Suppose indeed that there exists a multicut B containing $v w$ tight for F. Then, B is a bond by Statement (i) of Theorem 2.10 and the existence of z. Moreover, $B \triangle N$ is a multicut not containing $v w$. This implies that no point x of F satisfies the partition constraint associated with $B \triangle N$ because $x(B \triangle N)=x(B)+x(N)-2 x(B \cap N)=2(2 h+1)-2 x(B \cap N) \leq 4 h+2-2 x_{v w} \leq 2 h$, a contradiction.

Consider the matrix A_{F}^{\star} obtained from A_{F} by removing the row associated with N. Matrix A_{F}^{\star} is a face-defining matrix for a face $F^{\star} \supseteq F$ of $P_{2 h+1}(G)$ because F^{\star} contains F and $z+\alpha \chi^{u v}$ for every point z of F and $\alpha>0$. By the maximality assumption, the matrix A_{F}^{\star} is equimodular. Let B_{F} be the matrix obtained from A_{F} by replacing the row χ^{N} by the row $\chi^{N}-\chi^{L}$. Then, B_{F} is facedefining for F. Moreover, B_{F} is equimodular by Statement (ii) of Observation 2.6 a contradiction.

Let $A_{F}^{\prime} x=b_{F}^{\prime}$ be the system obtained from $A_{F} x=b_{F}$ by removing $u v^{\prime}$ s column from A_{F} and subtracting $h+1$ times this column to b_{F}. We now show that $\left\{x \in P_{2 h+1}\left(G^{\prime}\right): A_{F}^{\prime} x=b_{F}^{\prime}\right\}$ is a face of $P_{2 h+1}\left(G^{\prime}\right)$ if $\delta(v) \notin \mathcal{M}_{F}$, and of $P_{2 h+1}\left(G^{\prime}\right) \cap\left\{x: x_{u w}=h\right\}$ otherwise. Indeed, consider a multicut M in \mathcal{M}_{F}. If $M=\delta(v)$, then the equation of $A_{F}^{\prime} x=b_{F}^{\prime}$ induced by M is nothing but $x_{u w}=h$. Otherwise, by Lemma 2.11 and Claim 3.3 , the set $M \backslash u v$ is a multicut of G^{\prime} (relabelling $v w$ by $u w$) of order d_{M} if $u v \notin M$ and $d_{M}-1$ otherwise. Thus, the equation of $A_{F}^{\prime} x=b_{F}^{\prime}$ induced by M is the partition constraint 2a associated with $M \backslash u v$ set to equality.

By construction and Claim 3.3, A_{F}^{\prime} has full row rank and one column less than A_{F}. We prove that A_{F}^{\prime} is face-defining by exhibiting $\operatorname{dim}(F)$ affinely independent points of $P_{2 h+1}\left(G^{\prime}\right)$ satisfying $A_{F}^{\prime} x=b_{F}^{\prime}$. Because of the integrality of $P_{2 h+1}(G)$, there exist $n=\operatorname{dim}(F)+1$ affinely independent integer points z^{1}, \ldots, z^{n} of F. By Claims 3.2 and 3.3 , there exists a multicut strictly containing $\delta(v)$. Then, Statement (i) of Theorem 2.10 implies that $F \subseteq\left\{x \in \mathbb{R}^{E}: x_{u v} \leq h+1, x_{v w} \leq\right.$ $h+1\}$. Combined with the partition inequality $x_{u v}+x_{v w} \geq 2 h+1$ associated with $\delta(v)$, this implies that at least one of $z_{u v}^{i}$ and $z_{v w}^{i}$ is equal to $h+1$ for $i=1, \ldots, n$. Since exchanging the $u v$ and $v w$ coordinates of any point of F gives a point of F by Claim 3.3 the hypotheses on z^{1}, \ldots, z^{n} are preserved under the assumption that $z_{u v}^{i}=h+1$ for $i=1, \ldots, n-1$. Let y^{1}, \ldots, y^{n-1} be the points obtained from z^{1}, \ldots, z^{n-1} by removing $u v$'s coordinate. Since every multicut of G^{\prime} is a multicut of G with the same order, y^{1}, \ldots, y^{n-1} belong to $P_{2 h+1}\left(G^{\prime}\right)$. By construction, they satisfy $A_{F}^{\prime} x=b_{F}^{\prime}$ so they belong to a face of $P_{2 h+1}\left(G^{\prime}\right)$ or $P_{2 h+1}\left(G^{\prime}\right) \cap\left\{x: x_{u w}=h\right\}$. This implies that A_{F}^{\prime} is a face-defining matrix of $P_{2 h+1}\left(G^{\prime}\right)$ if $\delta(v) \notin \mathcal{M}_{F}$, and of $P_{2 h+1}\left(G^{\prime}\right) \cap\left\{x: x_{u w}=h\right\}$ otherwise.

By induction, $P_{2 h+1}\left(G^{\prime}\right)$ is a box-TDI polyhedron and hence so is $P_{2 h+1}\left(G^{\prime}\right) \cap$ $\left\{x: x_{u w}=h\right\}$. Hence, A_{F}^{\prime} is equimodular by Theorem 2.4. Since A_{F} is obtained from A_{F}^{\prime} by copying a column, then also A_{F} is equimodular-a contradiction.

By definition of box-TDIness and $Q_{k}(G)$, Theorem 3.2 implies that $Q_{k}(G)$ is box-TDI when G is series-parallel. The converse does not hold. Indeed, for instance, when $G=(V, E)$ is a minimal k-edge-connected graph, $Q_{k}(G)$ is nothing but the single point χ^{E} so it is a box-TDI polyhedron.

4 An Integer TDI System for $P_{2 h}(G)$
Let G be a series-parallel graph. In this section we provide an integer TDI system for $P_{2 h}(G)$ with h positive and integer.

The proof of the main result of the section is based on the characterization of TDIness by means of Hilbert bases. A set of vectors $\left\{v^{1}, \ldots, v^{k}\right\}$ is a Hilbert basis if each integer vector that is a nonnegative combination of v^{1}, \ldots, v^{k} can be expressed as a nonnegative integer combination of them. The link between Hilbert basis and TDIness is stated in the following theorem.

Theorem 4.1 (Theorem 22.5 of [34]) A system $A x \geq b$ is TDI if and only if for every face F of $P=\{x: A x \geq b\}$, the rows of A associated with tight constraints for F form a Hilbert basis.

In the previous theorem, we could restrict to minimal faces: indeed, the cone generated by the constraints tight for a face F is a face of the cone generated by the constraints active for a face $F^{\prime} \subseteq F$ [34].

Remark 4.2 A system $A x \geq b$ is TDI if and only if, for each minimal face F of $P=\{x: A x \geq b\}$, the rows of A associated with constraints tight for F form a Hilbert basis.

The rest of the section is devoted to prove that the system given by the partition constraints and the nonnegativity constraints, which describes $P_{k}(G)$ when k is even, is TDI when G is series-parallel.

The proof is based on the TDIness of System (5) and the structure of inequalities (3a). Their right-hand sides are proportional to k, hence it is enough to prove the case $k=2$. This allows us to use Theorem 2.13 to obtain a TDI system for $P_{2}(G)$. In terms of Hilbert bases, the TDIness of this system implies that, given a face F of $P_{2}(G)$, the integer points of the associated cone are the half sum of the cuts tight for F. The technical part of the proof is to show that each integer point of this cone is also the sum of incidence vectors of the multicuts tight for F.

Theorem 4.3 For a series-parallel graph G and a positive integer h, System (3) is TDI.

Proof We only prove the case $h=1$ since multiplying the right hand side of a system by a positive constant preserves its TDIness [34, Section 22.5].

The proof is done by induction on the number of edges of the graph $G=(V, E)$. When G consists of two vertices connected by a single edge ℓ, System (3) is $x_{\ell} \geq$ $2, x_{\ell} \geq 0$ and is TDI. If G is the circuit $\{e, f\}$, System (3) is $x_{e}+x_{f} \geq 2, x \geq \mathbf{0}$ and is TDI.
(Parallelization) Let now G be obtained from a series-parallel graph H by adding an edge g parallel to an edge f of H. System (3) associated with G is obtained from that associated with H by duplicating f 's column in constraints (3a) and adding the nonnegativity constraint $x_{g} \geq 0$. By Lemma 3.1 of (7), System (3) is TDI.

For the other cases, we prove the TDIness of System (3) associated with G using Remark 4.2 More precisely, we prove that for any extreme point z of $P_{2}(G)$,
the set of vectors $\left\{\chi^{M}: M \in \mathcal{T}_{z}\right\} \cup\left\{\chi^{e}: e \in E, z_{e}=0\right\}$ is a Hilbert basis, where \mathcal{T}_{z} is the set of multicuts tight for z.
(1-sum) Let G be the 1 -sum of two series-parallel graphs $G^{1}=\left(W^{1}, E^{1}\right)$ and $G^{2}=\left(W^{2}, E^{2}\right)$ and let z be an extreme point of $P_{2}(G)$. By construction, we have $z=\left(z^{1}, z^{2}\right)$ where $z^{i} \in P_{2}\left(G^{i}\right)$ for $i=1,2$. Moreover, for each multicut $M \in \mathcal{T}_{z}$, the graph obtained from $G(z)$ by contracting the edges of $E \backslash M$ is a circuit. Indeed, it is 2-edge-connected since $G(z)$ is, and it has $z(M)=d_{M}$ edges and d_{M} vertices. Therefore M is either a multicut of G^{1} tight for z^{1} or one of G^{2} tight for z^{2}.

By induction, Systems (3) associated with G^{1} and G^{2} are TDI. Thus, $\left\{\chi^{M}\right.$: $\left.M \in \mathcal{T}_{z} \cap \mathcal{M}\left(G^{i}\right)\right\} \cup\left\{\chi^{e}: e \in E^{i}, z_{e}=0\right\}$ is a Hilbert basis for $i=1,2$ by Theorem 4.1. Since they belong to disjoint spaces, their union is a Hilbert basis. By Theorem 4.1. System (3) is TDI.
(Subdivision) Let $G=(V, E)$ be obtained by subdividing an edge $u w$ of a series-parallel graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ into a path of length two $u v, v w$, and let z be an extreme point of $P_{2}(G)$.

Without loss of generality, suppose $z_{u v} \geq z_{v w}$. Define $z^{\prime} \in \mathbb{Z}^{E^{\prime}}$ by $z_{u w}^{\prime}=z_{v w}$ and $z_{e}^{\prime}=z_{e}$ for all edges e in $E^{\prime} \backslash u w$. Note that z^{\prime} belongs to $P_{2}\left(G^{\prime}\right)$ since $G^{\prime}\left(z^{\prime}\right)$ is obtained by contracting the edge $u v$ in $G(z)$, and this contraction preserves 2-edge-connectivity.

Note that for all $e \in E, z_{e} \in\{0,1,2\}$. Indeed, since z is an extreme point of $P_{2}(G)$ which is also described by System (1), if $z_{e}>0$, then e belongs to a cut D tight for z. Moreover, as $z_{u v} \geq z_{v w}$, the partition constraint (3a) associated with $\delta(v)$ implies that $z_{u v} \in\{1,2\}$. We now consider two different cases depending on the value of $z_{u v}$.

Case 1: $z_{u v}=2$.
We first show that every multicut of \mathcal{T}_{z} containing $u v$ is a bond. Indeed, note that every multicut M with $d_{M}=2$ is a bond. If a multicut $M=\delta\left(V_{1}, \ldots, V_{d_{M}}\right) \in$ \mathcal{T}_{z} satisfies $d_{M} \geq 3$ and $u v \in \delta\left(V_{1}, V_{2}\right)$, then $M^{\prime}=\delta\left(V_{1} \cup V_{2}, V_{3}, \ldots, V_{d_{M}}\right)$ is a multicut and satisfies

$$
z\left(M^{\prime}\right) \leq z(M)-2<d_{M}-1=d_{M^{\prime}} .
$$

Hence, the partition constraint (3a) associated with M^{\prime} is violated, a contradiction.
Moreover, there exists at most one bond of \mathcal{T}_{z}, say N, containing $u v$. As otherwise suppose there exist two bonds B_{1} and B_{2} in \mathcal{T}_{z} containing $u v$. Then, $z\left(B_{1} \triangle B_{2}\right) \leq z\left(B_{1}\right)+z\left(B_{2}\right)-2 z_{u v}=0$, which contradicts the constraint (3a) associated with the multicut $B_{1} \triangle B_{2}$. For a multicut M not containing $u v, M \in \mathcal{T}_{z}$ if and only if $M \in \mathcal{T}_{z^{\prime}}$. This implies that $\mathcal{T}_{z}=\mathcal{T}_{z^{\prime}} \cup N$. By induction and Theorem 4.1. $\mathcal{T}_{z^{\prime}} \cup \mathcal{E}_{z^{\prime}}$ is a Hilbert basis. As $\mathcal{E}_{z}=\mathcal{E}_{z^{\prime}}$ (identifying $u v$ and $v w$) and N is the only member of $\mathcal{T}_{z} \cup \mathcal{E}_{z}$ containing $u v, \mathcal{T}_{z} \cup \mathcal{E}_{z}$ is also a Hilbert basis.

Case 2: $z_{u v}=1$.
Let \mathbf{v} be an integer point of the cone generated by $\mathcal{T}_{z} \cup \mathcal{E}_{z}$. We prove that \mathbf{v} can be expressed as an integer nonnegative combination of the vectors of $\mathcal{T}_{z} \cup \mathcal{E}_{z}$. This implies that $\mathcal{T}_{z} \cup \mathcal{E}_{z}$ is a Hilbert basis.

Let \mathcal{B}_{z} be the set of bonds of \mathcal{T}_{z}. Since System (5) is a TDI system describing $P_{2}(G)$ in series-parallel graphs, the set of vectors $\left\{\frac{1}{2} \chi^{B}: B \in \mathcal{B}_{z}\right\} \cup \mathcal{E}_{z}$ forms a Hilbert basis by Theorem 4.1. Then, there exist $\lambda_{B} \in \frac{1}{2} \mathbb{Z}_{+}$for all $B \in \mathcal{B}_{z}$ and $\mu_{e} \in \mathbb{Z}_{+}$for all $e \in \mathcal{E}_{z}$ such that $\mathbf{v}=\sum_{B \in \mathcal{B}_{z}} \lambda_{B} \chi^{B}+\sum_{e \in \mathcal{E}_{z}} \mu_{e} \chi^{e}$.

Since $z_{u v} \geq z_{v w}$, the partition inequality (3a) associated with $\delta(v)$ implies that $z_{v w}=1$ and $\delta(v) \in \mathcal{T}_{z}$. In particular, $v w \notin \mathcal{E}_{z}$. The vector \mathbf{v} is an integer combination of vectors of $\mathcal{T}_{z} \cup \mathcal{E}_{z}$ if and only if $\mathbf{v}-\left\lfloor\lambda_{\delta(v)}\right\rfloor \chi^{\delta(v)}$ is, thus we may assume that $\lambda_{\delta(v)} \in\left\{0, \frac{1}{2}\right\}$. Define $\mathbf{w} \in \mathbb{Z}^{E^{\prime}}$ by:

$$
\mathbf{w}_{e}= \begin{cases}\mathbf{v}_{u v}+\mathbf{v}_{v w}-2 \lambda_{\delta(v)} & \text { if } e=u w \\ \mathbf{v}_{e} & \text { otherwise }\end{cases}
$$

Note that $(B \backslash u w) \cup u v$ and $(B \backslash u w) \cup v w$ are bonds of \mathcal{T}_{z} whenever B is a bond of $\mathcal{T}_{z^{\prime}}$ containing $u w$ because $z_{u w}^{\prime}=z_{u v}=z_{v w}=1$. Moreover, a bond B of $\mathcal{T}_{z^{\prime}}$ which does not contain $u w$ is a bond of \mathcal{T}_{z}. Since $\delta(v)$ is the unique bond of G containing both $u v$ and $v w$ and $\mathcal{E}_{z}=\mathcal{E}_{z^{\prime}}$, we have:
$\mathbf{w}=\sum_{B \in \mathcal{B}_{z^{\prime}}: u w \in B}\left(\lambda_{(B \backslash u w) \cup u v}+\lambda_{(B \backslash u w) \cup v w}\right) \chi^{B}+\sum_{B \in \mathcal{B}_{z^{\prime}}: u w \notin B} \lambda_{B} \chi^{B}+\sum_{e \in \mathcal{E}_{z^{\prime}}} \mu_{e} \chi^{e}$.
Thus, \mathbf{w} belongs to the cone generated by $\mathcal{T}_{z^{\prime}} \cup \mathcal{E}_{z^{\prime}}$. By the induction hypothesis, $\mathcal{T}_{z^{\prime}} \cup \mathcal{E}_{z^{\prime}}$ is a Hilbert basis, hence there exist $\lambda_{M}^{\prime} \in \mathbb{Z}_{+}$for all $M \in \mathcal{T}_{z^{\prime}}$ and $\mu_{e}^{\prime} \in \mathbb{Z}_{+}$ for all $e \in \mathcal{E}_{z^{\prime}}$ such that $\mathbf{w}=\sum_{M \in \mathcal{T}_{z^{\prime}}} \lambda_{M}^{\prime} \chi^{M}+\sum_{e \in \mathcal{E}_{z^{\prime}}} \mu_{e}^{\prime} \chi^{e}$.

Consider the family \mathcal{N} of multicuts of $\mathcal{T}_{z^{\prime}}$ where each multicut M of $\mathcal{T}_{z^{\prime}}$ appears λ_{M}^{\prime} times. Suppose first that $\lambda_{\delta(v)}=0$. Then, $\mathbf{v}_{u v}+\mathbf{v}_{v w}$ multicuts of \mathcal{N} contain $u w$. Let \mathcal{P} be a family of $\mathbf{v}_{u v}$ multicuts of \mathcal{N} containing $u w$ and $\mathcal{Q}=\{F \in \mathcal{N}: u w \in$ $F\} \backslash \mathcal{P}$. Then, we have

$$
\begin{equation*}
\mathbf{v}=\sum_{M \in \mathcal{N}: u w \notin M} \chi^{M}+\sum_{M \in \mathcal{P}} \chi^{(M \backslash u w) \cup u v}+\sum_{M \in \mathcal{Q}} \chi^{(M \backslash u w) \cup v w}+\sum_{e \in \mathcal{E}_{z^{\prime}}} \mu_{e}^{\prime} \chi^{e} \tag{6}
\end{equation*}
$$

Suppose now that $\lambda_{\delta(v)}=\frac{1}{2}$. Then, $\mathbf{w}_{u w}=\mathbf{v}_{u v}+\mathbf{v}_{v w}-1$ multicuts of \mathcal{N} contain $u w$. Let \mathcal{P} be a family of $\mathbf{v}_{u v}-1$ multicuts of \mathcal{N} containing $u w$, let \mathcal{Q} be a family of $\mathbf{v}_{v w}-1$ multicuts in $\{F \in \mathcal{N}: u w \in F\} \backslash \mathcal{P}$, and denote by N the unique multicut of \mathcal{N} containing $u w$ which is not in $\mathcal{P} \cup \mathcal{Q}$. Then, we have

$$
\begin{equation*}
\mathbf{v}=\sum_{M \in \mathcal{N}: u w \notin M} \chi^{M}+\sum_{M \in \mathcal{P}} \chi^{(M \backslash u w) \cup u v}+\sum_{M \in \mathcal{Q}} \chi^{(M \backslash u w) \cup v w}+\chi^{(N \backslash u w) \cup \delta(v)}+\sum_{e \in \mathcal{E}_{z^{\prime}}} \mu_{e}^{\prime} \chi^{e} . \tag{7}
\end{equation*}
$$

Every $M \in \mathcal{T}_{z^{\prime}}$ not containing $u w$ is in \mathcal{T}_{z}. For every $M \in \mathcal{T}_{z^{\prime}}$ containing $u w$, $(M \backslash u w) \cup u v,(M \backslash u w) \cup v w$ and $(M \backslash u w) \cup \delta(v)$ belong to \mathcal{T}_{z} since $z_{u w}^{\prime}=z_{u v}=$ $z_{v w}=1$. Since $\mathcal{E}_{z}=\mathcal{E}_{z^{\prime}}$, then \mathbf{v} is a nonnegative integer combination of vectors of $\mathcal{T}_{z} \cup \mathcal{E}_{z}$ in both (6) and (7). This proves that $\mathcal{T}_{z} \cup \mathcal{E}_{z}$ is a Hilbert basis. Therefore by Remark 4.2, System (3) is TDI.

The box-TDIness of $P_{k}(G)$ and the TDIness of System (3) give the following result.

Corollary 4.4 System (3) is box-TDI if and only if G is series-parallel.

Proof If G is series-parallel, then System (3) is box-TDI by Theorems 3.2 and 4.3 , since a TDI system describing a box-TDI polyhedron is box-TDI 12 . If G is not series-parallel, Theorem 3.2 ensures that $P_{k}(G)$ is not box-TDI, therefore System (3) is not box-TDI.

Theorem 4.3 leaves open the following problem:
Open Problem 4.5 Characterize the classes of graphs such that System (3) is TDI.

5 An Integer TDI System for $P_{2 h+1}(G)$

In this section, we prove that System (2) is TDI if and only if G is a series-parallel graph-see Theorem 5.1 Proving the TDIness for k odd is considerably more involved than for k even. The first difference with the even case is the lack of a known TDI system describing $P_{k}(G)$ when k is odd, even a noninteger one. Thus, no property of the Hilbert bases associated with $P_{k}(G)$ is known, and the approach used to prove Theorem 4.3 cannot be applied. Instead, following the definition of TDIness, we prove the existence of an integer optimal solution to each feasible dual problem.

Another difference with the case k even follows from the structure of the partition inequalities 2a. In particular, the presence of the constant " -1 " in the righthand sides perturbs the structure of tight multicuts. Indeed, when k is odd, the tightness of $\delta\left(V_{1}, \ldots, V_{n}\right)$ does not imply that of $\delta\left(V_{1}\right), \ldots, \delta\left(V_{n}\right)$. Consequently, it is not clear how the contraction of an edge impacts the tightness of a multicut $\delta\left(V_{1}, \ldots, V_{n}\right)$: merging adjacent V_{i} 's is not sufficient to obtain new tight multicuts. Due to the link between tight multicuts and positive dual variables, the structure of the optimal solutions to the dual problem is completely modified when subdividing an edge. Proving directly that subdivision preserves TDIness turned out to be challenging, and we overcome this difficulty by deriving new properties of series-parallel graphs-see Lemma 2.3

The proof of Theorem 5.1 focuses on properties of vertices of degree 2 in a minimal counterexample to the TDIness of System (2). In particular, we prove that no two vertices of degree 2 are adjacent (Claim 5.9), or in the same circuit of length 4 (Claim 5.11). Moreover, no triangle contains vertices of degree 2 (Claim 5.10). By Lemma 2.3, this implies that the graph is not series-parallel. To derive these properties, we study the interplay between cuts associated with degree 2 vertices and dual optimal solutions-see Claims 5.3.5.8.

Theorem 5.1 For h positive and integer, System (2) is TDI if and only if G is series-parallel.

Proof If G is not series-parallel, then System (2) is not TDI because every TDI system with integer right-hand side describes an integer polyhedron [22], but when G has a K_{4}-minor, System (2) describes a noninteger polyhedron [10].

We now prove that, if G is series-parallel, then System (2) is TDI. We prove the result by contradiction. Let $G=(V, E)$ be a series-parallel graph such that

System (2) is not TDI. By definition of TDIness, there exists $c \in \mathbb{Z}^{E}$ such that $\mathcal{D}_{(G, c)}:$

$$
\begin{align*}
& \max \sum_{M \in \mathcal{M}_{G}} b_{M} y_{M} \\
& \left\{\begin{array}{lr}
\text { s.t. } & \text { for all } e \in E \\
\sum_{M \in \mathcal{M}_{G}: e \in M} y_{M} \leq c_{e} & \text { for all } M \in \mathcal{M}_{G} \\
y_{M} \geq 0 &
\end{array}\right.
\end{align*}
$$

is feasible, bounded, but admits no integer optimal solution, where $b_{M}=(h+$ 1) $d_{M}-1$ for all $M \in \mathcal{M}_{G}$. Without loss of generality, we assume that:
(i) G has a minimum number of edges,
(ii) $\sum_{e \in E} c_{e}$ is minimum with respect to (i).

By definition, $\mathcal{D}_{(G, c)}$ is feasible if and only if $c \geq \mathbf{0}$. Hence, by minimality assumption (iii), $\mathcal{D}_{\left(G, c^{\prime}\right)}$ has an optimal integer solution for every integer $c^{\prime} \neq c$ such that $0 \leq c^{\prime} \leq c$.

Let M be a multicut of G. We denote by ξ_{M} the vector of $\{0,1\}^{\mathcal{M}_{G}}$ whose only nonzero coordinate is the one associated with M. We say that M is active for a solution y to $\mathcal{D}_{(G, c)}$ if $y_{M}>0$. Note that, by complementary slackness, a multicut is active for an optimal solution to $\mathcal{D}_{(G, c)}$ only if it is tight for an optimal solution to the primal problem. In particular, if a multicut is tight for no point of $P_{2 h+1}(G)$, then it is active for no optimal solution to $\mathcal{D}_{(G, c)}$. Thus, we will use Lemma 2.11 and Theorem 2.10 to deduce properties on the optimal solutions to $\mathcal{D}_{(G, c)}$.
Claim 5.1 G is simple, 2-connected, and nontrivial.
Proof Suppose for a contradiction that there exist two parallel edges e_{1} and e_{2} and $c_{e_{1}} \leq c_{e_{2}}$. Since a multicut contains either both e_{1} and e_{2} or none of them, the inequality (8a) associated with e_{2} is redundant because $c_{e_{1}} \leq c_{e_{2}}$. This contradicts minimality assumption (i), so G is simple.

Assume for a contradiction that G is not 2 -connected. Then G is the 1 -sum of two distinct graphs $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$. By Statement (iii) of Theorem 2.10 the multicuts of G that intersect both E_{1} and E_{2} are not tight for the points of $P_{2 h+1}(G)$, by complementary slackness, these multicuts are not active for the optimal solutions to $\mathcal{D}_{(G, c)}$. Hence, every optimal solution y to $\mathcal{D}_{(G, c)}$ is of the form:

$$
y_{M}=\left\{\begin{array}{l}
y_{M}^{1} \text { if } M \in \mathcal{M}_{G_{1}}, \\
y_{M}^{2} \text { if } M \in \mathcal{M}_{G_{2}}, \\
0 \quad \text { otherwise },
\end{array} \quad \text { for all } M \in \mathcal{M}_{G}\right.
$$

where y^{i} is an optimal solution to $\mathcal{D}_{\left(G_{i}, c_{\mid E_{i}}\right)}$ for $i=1,2$. By minimality assumption (i), there exists an integer optimal solution \bar{y}^{i} to $\mathcal{D}_{\left(G_{i}, c_{\mid E_{i}}\right)}$ for $i=1,2$, implying that $\left(\bar{y}^{1}, \bar{y}^{2}\right)$ is an integer optimal solution to $\mathcal{D}_{(G, c)}$, a contradiction.

Finally, if $G=K_{2}, \mathcal{M}_{G}$ contains only one multicut, say $\{e\}$, and the optimal solution to $\mathcal{D}_{(G, c)}$ is $y_{\{e\}}^{*}=c_{e}$ which is integer.
Claim 5.2 For all edges $e \in E, c_{e} \geq 1$.

Proof By hypothesis, $c \geq \mathbf{0}$ is integer and $\mathcal{D}_{(G, c)}$ has an optimal solution, say y^{*}. Suppose for a contradiction that there exists an edge $e \in E$ with $c_{e}=0$. Set $G^{\prime}=G / e$ and $c^{\prime}=c_{\mid(E \backslash e)}$. The active multicuts for y^{*} do not contain the edge e so they are multicuts of G^{\prime} since $\mathcal{M}_{G^{\prime}}=\left\{M \in \mathcal{M}_{G} \mid e \notin M\right\}$. Hence, the point $y^{\prime} \in \mathbb{R}^{\mathcal{M}_{G^{\prime}}}$ defined by $y_{M}^{\prime}=y_{M}^{*}$ for all $M \in \mathcal{M}_{G^{\prime}}$ is a solution to $\mathcal{D}_{\left(G^{\prime}, c^{\prime}\right)}$.

By minimality assumption (i), there exists an integer optimal solution \tilde{y} to $\mathcal{D}_{\left(G^{\prime}, c^{\prime}\right)}$. Extending \tilde{y} to a point of $\mathbb{Z}^{\mathcal{M}_{G}}$ by setting to 0 the missing component gives an integer solution to $\mathcal{D}_{(G, c)}$ with cost $b^{\top} \tilde{y} \geq b^{\top} y^{\prime}=b^{\top} y^{*}$. This is an integer optimal solution to $\mathcal{D}_{(G, c)}$ since y^{*} is optimal, a contradiction to the hypothesis that $\mathcal{D}_{(G, c)}$ has no integer optimal solution.

Claim 5.3 Every optimal solution y to $\mathcal{D}_{(G, c)}$ satisfies $0 \leq y_{M}<1$ for all $M \in$ \mathcal{M}_{G}.

Proof By contradiction, suppose that y^{*} is an optimal solution to $\mathcal{D}_{(G, c)}$ such that there exists a multicut M such that $y_{M}^{*} \geq 1$. Therefore, the point y^{\prime} defined by $y^{\prime}=y^{*}-\xi_{M}$ is a solution to $\mathcal{D}_{\left(G, c^{\prime}\right)}$ where $c^{\prime}=c-\chi^{M}$. By minimality assumption (iii), $\mathcal{D}_{\left(G, c^{\prime}\right)}$ admits an integer optimal solution $y^{\prime \prime}$. The point \tilde{y} defined by $\tilde{y}=y^{\prime \prime}+\xi_{M}$ is an integer solution to $\mathcal{D}_{(G, c)}$ and we have:

$$
b^{\top} \tilde{y}=b^{\top} y^{\prime \prime}+b_{M} \geq b^{\top} y^{\prime}+b_{M}=b^{\top} y^{*} .
$$

Therefore \tilde{y} is an integer optimal solution to $\mathcal{D}_{(G, c)}$, a contradiction.
From the definition of series-parallel graphs, Claim 5.1 implies that G contains at least one degree 2 vertex. Let \widehat{V} be the set of degree 2 vertices of G.

Claim 5.4 Let $v \in \widehat{V}, \delta(v)=\left\{e_{1}, e_{2}\right\}$, y be an optimal solution to $\mathcal{D}_{(G, c)}$, and M_{1} be an active multicut for y such that $M_{1} \cap \delta(v)=e_{1}$. If $\delta(v)$ is active for y, then no multicut whose intersection with $\delta(v)$ is e_{2} is active for y.

Proof We prove the result by contradiction. Assume that M_{1} and $\delta(v)$ are active for y and that there exists a M_{2} active for y with $M_{2} \cap \delta(v)=e_{2}$. By Observation 2.2, $M_{i}^{\prime}=M_{i} \cup \delta(v)$ is a multicut of G such that $d_{M_{i}^{\prime}}=d_{M_{i}}+1$ for $i=1,2$. Let $0<\varepsilon \leq \min \left\{y_{M_{1}}, y_{M_{2}}, y_{\delta(v)}\right\}$. Then, the point:

$$
y^{\prime}=y-\varepsilon\left(\chi^{M_{1}}+\chi^{M_{2}}+\chi^{\delta(v)}\right)+\varepsilon\left(\chi^{M_{1}^{\prime}}+\chi^{M_{2}^{\prime}}\right)
$$

is a solution to $\mathcal{D}_{(G, c)}$, and we have $b^{\top} y^{\prime}=b^{\top} y+\varepsilon$, implying that y is not optimal, a contradiction.

Claim 5.5 For every optimal solution to $\mathcal{D}_{(G, c)}$, the constraints 8a associated with the edges incident to a degree 2 vertex are tight.

Proof We prove the result by contradiction. Suppose that there exist an optimal solution y^{*} to $\mathcal{D}_{(G, c)}$ and a vertex v with $\delta(v)=\left\{e_{1}, e_{2}\right\}$ such that the inequality (8a) associated with e_{1} is not tight. For $i=1,2$, let s_{i} be the slack of the constraint associated with e_{i}, that is,

$$
s_{i}=c_{e_{i}}-\sum_{M \in \mathcal{M}_{G}: e_{i} \in M} y_{M}^{*} .
$$

Inequality 8a associated with e_{2} is tight, as otherwise there exists $0<\eta \leq$ $\min \left\{s_{1}, s_{2}\right\}$, such that $y^{*}+\eta \xi_{\delta(v)}$ is a solution to $\mathcal{D}_{(G, c)}$, a contradiction to the optimality of y^{*}. Hence, Claims 5.2 and 5.3 imply that there are at least two distinct multicuts M_{1} and M_{2} active for y^{*} and containing e_{2}. Let $0<\varepsilon \leq$ $\min \left\{y_{M_{1}}^{*}, y_{M_{2}}^{*}, s_{1}\right\}$. For $i=1,2, e_{1} \in M_{i}$, as otherwise $y^{\prime}=y^{*}+\varepsilon\left(\xi_{M_{i} \cup e_{1}}-\xi_{M_{i}}\right)$ is a solution to $\mathcal{D}_{(G, c)}$. This solution is such that $b^{\top} y^{\prime}=b^{\top} y^{*}+\varepsilon(h+1)>b^{\top} y^{*}$, a contradiction to the optimality of y^{*}. Thus, both M_{1} and M_{2} contain $\delta(v)$. Since they are distinct, at least one of them, say M_{1}, strictly contains $\delta(v)$. Then, $y^{\prime \prime}=y^{*}+\varepsilon\left(-\xi_{M_{1}}+\xi_{M_{1} \backslash e_{2}}+\xi_{\delta(v)}\right)$ is a solution to $\mathcal{D}_{(G, c)}$ because $M_{1} \backslash e_{2}$ belongs to \mathcal{M}_{G} by Lemma 2.11. Then, $b^{\top} y^{\prime \prime}=b^{\top} y^{*}+\varepsilon\left(-b_{M_{1}}+b_{M_{1}}-(h+1)+2 h+1\right)>b^{\top} y^{*}$, a contradiction.

Given a solution y to $\mathcal{D}_{(G, c)}$, we define for each vertex $v \in \widehat{V}$ the set \mathcal{A}_{v}^{y} as the set of multicuts active for y that strictly contain $\delta(v)$. Moreover we define the value α_{v}^{y} as:

$$
\begin{equation*}
\alpha_{v}^{y}=\sum_{M \in \mathcal{A}_{v}^{y}} y_{M} \tag{9}
\end{equation*}
$$

Claim 5.6 Every optimal solution y to $\mathcal{D}_{(G, c)}$ satisfies $0<\alpha_{v}^{y}<1$ for all $v \in \widehat{V}$.
Proof Suppose for a contradiction that there exist an optimal solution y^{*} to $\mathcal{D}_{(G, c)}$ and a vertex v of \widehat{V} such that either $\alpha_{v}^{y^{*}} \geq 1$ or $\alpha_{v}^{y^{*}}=0$. Denote the two edges incident to v by e_{1} and e_{2} in such a way that $c_{e_{1}} \leq c_{e_{2}}$.

Suppose first that $\alpha_{v}^{y^{*}} \geq 1$. By Claim 5.3. there exist at least two multicuts in $\mathcal{A}_{v}^{y^{*}}$. Let $\mathcal{A}_{v}^{y^{*}}=\left\{M_{1}, \ldots, M_{n}\right\}$. By Lemma 2.11 for all $i=1, \ldots, n, M_{i}^{\prime}=M_{i} \backslash e_{1}$ is a multicut of G with $d_{M_{i}^{\prime}}=d_{M_{i}}-1$. Let $c^{\prime}=c-\chi^{e_{1}}$. By $\alpha_{v}^{y^{*}} \geq 1$, there exist ϵ_{i} for all $i=1, \ldots, n$, such that $0 \leq \epsilon_{i} \leq y_{M_{i}}^{*}$ and $\sum_{i=1}^{n} \epsilon_{i}=1$. The point y^{1} defined by:

$$
y^{1}=y^{*}+\sum_{i=1}^{n}\left(-\epsilon_{i} \xi_{M_{i}}+\epsilon_{i} \xi_{M_{i}^{\prime}}\right)
$$

is a solution to $\mathcal{D}_{\left(G, c^{\prime}\right)}$. By definition of b, we have:

$$
\begin{equation*}
b^{\top} y^{1}=b^{\top} y^{*}-h-1 \tag{10}
\end{equation*}
$$

By minimality assumption (iii), $\mathcal{D}_{\left(G, c^{\prime}\right)}$ admits an integer optimal solution, say y^{2}. This solution satisfies with equality the constraint 8a associated with e_{2} as otherwise $y^{2}+\xi_{\delta(v)}$ would be a solution to $\mathcal{D}_{(G, c)}$ with cost $b^{\top} y^{2}+b_{\delta(v)} \geq$ $b^{\top} y^{1}+2 h+1$, contradicting the assumption that y^{*} is optimal by 10 and $h \geq 1$. Hence, there exists a multicut \bar{M} active for y^{2} containing e_{2} but not e_{1} since $c_{e_{1}}^{\prime}+1 \leq c_{e_{2}}^{\prime}$. By definition, $\bar{M} \cup e_{1}$ is a multicut of G of order $d_{\bar{M}}+1$. Define $y^{3} \in \mathbb{Z}^{\mathcal{M}_{G}}$ by:

$$
y_{M}^{3}=y^{2}-\chi^{\bar{M}}+\chi^{\bar{M} \cup e_{1}}
$$

By definition of c^{\prime} and y^{2}, the point y^{3} is an integer solution to $\mathcal{D}_{(G, c)}$. Therefore, by (10), since y^{2} is optimal in $\mathcal{D}_{\left(G, c^{\prime}\right)}$ and by definition of y^{3}, we have:

$$
b^{\top} y^{*}=b^{\top} y^{1}+h+1 \leq b^{\top} y^{2}+h+1 \leq b^{\top} y^{3} .
$$

Thus, y^{3} is an integer optimal solution to $\mathcal{D}_{(G, c)}$, a contradiction.

Suppose now that $\alpha_{v}^{y^{*}}=0$. First, note that $\delta(v)$ is not an active multicut for y^{*}. Otherwise by Claims $5.2,5.3$ and 5.5 there would be a multicut containing e_{1} and not e_{2}, say N_{1}, and a multicut containing e_{2} and not e_{1}, say N_{2}, which are both active for y^{*}. This contradicts Claim 5.4. Hence, by definition of $\alpha_{v}^{y^{*}}$, no active multicut contains $\delta(v)$.

By Observation 2.2, if a multicut M contains e_{2} but not e_{1}, then $M \triangle \delta(v)$ is a multicut with the same order and $b_{M}=b_{M \triangle \delta(v)}$. Hence, we can define the point $y^{4} \in \mathbb{Q}^{\mathcal{M}_{G}}$:

$$
y_{M}^{4}=\left\{\begin{array}{ll}
0 & \text { if } e_{1} \in M \\
y_{M}^{*}+y_{M \Delta \delta(v)}^{*} & \text { if } e_{1} \notin M \\
y_{M}^{*} & \text { otherwise }
\end{array} \text { and } e_{2} \in M, \quad \text { for all } M \in \mathcal{M}_{G}\right.
$$

which is a solution to $\mathcal{D}_{(G, \hat{c})}$, where \hat{c} is defined by:

$$
\hat{c}_{e}=\left\{\begin{array}{ll}
c_{e_{1}}+c_{e_{2}} & \text { if } e=e_{2}, \\
0 & \text { if } e=e_{1}, \\
c_{e} & \text { otherwise },
\end{array} \quad \text { for all } e \in E .\right.
$$

By construction, we have:

$$
\begin{equation*}
b^{\top} y^{4}=b^{\top} y^{*} \tag{11}
\end{equation*}
$$

Using the argument given in the proof of Claim 5.2 we deduce that $\mathcal{D}_{(G, \hat{c})}$ admits an integer optimal solution, say y^{5}. Let \mathcal{S} be the family of active multicuts for y^{5} containing e_{2}, where each multicut M appears y_{M}^{5} times in \mathcal{S}. We have $|\mathcal{S}|>$ $c_{e_{2}}$ as otherwise y^{5} would be an integer optimal solution to $\mathcal{D}_{(G, c)}$, a contradiction.

We now construct from y^{5} an integer solution y^{6} to $\mathcal{D}_{(G, c)}$ with the same cost by replacing e_{2} by e_{1} in some active multicuts for y^{5}. More formally, since $|\mathcal{S}| \geq c_{e_{1}}$, there exists $\mathcal{S}^{\prime} \subseteq \mathcal{S}$ with $\left|\mathcal{S}^{\prime}\right|=c_{e_{1}}$. By Observation 2.2, $M \triangle \delta(v)$ is a multicut of G for all $M \in \mathcal{S}^{\prime}$ and $b_{M}=b_{M \Delta \delta(v)}$. Let $y^{6} \in \mathbb{Z}^{\mathcal{N}_{G}}$ be the point defined by:

$$
\begin{equation*}
y^{6}=y^{5}+\sum_{M \in \mathcal{S}^{\prime}}\left(\xi_{M \Delta \delta(v)}-\xi_{M}\right) \tag{12}
\end{equation*}
$$

By construction, we have:

$$
\begin{equation*}
b^{\top} y^{6}=b^{\top} y^{5} . \tag{13}
\end{equation*}
$$

Note that for each $M \in \mathcal{S}^{\prime}$, adding $\xi_{M \triangle \delta(v)}-\xi_{M}$ to a point of $\mathbb{R}^{\mathcal{M}_{G}}$ increases (resp. decreases) by 1 the left-hand side of the inequality 8a) associated with e_{1} (resp. e_{2}) while not changing the left-hand side of the inequalities 8a) associated with the edges of $E \backslash\left\{e_{1}, e_{2}\right\}$. Therefore, by definition of \hat{c}, y^{6} is a solution to $\mathcal{D}_{(G, c)}$. By (13), the optimality of y^{5}, and (11), we have:

$$
b^{\top} y^{6}=b^{\top} y^{5} \geq b^{\top} y^{4}=b^{\top} y^{*}
$$

Therefore y^{6} is an integer optimal solution to $\mathcal{D}_{(G, c)}$, a contradiction.

Claim 5.6 implies that for each optimal solution y and for each $v \in \widehat{V}$ there exists at least one multicut strictly containing $\delta(v)$ that is active for y. For the following claims we need to define a subset of optimal solutions to $\mathcal{D}_{(G, c)}$: let \mathfrak{D}_{v} be the set of optimal solutions to $\mathcal{D}_{(G, c)}$ for which $\delta(v)$ is not active. Note that if \mathfrak{D}_{v} is not empty, then there exists a solution y in \mathfrak{D}_{v} maximizing α_{v}^{z} over all $z \in \mathfrak{D}_{v}$.

The following claim presents the structure of a specific optimal solution to $\mathcal{D}_{(G, c)}$ for which $\delta(v)$ is not active.

Claim 5.7 Let $v \in \widehat{V}$ with $\delta(v)=\left\{e_{1}, e_{2}\right\}$ and let $y^{*} \in \mathfrak{D}_{v}$ maximize α_{v}^{z} over all $z \in \mathfrak{D}_{v}$. Then, there are exactly 3 multicuts active for y^{*} intersecting $\delta(v)$: two bonds $F \cup e_{1}$ and $F \cup e_{2}$ and a multicut $F \cup\left\{e_{1}, e_{2}\right\}$ of order 3, for some $F \subseteq E$.

Proof By Claim 5.6. there exists at least one multicut strictly containing $\delta(v)$ which is active for y^{*}, say M_{0}. By definition of $\mathfrak{D}_{v}, \delta(v)$ is not active for y^{*}. Hence, by Claim 5.5, there exists at least one multicut active for y^{*} which contains e_{i} and not $\delta(v) \backslash e_{i}$, for $i=1,2$. Let M_{i} be such a multicut with maximum order.

First, we prove that $d_{M_{0}}=3$. By definition, $M_{0}=\delta\left(v, V_{2}, V_{3}, \ldots, V_{d_{M_{0}}}\right)$. Moreover, by Lemma 2.11 and complementary slackness, the two vertices adjacent to v belong to two different classes, say V_{2} and V_{3}. By contradiction, suppose that $d_{M_{0}} \geq 4$. Then, $M_{0}^{\prime}=\delta\left(v \cup V_{2} \cup V_{3}, \ldots, V_{d_{M_{0}}}\right)$ is a multicut of order $d_{M_{0}}-2$. For $i=1,2, M_{i}^{\prime}=M_{i} \cup \delta(v)$ is a multicut of order $d_{M_{i}}+1$. Let $0<\varepsilon \leq \min \left\{y_{M_{0}}^{*}, y_{M_{1}}^{*}, y_{M_{2}}^{*}\right\}$. Then, let $y^{\prime} \in \mathbb{R}^{\mathcal{M}_{G}}$ be the point defined by:

$$
y^{\prime}=y^{*}-\varepsilon \xi_{M_{0}}+\varepsilon \xi_{M_{0}^{\prime}}+\varepsilon \sum_{i=1,2}\left(-\xi_{M_{i}}+\xi_{M_{i}^{\prime}}\right)
$$

By construction, y^{\prime} is a solution to $\mathcal{D}_{(G, c)}$ with $b^{\top} y^{*}=b^{\top} y^{\prime}$. Hence y^{\prime} is an optimal solution, but we have $\alpha_{v_{*}}^{y^{\prime}}=\alpha_{v}^{y^{*}}+\varepsilon$ because $\delta(v) \subsetneq M_{i}^{\prime}$ for $i=1,2$. This contradicts the maximality of $\alpha_{v}^{y^{*}}$. Therefore $d_{M_{0}}=3$.

Now, we show that M_{1} is a bond. The result for M_{2} holds by symmetry. By contradiction, suppose that $M_{1}=\delta\left(V_{1}, \ldots, V_{d_{M_{1}}}\right)$ with $d_{M_{1}} \geq 3$. Without loss of generality, we suppose that $e \in \delta\left(V_{1}\right) \cap \delta\left(V_{2}\right)$. Then, $M_{1}^{\prime}=\delta\left(V_{1} \cup V_{2}, \ldots, V_{d_{M_{1}}}\right)$ is a multicut of order $d_{M_{1}}-1$. Moreover, $M_{2}^{\prime}=M_{2} \cup \delta(v)$ is a multicut of order $d_{M_{2}}+1$. Let $0<\varepsilon \leq \min \left\{y_{M_{1}}^{*}, y_{M_{2}}^{*}\right\}$ and $y^{\prime} \in \mathbb{R}^{\mathcal{M}_{G}}$ be the point defined by:

$$
y^{\prime}=y^{*}-\varepsilon \xi_{M_{1}}+\varepsilon \xi_{M_{1}^{\prime}}-\varepsilon \xi_{M_{2}}+\varepsilon \xi_{M_{2}^{\prime}}
$$

By construction, y^{\prime} is a solution to $\mathcal{D}_{(G, c)}$ with $b^{\top} y^{*}=b^{\top} y^{\prime}$. Hence y^{\prime} is an optimal solution, but we have $\alpha_{v}^{y^{\prime}}=\alpha_{v}^{y^{*}}+\varepsilon$ because $\delta(v) \subsetneq M_{2}^{\prime}$. This contradicts the maximality of $\alpha_{v}^{y^{*}}$. Therefore, $d_{M_{1}}=d_{M_{2}}=2$.

We now prove that there exists a set F such that $M_{0}=F \cup \delta(v)$, and $M_{i}=F \cup e_{i}$ for $i=1,2$. Note that $M_{1} \cup M_{2}$ is a multicut so $y^{\prime \prime}=y^{*}+\varepsilon\left(\xi_{M_{1} \cup M_{2}}-\xi_{M_{1}}-\xi_{M_{2}}\right)$ is a solution to $\mathcal{D}_{(G, c)}$. The optimality of y^{*} implies $d_{M_{1} \cup M_{2}} \leq 3$. Since M_{1} and M_{2} are distinct bonds, there exists $F \subseteq E \backslash \delta(v)$ such that $M_{i}=F \cup e_{i}$, for $i=1,2$. Finally, let $N_{0}=M_{0} \backslash e_{2}$ and $N_{1}=M_{1} \cup e_{2}$. Note that $\tilde{y}=y^{*}+\varepsilon\left(\xi_{N_{0}}-\xi_{M_{0}}+\xi_{N_{1}}-\xi_{M_{1}}\right)$ is an optimal solution to $\mathcal{D}_{(G, c)}$ for which $\delta(v)$ is not active. Moreover, N_{0} and M_{2} are bonds active for \tilde{y} since $d_{M_{0}}=3$. This implies that $N_{0}=F \cup e_{1}$, and hence $M_{0}=F \cup \delta(v)$.

This implies that M_{0}, M_{1}, and M_{2} are the only multicuts active for y^{*} intersecting $\delta(v)$. Indeed, if M is a multicut active for y^{*} strictly containing $\delta(v)$, then repeating the proof above with M, M_{1}, and M_{2} shows that there exists F^{\prime} such that $M=F^{\prime} \cup \delta(v)$, and $M_{i}=F^{\prime} \cup e_{i}$ for $i=1,2$. Since $M_{i}=F \cup e_{i}$ for $i=1,2$, we have $F^{\prime}=F$ and hence $M=M_{0}$. A similar argument holds for any multicut active for y^{*} and intersecting $\delta(v)$.

Claim 5.8 Let $v \in \widehat{V}$ and y^{*} be an optimal solution to $\mathcal{D}_{(G, c)}$. Then,
(i) if $y_{\delta(v)}^{*}=0$, then $c_{e}=1$ for all $e \in \delta(v)$,
(ii) if $y_{\delta(v)}^{*}>0$, then $\alpha_{v}^{y^{*}}+y_{\delta(v)}^{*}=1$, and there exists $e \in \delta(v)$ such that $c_{e}=1$.

Proof (i.) First suppose that $y_{\delta(v)}^{*}=0$, then $\mathfrak{D}_{v} \neq \emptyset$. Let $y^{\prime} \in \mathfrak{D}_{v}$ maximize α_{v}^{z} over all $z \in \mathfrak{D}_{v}$. Then, by Claim 5.7, there exist exactly two active multicuts for y^{\prime} containing e_{i} for $i=1,2$. Combining Claims 5.3 and 5.5 and the integrality of c, we obtain that $c_{e_{i}}=1$ for $i=1,2$.
(ii.) Let now $y_{\delta(v)}^{*}>0$. By Claim 5.4 there exists an edge $e \in \delta(v)$ such that all multicuts containing e that are active for y contain $\delta(v)$. Hence, the constraint 8a) associated with e is:

$$
\begin{equation*}
c_{e} \geq \sum_{M: e \in M} y_{M}^{*}=y_{\delta(v)}^{*}+\sum_{M \in \mathcal{A}_{v}^{y^{*}}} y_{M}^{*}=y_{\delta(v)}^{*}+\alpha_{v}^{y^{*}} . \tag{14}
\end{equation*}
$$

By Claim 5.5 the constraint 8a associated with e is tight. Thus, $y_{\delta(v)}^{*}+\alpha_{v}^{y^{*}}=c_{e}$. By Claims 5.3 and 5.6 and since c_{e} is integer, we have $c_{e}=1$.

The last three claims of the proof give some structural property of the graph G. In particular we focus our attention on the vertices of \widehat{V}.

Claim 5.9 Vertices of degree 2 are pairwise nonadjacent.
Proof Assume for a contradiction that there exist two adjacent vertices v_{1} and v_{2} in \widehat{V}, and denote $\delta\left(v_{i}\right)=\left\{e_{0}, e_{i}\right\}$ for $i=1,2$.

We prove that $\delta\left(v_{1}\right)$ is active for all optimal solutions to $\mathcal{D}_{(G, c)}$, the result for $\delta\left(v_{2}\right)$ is obtained by symmetry. By contradiction, suppose that $\mathfrak{D}_{v_{1}} \neq \emptyset$. Among all the solutions $y \in \mathfrak{D}_{v_{1}}$, let y^{1} be one having $\alpha_{v_{1}}^{y}$ maximum. Then, by Claim 5.7 the three multicuts active for y^{1} intersecting $\delta\left(v_{1}\right)$ are $M_{0}=F \cup \delta\left(v_{1}\right), B_{0}=F \cup e_{0}$, and $B_{1}=F \cup e_{1}$, where B_{i} are bonds for $i=0,1$, and $F \subseteq E \backslash \delta\left(v_{1}\right)$ contains no nonempty multicut. By Claim 5.6 on v_{2}, there exists a multicut M active for y^{1} strictly containing $\delta\left(v_{2}\right)$. By $\delta\left(v_{1}\right) \cap \delta\left(v_{2}\right)=e_{0}, M$ intersects $\delta\left(v_{1}\right)$. Since $d_{M} \geq 3$, Claim 5.7 for v_{1} implies $M=M_{0}, F=\left\{e_{2}\right\}$, and $B_{0}=\delta\left(v_{2}\right)$.

As $y_{\delta\left(v_{1}\right)}^{1}=0$, by Statement (i) of Claim 5.8, $c_{e_{0}}=c_{e_{1}}=1$. By Claim 5.5, the constraints associated with e_{0} and e_{1} are tight. Since $\mathcal{A}_{v_{1}}^{y^{1}}=\left\{M_{0}\right\}$ by Claim 5.7. we have:

$$
\begin{equation*}
c_{e_{i}}=y_{M_{0}}^{1}+y_{B_{i}}^{1}=1 \quad \text { for } i=0,1 . \tag{15}
\end{equation*}
$$

Let $\left\{M_{1}, \ldots, M_{n}\right\}$ be the set of active multicuts for y^{1} such that $M_{i} \cap\left\{e_{0}, e_{1}, e_{2}\right\}=$ e_{2}, for $i=1, \ldots, n$. By Claim 5.5, the constraint 8a associated with e_{2} is tight, hence, using (15):

$$
\begin{equation*}
c_{e_{2}}=y_{M_{0}}^{1}+y_{B_{0}}^{1}+y_{B_{1}}^{1}+\sum_{i=1}^{n} y_{M_{i}}^{1}=1+y_{B_{0}}^{1}+\sum_{i=1}^{n} y_{M_{i}}^{1} . \tag{16}
\end{equation*}
$$

By Claim 5.3, B_{0} active for y^{1}, and $c_{e_{2}} \in \mathbb{Z}$, we have $\left\{M_{1}, \ldots, M_{n}\right\} \neq \emptyset$ and $c_{e_{2}} \geq 2$. Thus, combining (15) and 16), we have:

$$
\begin{equation*}
\sum_{i=1}^{n} y_{M_{i}}^{1}=c_{e_{2}}-1-y_{B_{0}}^{1} \geq y_{M_{0}}^{1} \tag{17}
\end{equation*}
$$

Then, there exist $\epsilon_{1}, \ldots, \epsilon_{n}$ such that $0 \leq \epsilon_{i} \leq y_{M_{i}}^{1}$ for $i=1, \ldots, n$, and

$$
\sum_{i=1}^{n} \epsilon_{i}=y_{M_{0}}^{1}
$$

For $i=1, \ldots, n, M_{i} \cup e_{0}$ is a multicut with order $d_{M_{i}}+1$, hence we can consider the following solution to $\mathcal{D}_{(G, c)}$:

$$
\begin{equation*}
y^{2}=y^{1}-\left(y_{M_{0}}^{1} \xi_{M_{0}}+\sum_{i=1}^{n} \epsilon_{i} \xi_{M_{i}}\right)+\left(y_{M_{0}}^{1} \xi_{M_{0} \backslash e_{0}}+\sum_{i=1}^{n} \epsilon_{i} \xi_{M_{i} \cup e_{0}}\right) . \tag{18}
\end{equation*}
$$

We have $b^{\top} y^{1}=b^{\top} y^{2}$, but $\alpha_{v_{1}}^{y^{2}}=0$, a contradiction to Claim 5.6. Therefore $\mathfrak{D}_{v} \neq \emptyset$, and by symmetry we deduce that both $\delta\left(v_{1}\right)$ and $\delta\left(v_{2}\right)$ are active for all optimal solutions to $\mathcal{D}_{(G, c)}$.

By Claim 5.4 for every optimal solution y to $\mathcal{D}_{(G, c)}$ and every multicut M of G, if M is active for y and contains e_{i} for some $i \in\{1,2\}$, then $e_{0} \in M$.

Let y^{*} be the optimal solution to $\mathcal{D}_{(G, c)}$ maximizing $\alpha_{v_{1}}^{y}$ over all y solutions to $\mathcal{D}_{(G, c)}$. We have $\mathcal{A}_{v_{2}}^{y^{*}} \subseteq \mathcal{A}_{v_{1}}^{y^{*}}$ and all the multicuts in $\mathcal{A}_{v_{2}}^{y^{*}}$ have order at most 3 . Otherwise, let $M \in \mathcal{A}_{v_{2}}^{y^{*}} \backslash \mathcal{A}_{v_{1}}^{y^{*}}$ (resp. $M \in \mathcal{A}_{v_{2}}^{y^{*}}$ such that $d_{M} \geq 4$), and $0<\varepsilon \leq$ $\min \left\{y_{M}^{*}, y_{\delta\left(v_{1}\right)}^{*}\right\}$. The solution

$$
y^{3}=y^{*}-\varepsilon\left(\xi_{M}+\xi_{\delta\left(v_{1}\right)}\right)+\varepsilon\left(\xi_{M \backslash e_{2}}+\xi_{\delta\left(v_{1}\right) \cup e_{2}}\right)
$$

is optimal, but $\alpha_{v_{1}}^{y^{3}}=\alpha_{v_{1}}^{y^{*}}+\varepsilon$ by the choice of M, a contradiction to the maximality of $\alpha_{v_{1}}^{y^{*}}$. Thus, $\bar{M}=\left\{e_{0}, e_{1}, e_{2}\right\}$ is the only multicut in $\mathcal{A}_{v_{2}}^{y^{*}}$.

Let $\left\{N_{1}, \ldots, N_{m}\right\}$ be the set of active multicuts for y^{*} such that $N_{i} \cap\left\{e_{0}, e_{1}, e_{2}\right\}=$ e_{0} for $i=1, \ldots, m$. The constraint associated with e_{0} is tight by Claim 5.5, hence, by $\mathcal{A}_{v_{2}}^{y^{*}} \subseteq \mathcal{A}_{v_{1}}^{y^{*}}$, we have:

$$
\begin{equation*}
c_{e_{0}}=\alpha_{v_{1}}^{y^{*}}+y_{\delta\left(v_{1}\right)}^{*}+y_{\delta\left(v_{2}\right)}^{*}+\sum_{i=1}^{m} y_{N_{i}}^{*} . \tag{19}
\end{equation*}
$$

By Statement (ii) of Claim 5.8 applied to v_{1}, we have $y_{\delta\left(v_{1}\right)}^{*}+\alpha_{v_{1}}^{y^{*}}=1$, and so:

$$
\begin{equation*}
c_{e_{0}}=1+y_{\delta\left(v_{2}\right)}^{*}+\sum_{i=1}^{m} y_{N_{i}}^{*} . \tag{20}
\end{equation*}
$$

By $\mathcal{A}_{v_{2}}^{y^{*}}=\{\bar{M}\}$ and Statement (ii) of Claim 5.8 applied to v_{2}, we have $y_{\delta\left(v_{2}\right)}^{*}+y_{\bar{M}}^{*}=$ 1, hence:

$$
\begin{equation*}
c_{e_{0}}=2-y_{M}^{*}+\sum_{i=1}^{m} y_{N_{i}}^{*} . \tag{21}
\end{equation*}
$$

Since $c_{e_{0}}$ is integer and since $y_{M}^{*}<1$ by Claim 5.3 by (21), we have:

$$
\begin{equation*}
\sum_{i=1}^{m} y_{N_{i}}^{*} \geq y_{\bar{M}}^{*} \tag{22}
\end{equation*}
$$

Hence, let $\lambda_{1}, \ldots, \lambda_{m}$ be such that $0 \leq \lambda_{i} \leq y_{N_{i}}^{*}$ for $i=1, \ldots, m$, and $\sum_{i=1}^{m} \lambda_{i}=y_{\bar{M}}^{*}$. Note that $\delta\left(v_{2}\right)=\bar{M} \backslash e_{1}$. Then, the point

$$
y^{5}=y^{*}-\left(y_{\bar{M}}^{*} \xi_{\bar{M}}+\sum_{i=1}^{m} \lambda_{i} \xi_{N_{i}}\right)+\left(y_{\bar{M}}^{*} \xi_{\delta\left(v_{2}\right)}+\sum_{i=1}^{m} \lambda_{i} \xi_{N_{i} \cup e_{1}}\right)
$$

is a solution to $\mathcal{D}_{(G, c)}$, and it is optimal by definition of b. Moreover,

$$
y_{\delta\left(v_{2}\right)}^{5}=y_{\bar{M}}^{*}+y_{\delta\left(v_{2}\right)}^{*}=1,
$$

a contradiction to Claim 5.3.
The following claim forbids a circuit of length 3 to contain a vertex of \widehat{V}.
Claim 5.10 No circuit of length 3 contains a vertex of degree 2.
Proof Assume for a contradiction that in G there exist a vertex $v \in \widehat{V}$ and a circuit $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that $\delta(v)=\left\{e_{1}, e_{2}\right\}$. By Lemma 2.1, a multicut contains e_{3} only if it intersects $\delta(v)$. On the other hand, by Lemma 2.11 and complementary slackness, each multicut strictly containing $\delta(v)$ and active for an optimal solution contains e_{3}. Thus, for every optimal solution y to $\mathcal{D}_{(G, c)}$, we have:

$$
\begin{equation*}
\sum_{M: e_{3} \in M} y_{M}=\sum_{M: e_{1} \in M, M \neq \delta(v)} y_{M}+\sum_{M: e_{2} \in M, M \neq \delta(v)} y_{M}-\alpha_{v}^{y} . \tag{23}
\end{equation*}
$$

Let y^{*} be an optimal solution to $\mathcal{D}_{(G, c)}$. By the constraint 8a) associated with $e_{3},(23)$, and Claim 5.5, we have:

$$
\begin{equation*}
c_{e_{3}} \geq \sum_{M: e_{3} \in M} y_{M}^{*}=c_{e_{1}}+c_{e_{2}}-2 y_{\delta(v)}^{*}-\alpha_{v}^{y^{*}} . \tag{24}
\end{equation*}
$$

By Claim 5.6 and Statement (ii) of Claim 5.8, we have $2 y_{\delta(v)}^{*}+\alpha_{v}^{y^{*}}<2$. Thus, by (24) and $c_{e_{3}} \in \mathbb{Z}$, we have $c_{e_{3}} \geq c_{e_{1}}+c_{e_{2}}-1$.

Define $G^{\prime}=G \backslash e_{3}$ and $c^{\prime}=c_{\mid\left(E \backslash e_{3}\right)}$. Note that for each multicut $M \in \mathcal{M}_{G}$, $M \backslash e_{3}$ is a multicut of G^{\prime} with order at least d_{M}. Hence, y^{*} induces a solution to $\mathcal{D}_{\left(G^{\prime}, c^{\prime}\right)}$ of cost at least $b^{\top} y^{*}$. By minimality assumption (ii), there exists an integer optimal solution y^{\prime} to $\mathcal{D}_{\left(G^{\prime}, c^{\prime}\right)}$, and we have $b^{\top} y^{\prime} \geq b^{\top} y^{*}$.

Let $\mathcal{M}_{1}\left(\right.$ resp. $\left.\mathcal{M}_{2}\right)$ be the set of multicuts $M=\delta\left(V_{1}, \ldots, V_{d_{M}}\right)$ of G^{\prime} active for y^{\prime} such that the endpoints of e_{3} belong (resp. do not belong) to a same V_{i} for some $i \in\left\{1, \ldots, d_{M}\right\}$. For each $M \in \mathcal{M}_{1}$ (resp. $M \in \mathcal{M}_{2}$), M (resp. $M \cup e_{3}$) is a multicut of G with the same order. Hence,

$$
y^{\prime \prime}=\sum_{M \in \mathcal{M}_{1}} y_{M}^{\prime} \xi_{M}+\sum_{M \in \mathcal{M}_{2}} y_{M}^{\prime} \xi_{M \cup e_{3}}
$$

is a point of $\mathbb{Z}_{+}^{\mathcal{M}_{G}}$ with $b^{\top} y^{\prime \prime}=b^{\top} y^{\prime}$. Thus, $b^{\top} y^{\prime \prime} \geq b^{\top} y^{*}$, and $y^{\prime \prime}$ is not a solution to $\mathcal{D}_{(G, c)}$. By definition, $y^{\prime \prime}$ respects every constraint of $\mathcal{D}_{(G, c)}$ but the constraint 8a associated with e_{3}.

By definition of $y^{\prime \prime}$, we have:

$$
\begin{equation*}
\sum_{M: e_{3} \in M} y_{M}^{\prime \prime}=\sum_{M: e_{1} \in M, M \neq \delta(v)} y_{M}^{\prime \prime}+\sum_{M: e_{2} \in M, M \neq \delta(v)} y_{M}^{\prime \prime}-\alpha_{v}^{y^{\prime \prime}} \tag{25}
\end{equation*}
$$

Therefore, by $y^{\prime \prime}$ violating the constraint (8a) associated with e_{3}, 25), Statement (ii) of Claim 5.8, and the inequalities 8a associated with e_{1} and e_{2}, we have:

$$
\begin{equation*}
c_{e_{3}}<\sum_{M: e_{3} \in M} y_{M}^{\prime \prime}=\sum_{M: e_{1} \in M} y_{M}^{\prime \prime}+\sum_{M: e_{2} \in M} y_{M}^{\prime \prime}-\alpha_{v}^{y^{\prime \prime}}-2 y_{\delta(v)}^{\prime \prime} \leq c_{e_{1}}+c_{e_{2}}-\alpha_{v}^{y^{\prime \prime}}-2 y_{\delta(v)}^{\prime \prime} . \tag{26}
\end{equation*}
$$

Thus, by 24, we have $\alpha_{v}^{y^{\prime \prime}}+2 y_{\delta(v)}^{\prime \prime}<\alpha_{v}^{y^{*}}+2 y_{\delta(v)}^{*}<2$. By $c_{e_{3}} \geq c_{e_{2}}+c_{e_{1}}-1$, the integrality of $y^{\prime \prime}$, and 26), we have $\alpha_{v}^{y^{\prime \prime}}=y_{\delta(v)}^{\prime \prime}=0$, and so $c_{e_{3}}=c_{e_{1}}+c_{e_{2}}-1$. Hence, by the integrality of $y^{\prime \prime}$ and equation (25):

$$
\begin{equation*}
c_{e_{3}}+1=\sum_{M: e_{3} \in M} y_{M}^{\prime \prime}=\sum_{M: e_{1} \in M} y_{M}^{\prime \prime}+\sum_{M: e_{2} \in M} y_{M}^{\prime \prime}=c_{e_{1}}+c_{e_{2}} . \tag{27}
\end{equation*}
$$

For $i=1,2$, since $c_{e_{i}} \geq 1$, there exists a multicut M_{i} active for $y^{\prime \prime}$ such that $M_{i} \cap \delta(v)=e_{i}$.

We claim that the constraint (8a) associated with e_{3} is not tight for y^{*}. By $c_{e_{3}}=c_{e_{1}}+c_{e_{2}}-1$, 24), and Claim 5.6. $\delta(v)$ is active for y^{*}. Hence, by Statement (ii) of Claim 5.8, we have:

$$
\begin{equation*}
\alpha_{v}^{y^{*}}+y_{\delta(v)}^{*}=1 . \tag{28}
\end{equation*}
$$

Hence, by (23) and Claim 5.5, 28, 27), and $\delta(v)$ active for y^{*}, we have:

$$
\begin{equation*}
\sum_{M: e_{3} \in M} y_{M}^{*}=c_{e_{1}}+c_{e_{2}}-1-y_{\delta(v)}^{*}=c_{e_{3}}-y_{\delta(v)}^{*}<c_{e_{3}} . \tag{29}
\end{equation*}
$$

The point $y^{\prime \prime}$ respects all the constraints of $\mathcal{D}_{(G, c)}$ except the one associated with e_{3}, and this constraint is not tight for y^{*}. Therefore, there exists $0<\lambda<1$ such that

$$
\tilde{y}=\lambda y^{*}+(1-\lambda) y^{\prime \prime}
$$

is a solution to $\mathcal{D}_{(G, c)}$. Moreover, \tilde{y} is optimal because $b^{\top} y^{*} \leq b^{\top} y^{\prime \prime}$.
All multicuts active for at least one between y^{*} and $y^{\prime \prime}$ are active for \tilde{y}. Since $\delta(v)$ is active for y^{*} and M_{1}, M_{2} are active for $y^{\prime \prime}$, the three multicuts M_{1}, M_{2}, and $\delta(v)$ are active for \tilde{y}, a contradiction to Claim 5.4

Claim 5.11 Each circuit of length 4 contains at most one vertex of degree 2.
Proof Assume for a contradiction that there exists a circuit $C=\left\{e_{1}, \ldots, e_{4}\right\}$ in G covering two vertices of \widehat{V}, say v_{1}, v_{2}. By Claim 5.9, v_{1} and v_{2} are not adjacent, hence we assume that $\delta\left(v_{1}\right)=\left\{e_{1}, e_{2}\right\}$ and $\delta\left(v_{2}\right)=\left\{e_{3}, e_{4}\right\}$. Let v_{3} and v_{4} be the remaining vertices of C.

We prove that $\delta\left(v_{1}\right)$ is active for all optimal solutions to $\mathcal{D}_{(G, c)}$. Indeed, if $\mathfrak{D}_{v_{1}} \neq \emptyset$, then let $y^{\prime} \in \mathfrak{D}_{v_{1}}$ maximize $\alpha_{v_{1}}^{z}$ over all $z \in \mathfrak{D}_{v_{1}}$. By Statement (iii) of

Theorem2.10, for every multicut M in $\mathcal{A}_{v_{2}}^{y^{\prime}}$, we have $M=\delta\left\{v_{2}, V_{2}, \ldots, V_{d_{M}}\right\}$, with v_{3} and v_{4} belonging to different V_{i} 's, hence $M \cap \delta\left(v_{1}\right) \neq \emptyset$. However, $M \backslash \delta\left(v_{1}\right)$ contains $\delta\left(v_{2}\right)$, a contradiction to Claim 5.7 applied to v_{1}. Exchanging the role of v_{1} and v_{2}, we deduce that $\delta\left(v_{2}\right)$ is active for all optimal solutions to $\mathcal{D}_{(G, c)}$.

Without loss of generality, there exists an optimal solution y such that $\alpha_{v_{1}}^{y} \geq$ $\alpha_{v_{2}}^{y}$. Then, we can build from y an optimal solution y^{*} to $\mathcal{D}_{(G, c)}$ such that $\mathcal{A}_{v_{2}}^{y^{*}} \subseteq$ $\mathcal{A}_{v_{1}}^{y^{*}}$. Indeed, suppose $\mathcal{A}_{v_{2}}^{y} \backslash \mathcal{A}_{v_{1}}^{y}=\left\{M_{1}, \ldots, M_{n}\right\}$. Then, since $\alpha_{v_{1}}^{y} \geq \alpha_{v_{2}}^{y}$, there exist $N_{1}, \ldots, N_{m} \in \mathcal{A}_{v_{1}}^{y} \backslash \mathcal{A}_{v_{2}}^{y}$ such that:

$$
\begin{equation*}
\sum_{i=1}^{n} y_{M_{i}} \leq \sum_{j=1}^{m} y_{N_{j}} \tag{30}
\end{equation*}
$$

Hence, there exist $\epsilon_{1}, \ldots, \epsilon_{m}$ such that $0 \leq \epsilon_{j} \leq y_{N_{j}}$, for $j=1, \ldots, m$, and

$$
\begin{equation*}
\sum_{j=1}^{m} \epsilon_{j}=\sum_{i=1}^{n} y_{M_{i}} . \tag{31}
\end{equation*}
$$

By Statement (iii) of Theorem 2.10 and complementary slackness, v_{3} and v_{4} belong to different classes of N_{j} for each $j=1, \ldots, m$, implying that $N_{j} \cap \delta\left(v_{2}\right) \neq \emptyset$. Moreover, since $N_{j} \notin \mathcal{A}_{v_{2}}^{y}$, we have $\left|N_{j} \cap \delta\left(v_{2}\right)\right|=1$, for all $j=1, \ldots, m$. Furthermore, since $\delta\left(v_{2}\right)$ is active for y, by Claim 5.4 there exists an edge in $\delta\left(v_{2}\right)$, say e_{3}, such that $N_{j} \cap \delta\left(v_{2}\right)=e_{3}$ for all $j=1, \ldots, m$. Therefore, the point

$$
\begin{equation*}
y^{*}=y-\left(\sum_{i=1}^{n} y_{M_{i}} \xi_{M_{i}}-\sum_{i=1}^{n} y_{M_{i}} \xi_{M_{i} \backslash e_{4}}\right)+\left(\sum_{j=1}^{m} \epsilon_{j} \xi_{N_{j} \cup e_{4}}-\sum_{j=1}^{m} \epsilon_{j} \xi_{N_{j}}\right) \tag{32}
\end{equation*}
$$

is a solution to $\mathcal{D}_{(G, c)}$ with $b^{\top} y^{*}=b^{\top} y$ and $\mathcal{A}_{v_{2}}^{y^{*}} \subseteq \mathcal{A}_{v_{1}}^{y^{*}}$. Let $\mathcal{A}_{v_{2}}^{y^{*}}=\left\{M_{1}^{\prime} \ldots, M_{p}^{\prime}\right\}$. For $i=1, \ldots, p$, since $M_{i}^{\prime} \in \mathcal{A}_{v_{1}}^{y^{*}}$, Statement (iii) of Theorem 2.10 implies $M_{i}^{\prime}=$ $\delta\left(v_{1}, v_{2}, V_{3}^{i}, V_{4}^{i}, \ldots, V_{d_{M_{i}^{\prime}}}^{i}\right)$, where V_{3}^{i} and V_{4}^{i} contain respectively v_{3} and v_{4}. Then, $M_{i}^{\prime \prime}=\delta\left(v_{1}, v_{2} \cup V_{3}^{i} \cup V_{4}^{i}, \ldots, V_{d_{M_{i}^{\prime}}}^{i}\right)$ is a multicut of order $d_{M_{i}^{\prime}}-2$ for $i=1, \ldots, p$. Since $\delta\left(v_{2}\right)$ is active for y^{*}, by Statement (ii) of Claim5.8, we have $\alpha_{v_{2}}^{y^{*}}+y_{\delta\left(v_{2}\right)}^{*}=1$. Then, the point $y^{1} \in \mathbb{Q}^{\mathcal{M}_{G}}$ defined by:

$$
y^{1}=y^{*}-\left(y_{\delta\left(v_{2}\right)}^{*} \xi_{\delta\left(v_{2}\right)}+\sum_{i=1}^{p} y_{M_{i}^{\prime}}^{*} \xi_{M_{i}^{\prime}}\right)+\left(\sum_{i=1}^{p} y_{M_{i}^{\prime}}^{*} \xi_{M_{i}^{\prime \prime}}\right),
$$

is a solution to $\mathcal{D}_{\left(G, c^{\prime}\right)}$, where $c^{\prime}=c-\chi^{\delta\left(v_{2}\right)}$.
By $d_{M_{i}^{\prime \prime}}=d_{M_{i}^{\prime}}-2$ for all $i=1, \ldots, p$, and $\alpha_{v_{2}}^{y^{*}}+y_{\delta\left(v_{2}\right)}^{*}=1$, we have:

$$
\begin{equation*}
b^{\top} y^{1}=b^{\top} y^{*}-\alpha_{v_{2}}^{y^{*}}(2 h+2)-y_{\delta\left(v_{2}\right)}^{*}(2 h+1)=b^{\top} y^{*}-(2 h+1)-\alpha_{v_{2}}^{y^{*}} . \tag{33}
\end{equation*}
$$

By minimality assumption (iii), $\mathcal{D}_{\left(G, c^{\prime}\right)}$ admits an integer optimal solution, say y^{2}. The point $y^{3} \in \mathbb{Z}^{\mathcal{M}_{G}}$ defined by $y^{3}=y^{2}+\xi_{\delta\left(v_{2}\right)}$ is a solution to $\mathcal{D}_{(G, c)}$ such that:

$$
\begin{equation*}
b^{\top} y^{3}=b^{\top} y^{2}+2 h+1 . \tag{34}
\end{equation*}
$$

Therefore, by (33), the optimality of y^{2}, and (34), we have:

$$
\begin{equation*}
b^{\top} y^{*}=b^{\top} y^{1}+2 h+1+\alpha_{v_{2}}^{y^{*}} \leq b^{\top} y^{2}+2 h+1+\alpha_{v_{2}}^{y^{*}}=b^{\top} y^{3}+\alpha_{v_{2}}^{y^{*}} \tag{35}
\end{equation*}
$$

By integrality of $P_{2 h+1}(G)$ and duality, we have $b^{\top} y^{*} \in \mathbb{Z}$. Furthermore, y^{3} is integer by construction, so $b^{\top} y^{3} \in \mathbb{Z}$. Then, by (35) and Claim 5.6, we have $b^{\top} y^{*} \leq b^{\top} y^{3}$, and so y^{3} is an integer optimal solution to $\mathcal{D}_{(G, c)}$, a contradiction.

Claims 5.1,5.9, 5.10, 5.11 and Lemma 2.3 imply that G is not series-parallel, a contradiction.

The box-TDIness of $P_{k}(G)$ and the TDIness of System (2) give the following result.

Corollary 5.2 System (2) is box-TDI if and only if G is series-parallel.
Proof By Theorem 5.1, when G is not series-parallel, System (2) is not TDI. Whenever G is series-parallel, $P_{k}(G)$ is box-TDI by Theorem 3.2 and System (2) is TDI by Theorem 5.1

Acknowledgements

The authors are indebted to the anonymous referees for their careful reading and their valuable comments which greatly helped to improve the presentation of the paper.

References

1. Baïou, M., Barahona, F., Mahjoub, A.R.: Separation of partition inequalities. Mathematics of Operations Research 25(2), 243-254 (2000)
2. Barahona, F., Mahjoub, A.R.: On two-connected subgraph polytopes. Discrete Mathematics 147(1-3), 19-34 (1995)
3. Barbato, M., Grappe, R., Lacroix, M., Lancini, E., Wolfler Calvo, R.: The Schrijver system of the flow cone in series-parallel graphs. Discrete Applied Mathematics (2020). URL https://www.sciencedirect.com/science/article/pii/S0166218X20301530
4. Bendali, F., Diarrassouba, I., Mahjoub, A.R., Didi Biha, M., Mailfert, J.: A branch-and-cut algorithm for the k-edge connected subgraph problem. Networks 55(1), 13-32 (2010)
5. Boyd, S.C., Hao, T.: An integer polytope related to the design of survivable communication networks. SIAM Journal on Discrete Mathematics 6(4), 612-630 (1993)
6. Chen, X., Ding, G., Zang, W.: A characterization of box-Mengerian matroid ports. Mathematics of Operations Research 33(2), 497-512 (2008)
7. Chen, X., Ding, G., Zang, W.: The box-TDI system associated with 2-edge connected spanning subgraphs. Discrete Applied Mathematics 157(1), 118-125 (2009)
8. Cheriyan, J., Thurimella, R.: Approximating minimum-size k-connected spanning subgraphs via matching. SIAM Journal on Computing 30(2), 528-560 (2000)
9. Chervet, P., Grappe, R., Robert, L.H.: Box-total dual integrality, box-integrality, and equimodular matrices. Mathematical Programming 188, 319-349 (2021)
10. Chopra, S.: The k-edge-connected spanning subgraph polyhedron. SIAM Journal on Discrete Mathematics $7(2), 245-259$ (1994)
11. Clarke, L.W., Anandalingam, G.: A bootstrap heuristic for designing minimum cost survivable networks. Computers \& Operations Research 22(9), 921-934 (1995)
12. Cook, W.: On box totally dual integral polyhedra. Mathematical Programming 34(1), 48-61 (1986)
13. Cornaz, D.: Max-multiflow/min-multicut for $G+H$ series-parallel. Discrete Mathematics 311(17), 1957-1967 (2011). DOI https://doi.org/10.1016/j.disc.2011.05.025. URL http: //www.sciencedirect.com/science/article/pii/S0012365X11002421
14. Cornaz, D., Grappe, R., Lacroix, M.: Trader multiflow and box-TDI systems in seriesparallel graphs. Discrete Optimization 31, 103-114 (2019)
15. Cornaz, D., Magnouche, Y., Mahjoub, A.R.: On minimal two-edge-connected graphs. In: International Conference on Control, Decision and Information Technologies (CoDIT), pp. 251-256. IEEE (2014)
16. Cornuéjols, G., Fonlupt, J., Naddef, D.: The traveling salesman problem on a graph and some related integer polyhedra. Mathematical Programming 33(1), 1-27 (1985)
17. Didi Biha, M., Mahjoub, A.R.: k-edge connected polyhedra on series-parallel graphs. Operations Research Letters 19(2), 71-78 (1996)
18. Ding, G., Tan, L., Zang, W.: When is the matching polytope box-totally dual integral? Mathematics of Operations Research 43(1), 64-99 (2017)
19. Ding, G., Zang, W., Zhao, Q.: On box-perfect graphs. Journal of Combinatorial Theory, Series B 128, 17-46 (2018)
20. Duffin, R.J.: Topology of series-parallel networks. Journal of Mathematical Analysis and Applications 10(2), 303-318 (1965)
21. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. Journal of Research of the National Bureau of Standards B 69(125-130), 55-56 (1965)
22. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. In: Annals of Discrete Mathematics, vol. 1, pp. 185-204. Elsevier (1977)
23. Edmonds, J., Giles, R.: Total dual integrality of linear inequality systems. In: W.R. PULLEYBLANK (ed.) Progress in Combinatorial Optimization, pp. 117-129. Academic Press (1984). URL http://www.sciencedirect.com/science/article/pii/ B9780125667807500131
24. Erickson, R.E., Monma, C.L., Veinott Jr, A.F.: Send-and-split method for minimum-concave-cost network flows. Mathematics of Operations Research 12(4), 634-664 (1987)
25. Fonlupt, J., Mahjoub, A.R.: Critical extreme points of the 2-edge connected spanning subgraph polytope. Mathematical Programming 105(2-3), 289-310 (2006)
26. Gabow, H.N., Goemans, M.X., Tardos, É., Williamson, D.P.: Approximating the smallest k-edge connected spanning subgraph by LP-rounding. Networks: An International Journal 53(4), 345-357 (2009)
27. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, USA (1979)
28. Giles, F.R., Pulleyblank, W.R.: Total dual integrality and integer polyhedra. Linear Algebra and its Applications 25, 191-196 (1979)
29. Grötschel, M., Monma, C.L.: Integer polyhedra arising from certain network design problems with connectivity constraints. SIAM Journal on Discrete Mathematics 3(4), 502-523 (1990)
30. Grötschel, M., Monma, C.L., Stoer, M.: Computational results with a cutting plane algorithm for designing communication networks with low-connectivity constraints. Operations Research 40(2), 309-330 (1992)
31. Lancini, E.: TDIness and multicuts. Ph.D. thesis, Université Sorbonne Paris Nord (2019)
32. Mahjoub, A.R.: Two-edge connected spanning subgraphs and polyhedra. Mathematical Programming 64(1-3), 199-208 (1994)
33. Mahjoub, A.R.: On perfectly two-edge connected graphs. Discrete Mathematics 170(1-3), 153-172 (1997)
34. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley \& Sons (1998)
35. Vandenbussche, D., Nemhauser, G.L.: The 2-edge-connected subgraph polyhedron. Journal of Combinatorial Optimization 9(4), 357-379 (2005)
36. Winter, P.: Generalized steiner problem in series-parallel networks. Journal of Algorithms 7(4), 549-566 (1986)

[^0]: A preliminary version has been published in the proceedings of the conference ISCO 2020.
 M. Barbato

 Department of Computer Science, University of Milan, 20133 Milano, Italy,
 E-mail: michele.barbato@unimi.it
 R. Grappe, M. Lacroix

 Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France,
 E-mail: grappe, lacroix@lipn.univ-paris13.fr
 E. Lancini

 Eseo, 78140 Vélizy-Villacoublay, France,
 Université Sorbonne Paris Nord, LIPN, CNRS, UMR 7030, 93430 Villetaneuse, France,
 E-mail: emiliano.lancini@eseo.fr

