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Abstract Given a graph G = (V,E) and an integer k ≥ 1, the graph H = (V, F ),
where F is a family of elements (with repetitions allowed) of E, is a k-edge-
connected spanning subgraph of G if H cannot be disconnected by deleting any
k− 1 elements of F . The convex hull of incidence vectors of the k-edge-connected
subgraphs of a graph G forms the k-edge-connected subgraph polyhedron of G.
We prove that this polyhedron is box-totally dual integral if and only if G is series-
parallel. In this case, we also provide an integer box-totally dual integral system
describing this polyhedron.

Keywords Box-total dual integrality · k-edge connected subgraph · Polyhedron ·
Series-parallel graph

1 Introduction

Totally dual integral systems, introduced in the late 70’s, are strongly connected to
min-max relations in combinatorial optimization [34]. A rational system of linear
inequalities Ax ≥ b is totally dual integral (TDI) if the maximization problem in
the linear programming duality

min{c>x : Ax ≥ b} = max{b>y : A>y = c, y ≥ 0}
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admits an integer optimal solution for each integer vector c such that the optimum
is finite. Every rational polyhedron can be described by a TDI system [28]. For
instance, the polyhedron {x : Ax ≥ b} can be described by TDI systems of the
form 1

qAx ≥
1
q b for certain positive q. However, a polyhedron is integer if and only

if it can be described by a TDI system with only integer coefficients [23,28]. Integer
TDI systems yield min-max results that may have combinatorial interpretation.

A stronger property is box-total dual integrality: a system Ax ≥ b is box-totally
dual integral (box-TDI) if Ax ≥ b, ` ≤ x ≤ u is TDI for all rational vectors ` and
u (possibly with infinite components). General properties of such systems can be
found in Cook [12] and Chapter 22.4 of Schrijver [34]. Note that, although every
rational polyhedron can be described by a TDI system, not every polyhedron can
be described by a box-TDI system. A polyhedron which can be described by a
box-TDI system is called a box-TDI polyhedron. As proved by Cook [12], every
TDI system describing such a polyhedron is actually box-TDI.

Recently, several new box-TDI systems have been exhibited. Chen, Ding, and
Zang [6] characterized box-Mengerian matroid ports. Ding, Tan, and Zang [18]
characterized the graphs for which the Edmonds’ system defining the matching
polytope [21] is box-TDI. Ding, Zang, and Zhao [19] exhibited new subclasses of
box-perfect graphs. Cornaz, Grappe, and Lacroix [14] provided several box-TDI
systems in series-parallel graphs. Barbato, Grappe, Lacroix, Lancini, and Wolfler
Calvo [3] gave the minimal box-TDI system with integer coefficients for the flow
cone for series-parallel graphs. For these graphs, Chen, Ding, and Zang [7] provided
a box-TDI system describing the 2-edge-connected spanning subgraph polyhedron.

In this paper, we are interested in integrality properties of systems related to
k-edge-connected spanning subgraphs. A k-edge-connected spanning subgraph of a
graph G = (V,E) is a graph H = (V, F ), with F being a collection of elements of
E where each element can appear several times, that remains connected after the
removal of any k − 1 edges.

These objects model a kind of failure resistance of telecommunication networks.
More precisely, they represent networks which remain connected when k− 1 links
fail. The underlying network design problem is the k-edge-connected spanning sub-
graph problem (k-ECSSP): given a graph G and positive edge costs, find a k-edge-
connected spanning subgraph of G of minimum cost. Special cases of this problem
are related to classical combinatorial optimization problems. The 2-ECSSP is a
well-studied relaxation of the traveling salesman problem [24] and the 1-ECSSP is
nothing but the well-known minimum spanning tree problem. While this latter is
polynomial-time solvable, the k-ECSSP is NP-hard for every fixed k ≥ 2 [27].

Different algorithms have been devised in order to deal with the k-ECSSP, such
as branch-and-cut procedures [4][15], approximation algorithms [8][26], cutting
plane algorithms [30], and heuristics [11]. In [36], Winter introduced a linear-time
algorithm solving the 2-ECSSP on series-parallel graphs. Most of these algorithms
rely on polyhedral considerations.

Given a graph G = (V,E), the convex hull of incidence vectors of all the fami-
lies of E inducing a k-edge-connected spanning subgraph of G forms a polyhedron,
hereafter called the k-edge-connected spanning subgraph polyhedron of G and de-
noted by Pk(G). Cornuéjols, Fonlupt, and Naddef [16] gave a system describing
P2(G) when G is series-parallel. Vandenbussche and Nemhauser [35] characterized
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in terms of forbidden minors the graphs for which this system describes P2(G).
Chopra [10] described Pk(G) for outerplanar graphs when k is odd. Didi Biha and
Mahjoub [17] extended these results to series-parallel graphs for all k ≥ 2. By a
result of Bäıou, Barahona, and Mahjoub [1], the inequalities in these descriptions
can be separated in polynomial time, which implies that the k-ECSSP is solvable
in polynomial time for series-parallel graphs.

When studying k-edge-connected spanning subgraphs of a graph G, we can
add the constraint that each edge of G can be taken at most once. We denote
the corresponding polyhedron by Qk(G). Barahona and Mahjoub [2] described
Q2(G) for Halin graphs. Further polyhedral results for the case k = 2 have been
obtained by Boyd and Hao [5] and Mahjoub [32][33]. Grötschel and Monma [29]
described several classes of facets of Qk(G). Moreover, Fonlupt and Mahjoub [25]
extensively studied the extremal points of Qk(G) and characterized the class of
graphs for which this polytope is described by cut inequalities and 0 ≤ x ≤ 1.

The polyhedron P1(G) is known to be box-TDI for all graphs [31]. For series-
parallel graphs, the system given in [16] describing P2(G) is not TDI. Chen, Ding,
and Zang [7] showed that dividing it by 2 yields a TDI system for such graphs.
Actually, they proved that this system is box-TDI if and only if the graph is
series-parallel.

Contributions. Our starting point is the result of Chen, Ding, and Zang [7]. First,
their result implies that P2(G) is a box-TDI polyhedron for series-parallel graphs.
However, this leaves open the question of the box-TDIness of P2(G) for non series-
parallel graphs. More generally, for which integers k and graphs G is Pk(G) a
box-TDI polyhedron?

We answer this question by proving that, for k ≥ 2, Pk(G) is a box-TDI poly-
hedron if and only if G is series-parallel. Note that this work is one of the first ones
that proves the box-TDIness of a polyhedron without giving a box-TDI system
describing it. Instead, our proof is based on the recent matricial characterization
of box-TDI polyhedra given by Chervet, Grappe, and Robert [9].

By [34, Theorem 22.6], there exists a TDI system with integer coefficients
describing Pk(G). For series-parallel graphs, the system provided by Chen, Ding,
and Zang [7] has noninteger coefficients. Moreover, the system given by Didi Biha
and Mahjoub [17] describing Pk(G) when k is even is not TDI. When k ≥ 2
and G is series-parallel, which combinatorial objects yield an integer TDI system
describing Pk(G)?

We answer this question by exhibiting integer TDI systems based on multicuts.
When k is even, we use multicuts to provide an integer TDI system for Pk(G) when
G is series-parallel. Our proof relies on the standard constructive characterization
of series-parallel graphs. When k is odd, we prove that the description of Pk(G)
given by Didi Biha and Mahjoub [17] based on multicuts is TDI if and only if the
graph is series-parallel. For this case, our proof relies on new properties of the set
of degree 2 vertices in simple series-parallel graphs stated in Lemma 2.3.

The box-totally dual integral characterization of Pk(G) implies that these sys-
tems are actually box-TDI if and only if G is series-parallel. By definition of
box-TDIness, adding x ≤ 1 to these systems yields box-TDI systems for Qk(G)
for series-parallel graphs.
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Outline. In Section 2, we give the definitions and preliminary results used through-
out the paper. In Section 3, we prove that, for k ≥ 2, Pk(G) is a box-TDI poly-
hedron if and only if G is series-parallel. In Section 4, we provide a TDI system
with integer coefficients describing Pk(G) when G is series-parallel and k ≥ 2 is
even. In Section 5, we show the TDIness of the system given by Didi Biha and
Mahjoub [17] that describes Pk(G) for G series-parallel and k ≥ 3 odd.

2 Definitions and Preliminary Results

This section is devoted to the definitions, notation, and preliminary results used
throughout the paper.

2.1 Graphs and Combinatorial Objects

Given a set E, a family of E is a collection of elements of E where each element
can appear multiple times. The incidence vector of a family F of E is the vector
χF of ZE+ such that e’s coordinate is the multiplicity of e in F for all e in E. Since
there is a bijection between families and their incidence vectors, we will often use
the same terminology for both.

Given a graph G = (V,E) and the incidence vector z ∈ ZE+ of a family F of E,
G(z) denotes the graph (V, F ).

Let G = (V,E) be a loopless undirected graph. Two edges of G are parallel if
they share the same endpoints, and G is simple if it does not have parallel edges.
A graph is 2-connected if it cannot be disconnected by removing a vertex. The
graph obtained from two disjoint graphs by identifying two vertices, one of each
graph, is called a 1-sum. A 2-connected graph is trivial if it is composed of a
single edge. We denote by Kn the complete graph on n vertices, that is the simple
graph with n vertices and one edge between each pair of vertices. Given an edge
e of G, we denote by G \ e (respectively G/e) the graph obtained by removing
(respectively contracting) the edge e, where contracting an edge uv consists in
removing it and identifying u and v. Similarly, we denote by G \ v the graph
obtained form G by removing the vertex v, and by G[W ] the graph induced by W ,
that is, the graph obtained by removing all vertices not in the vertex subset W .
Given a vector x ∈ RE and a subgraph H of G, we denote by x|H the vector
obtained by restricting x to the components associated with the edges of H.

A subset of edges of G is called a circuit if it induces a connected graph in
which every vertex has degree 2. Given a subset U of V , the cut δ(U) is the
set of edges having exactly one endpoint in U . A bond is a minimal nonempty
cut. Given a partition {V1, . . . , Vn} of V , the set of edges having endpoints in
two distinct Vi’s is called a multicut and is denoted by δ(V1, . . . , Vn). We denote
respectively by MG and BG the set of multicuts and the set of bonds of G. For
every multicut M , there exists a unique partition {V1, . . . , VdM } of vertices of V
such that M = δ(V1, . . . , VdM ), and G[Vi] is connected for all i = 1, . . . , dM . We
say that dM is the order of M and V1, . . . , VdM are the classes of M . Multicuts
are characterized in terms of circuits, as stated in the following.

Lemma 2.1 ([13]) A set of edges M is a multicut if and only if |M ∩C| 6= 1 for
all circuits C of G.
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We denote the symmetric difference of two sets S and T by S4T . It is well-
known that the symmetric difference of two cuts is a cut. Moreover, the following
result holds.

Observation 2.2 Let G be a graph, v be a degree 2 vertex of G, and M be a
multicut such that |M ∩ δ(v)| = 1. Then, M ∪ δ(v) and M4δ(v) are multicuts.
Moreover, dM∪δ(v) = dM + 1, and dM4δ(v) = dM .

A graph is series-parallel if its nontrivial 2-connected components can be con-
structed from a circuit of length 2 by repeatedly adding edges parallel to an existing
one, and subdividing edges, that is, replacing an edge by a path of length two.
Equivalently, series-parallel graphs are those having no K4-minor [20].

By construction, simple nontrivial 2-connected series-parallel graphs have at
least one degree 2 vertex. Moreover, these vertices satisfy the following.

Lemma 2.3 For a simple nontrivial 2-connected series-parallel graph, at least one
of the following holds:

(i) two degree 2 vertices are adjacent,
(ii) a degree 2 vertex belongs to a circuit of length 3,

(iii) two degree 2 vertices belong to the same circuit of length 4.

Proof We proceed by induction, the base case is K3 for which (i) holds.
Let G be a simple 2-connected series-parallel graph. Since G is simple, it can be

built from a series-parallel graph H by subdividing an edge e into a path f, g. Let
v be the degree 2 vertex added with this operation. By the induction hypothesis,
either H is not simple, or one among (i), (ii), and (iii) holds for H. Hence, there
are four cases.
Case 1: H is not simple. Since G is simple, e is parallel to exactly one edge h.
Hence, f, g, h is a circuit of G length 3 containing v, thus (ii) holds for G.
Case 2: (i) holds for H. Then, it holds for G.
Case 3: (ii) holds for H. Let C be a circuit of H of length 3 containing a degree 2
vertex, say w. If e /∈ C, then (ii) holds for G. Otherwise, by subdividing e, we
obtain a circuit of length 4 containing v and w, and hence (iii) holds for G.
Case 4: (iii) holds for H. Let C be a circuit of H of length 4 containing two
degree 2 vertices. If e /∈ C, then (iii) holds for G. Otherwise, by subdividing e, we
obtain a circuit of length 5 containing three degree 2 vertices. Then, at least two
of them are adjacent, and so (i) holds for G. ut

2.2 Box-Total Dual Integrality

Let A ∈ Rm×n be a full-row rank matrix. This matrix is equimodular if all its
m×m non-zero determinants have the same absolute value. The matrix A is face-
defining for a face F of a polyhedron P ⊆ Rn if aff(F ) = {x ∈ Rn : Ax = b} for
some b ∈ Rm, where aff(F ) denotes the affine hull of F . Such matrices are the
face-defining matrices of P .

Theorem 2.4 ([9, Theorem 1.4]) Let P be a polyhedron. Then, the following
statements are equivalent:

(i) P is box-TDI.
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(ii) Every face-defining matrix of P is equimodular.
(iii) Each face of P has an equimodular face-defining matrix.

In Theorem 2.4, the equivalence of conditions (ii) and (iii) follows from the fol-
lowing observation.

Observation 2.5 ([9, Observation 4.10]) Let F be a face of a polyhedron. If a
face-defining matrix for F is equimodular, then so are all the face-defining matrices
for F .

We will also use the following.

Observation 2.6 Let A ∈ RI×J be a full row rank matrix and j ∈ J . If A is
equimodular, then so are following two matrices:

(i)

[
A

±χj
]

if it is full row-rank,

(ii)

[
A 0

±χj ±1

]
.

Observation 2.7 ([9, Observation 4.11]) Let P ⊆ Rn be a polyhedron and let
F = {x ∈ P : Bx = b} be a face of P . If B has full-row rank and n−dim(F ) rows,
then B is face-defining for F .

2.3 The k-Edge-Connected Spanning Subgraph Polyhedron

Note that Pk(G) is the dominant of the convex hull of incidence vectors of all
the families of E containing at most k copies of each edge and inducing a k-
edge-connected spanning subgraph of G. Since the dominant of a polyhedron is a
polyhedron, Pk(G) is a full-dimensional polyhedron even though it is the convex
hull of an infinite number of points.

From now on, we assume that k ≥ 2. Didi Biha and Mahjoub [17] gave a
complete description of Pk(G) for all k, when G is series-parallel.

Theorem 2.8 ([17]) Let G be a series-parallel graph and h be a positive integer.
Then, P2h(G) is described by:

(1)

{
x(D) ≥ 2h for all cuts D of G,

x ≥ 0,

(1a)

(1b)

and P2h+1(G) is described by:

(2)

{
x(M) ≥ (h+ 1)dM − 1 for all multicuts M of G,

x ≥ 0.

(2a)

(2b)

Since the incidence vector of a multicut δ(V1, . . . , V`) of order ` is the half-
sum of the incidence vectors of the bonds δ(V1), . . . , δ(V`), we can deduce another
description of P2h(G).
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Corollary 2.9 Let G be a series-parallel graph and h be a positive integer. Then,
P2h(G) is described by:

(3)

{
x(M) ≥ hdM for all multicuts M of G,

x ≥ 0.

(3a)

(3b)

We call constraints (2a) and (3a) partition constraints. A multicut M is tight for
a point of Pk(G) if this point satisfies with equality the partition constraint (2a)
(respectively (3a)) associated with M when k is odd (respectively even). Moreover,
M is tight for a face F of Pk(G) if it is tight for all the points of F .

The following results give some insights on the structure of tight multicuts.

Theorem 2.10 ([17, Theorem 2.3 and Lemma 3.1]) Let x be a point of
P2h+1(G), and let M = δ(V1, . . . , VdM ) be a multicut tight for x. Then, the follow-
ing hold:

(i) if dM ≥ 3, then x (δ(Vi) ∩ δ(Vj)) ≤ h+ 1 for all i 6= j ∈ {1, . . . , dM}.
(ii) G \ Vi is connected for all i = 1, . . . , dM .

Lemma 2.11 Let v be a degree 2 vertex of G and M be a multicut of G strictly
containing δ(v) = {uv, vw}. If M is tight for a point of Pk(G) with k ≥ 2, then
both M \ uv and M \ vw are multicuts of G of order dM − 1.

Proof It suffices to show that u and w belong to different classes ofM = δ(v, V2, . . . , VdM ).
Suppose that u,w ∈ V2. Then M is the union of the two multicuts δ(v) and
M ′ = δ(v ∪ V2, . . . , VdM ). Since dδ(v) + dM ′ = dM + 1, the sum of the partition
inequalities associated with δ(v) and M ′ implies that the partition inequality as-
sociated with M is tight for no point of Pk(G) for every k ≥ 2. ut

Chopra [10] gave sufficient conditions for an inequality to be facet-defining for
Pk(G). The following proposition is a direct consequence of Theorems 2.4 and 2.6
of [10].

Lemma 2.12 Let G be a connected graph having a K4-minor. Then, there exist
two disjoint nonempty subsets of edges of G, E′ and E′′, and a rational b such
that

x(E′) + 2x(E′′) ≥ b, (4)

is a facet-defining inequality of P2h+1(G).

Chen, Ding, and Zang [7] provided a box-TDI system for P2(G) for series-
parallel graphs.

Theorem 2.13 ([7, Theorem 1.1]) The system:{
1
2x(D) ≥ 1 for all cuts D of G,
x ≥ 0

(5)

is box-TDI if and only if G is a series-parallel graph.

This result proves that the polyhedron P2(G) is box-TDI for all series-parallel
graphs, and gives a TDI system describing this polyhedron in this case. However,
Theorem 2.13 is not sufficient to state that P2(G) is a box-TDI polyhedron if and
only if G is series-parallel.
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3 Box-TDIness of Pk(G)

In this section we show that, for k ≥ 2, Pk(G) is a box-TDI polyhedron for a
connected graph G if and only if G is series-parallel. Since Pk(G) = ∅ when G is
not connected, we assume from now on that G is connected.

When k ≥ 2, Pk(G) is not always box-TDI, as stated in Lemma 3.1. Indeed,
by Theorem 2.4, if a polyhedron has a nonequimodular face-defining matrix, then
it is not box-TDI. The proof of Lemma 3.1 exhibits such a matrix when G has a
K4-minor. This follows from the existence of a particular facet-defining inequality
when k is odd, as shown by Chopra [10]. When k is even, we build a nonequimod-
ular face-defining matrix based on the structure of cuts in a K4-minor.

Lemma 3.1 For k ≥ 2, if G = (V,E) has a K4-minor, then Pk(G) is not box-
TDI.

Proof When k = 2h + 1 is odd, Lemma 2.12 shows that there exists a facet-
defining inequality that is described by a nonequimodular matrix as Pk(G) is
full-dimensional. Thus, Pk(G) is not box-TDI by Statement (ii) of Theorem 2.4.

We now prove the case when k is even. Since G has a K4-minor, there exists a
partition {V1, . . . , V4} of V such that G[Vi] is connected and δ(Vi, Vj) 6= ∅ for all
i < j ∈ {1, . . . , 4}. We now prove that the matrix A whose three rows are χδ(Vi)

for i = 1, 2, 3 is a face-defining matrix of Pk(G) which is not equimodular. This
will end the proof by Statement (ii) of Theorem 2.4.

Let eij be an edge in δ(Vi, Vj) for all i < j ∈ {1, . . . , 4}. The submatrix of A
formed by the columns associated with edges eij is the following:

e12 e13 e23 e14 e24 e34

χδ(V1)

χδ(V2)

χδ(V3)

 1 1 0 1 0 0
1 0 1 0 1 0
0 1 1 0 0 1


The matrix A is not equimodular as the first three columns form a matrix of
determinant -2 whereas the last three ones give a matrix of determinant 1.

By Observation 2.7, to show that A is face-defining, it is enough to exhibit
|E| − 2 affinely independent points of Pk(G) satisfying x(δ(Vi)) = k for i = 1, 2, 3.

Let D1 = {e12, e14, e23, e34}, D2 = {e12, e13, e24, e34}, D3 = {e13, e14, e23, e24}
and D4 = {e14, e24, e34}. First, we define the points Sj =

∑4
i=1 kχ

E[Vi]+ k
2χ

Dj , for

j = 1, 2, 3, and S4 =
∑4
i=1 kχ

E[Vi]+kχD4 . Note that they are affinely independent.
Now, for each edge e /∈ {e12, e13, e14, e23, e24, e34}, we construct the point Se

as follows. When e ∈ E[Vi] for some i = 1, . . . , 4, we define Se = S4 + χe. Adding
the point Se maintains affine independence as Se is the only point not satisfying
xe = k. When e ∈ δ(Vi, Vj) for some i, j, we define Se = S` − χeij + χe, where
S` is S1 if e ∈ δ(V1, V4) ∪ δ(V2, V3) and S2 otherwise. Affine independence comes
because Se is the only point involving e.

In total, we built 4 + |E| − 6 = |E| − 2 affinely independent points. ut

The following theorem characterizes the class of graphs for which Pk(G) is box-
TDI. The case k even is obtained using the box-TDIness for k = 2 and the fact
that integer dilations maintain box-TDIness. For the case k odd, on the contrary
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to what is generally done, the proof does not exhibit a box-TDI system describing
Pk(G). For this case, the proof is by induction on the number of edges of G. We
prove that series-parallel operations preserve the box-TDIness of the polyhedron.
The most technical part of the proof is the subdivision of an edge uw into two
edges uv and vw. We proceed by contradiction: by Theorem 2.4, we suppose that
there exists a face F of Pk(G) defined by a nonequimodular matrix. We study the
structure of the inequalities corresponding to this matrix. In particular, we show
that they are all associated with multicuts, and that these multicuts contain either
both uv and vw, or none of them—see Claims 3.1, 3.2, and 3.3. These last results
allow us to build a nonequimodular face-defining matrix for the smaller graph,
which contradicts the induction hypothesis.

Theorem 3.2 For k ≥ 2, Pk(G) is a box-TDI polyhedron if and only if G is
series-parallel.

Proof Necessity follows from Lemma 3.1. Let us now prove sufficiency. When k = 2,
the box-TDIness of System (5) has been shown by Chen, Ding, and Zang [7]. This
implies box-TDIness for all even k: multiplying the right-hand side of a box-TDI
system by a positive rational preserves its box-TDIness [34, Section 22.5]. The
system obtained by multiplying by k

2 the right-hand side of System (5) describes
Pk(G) when k is even. Hence, the latter is a box-TDI polyhedron.

The rest of the proof is devoted to the case where k = 2h+ 1 for some h ≥ 1.
To this end, we prove that for every face of P2h+1(G) there exists an equimodular
face-defining matrix. The characterization of box-TDIness given in Theorem 2.4
concludes. We proceed by induction on the number of edges of G.

If G is trivial, then P2h+1(G) = {x ∈ R+ : x ≥ 2h+ 1} is box-TDI. If G is the
circuit {e, f}, then P2h+1(G) = {xe, xf ∈ R+ : xe +xf ≥ 2h+ 1} is also box-TDI.

(1-sum) Let G be the 1-sum of two series-parallel graphs G′ = (W ′, E′)
and G′′ = (W ′′, E′′). By induction, there exist two box-TDI systems A′y ≥ b′

and A′′z ≥ b′′ describing respectively P2h+1(G′) and P2h+1(G′′). If v is the vertex
of G obtained by the identification, G\v is not connected, hence, by Statement (ii)
of Theorem 2.10, a multicut M of G is tight for a face of P2h+1(G) only if M ⊆ E′
or M ⊆ E′′. It follows that for every face F of P2h+1(G) there exist faces F ′

and F ′′ of P2h+1(G′) and P2h+1(G′′) respectively, such that F = F ′ × F ′′. Then

P2h+1(G) = {(y, z) ∈ RE
′

+ × RE
′′

+ : A′y ≥ b′, A′′z ≥ b′′} and so it is box-TDI.

(Parallelization) Let G = (V,E) be obtained from a series-parallel graph G′

by adding an edge g parallel to an edge f of G′ and suppose that P2h+1(G′)
is box-TDI. Let A′x ≥ b be a box-TDI system describing P2h+1(G′). Note that
P2h+1(G) is described by Ax ≥ b, xf ≥ 0, xg ≥ 0, where A is the matrix obtained
by duplicating f ’s column. By Theorem 22.10 of [34], the system Ax ≥ b is box-
TDI, hence so is Ax ≥ b, xf ≥ 0, xg ≥ 0. Thus, P2h+1(G) is a box-TDI polyhedron.

(Subdivision) Let G = (V,E) be obtained by subdividing an edge uw of a series-
parallel graph G′ = (V ′, E′) into a path of length two uv, vw. By contradiction,
suppose there exists a nonempty face F = {x ∈ P2h+1(G) : AFx = bF } such that
AF is a face-defining matrix for F which is not equimodular. Take such a face
with maximum dimension. Then, every submatrix of AF which is face-defining
for a face of P2h+1(G) is equimodular. We may assume that AF is defined by
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the partition constraints (2a) associated with the set of multicuts MF and the
nonnegativity constraints associated with the set of edges EF .

Claim 3.1 EF = ∅.

Proof Suppose there exists an edge e ∈ EF . Let H = G \ e and let AFH
x =

bFH
be the system obtained from AFx = bF by removing the column and the

nonnegativity constraint associated with e. Since the matrix AF is of full row
rank, so is AFH

. Since e ∈ EF , for all multicuts M tight for F not containing e,
M ∪ e is not a multicut. Hence M \ e is a multicut of H of order dM , for all M in
MF . Hence, the set FH = {x ∈ P2h+1(H) : AFH

x = bFH
} is a face of P2h+1(H).

Moreover, deleting e’s coordinate of aff(F ) gives aff(FH) so AFH
is face-defining for

FH . By the induction hypothesis, AFH
is equimodular. Since maximal invertible

square submatrices of AF are in bijection with those of AFH
and have the same

determinant in absolute value, AF is equimodular, a contradiction. ut

Claim 3.2 For e ∈ {uv, vw}, at least one multicut of MF different from δ(v)
contains e.

Proof By contradiction, suppose for instance that uv belongs to no multicut ofMF

different from δ(v).
First, suppose that δ(v) does not belong to MF . Then, the column of AF

associated with uv is zero. Let A′F be the matrix obtained from AF by removing
this column. Every multicut of G not containing uv is a multicut of G′ (relabelling
vw by uw), so the rows of A′F are associated with multicuts of G′. Thus, F ′ =
{x ∈ Pk(G′) : A′Fx = bF } is a face of P2h+1(G′). Removing uv’s coordinate from
the points of F gives a set of points of F ′ of affine dimension at least dim(F )− 1.
Since A′F has the same rank as AF and has one column fewer than AF , then
A′F is face-defining for F ′ by Observation 2.7. By the induction hypothesis, A′F is
equimodular. Since adding a column of zeros preserves equimodularity, AF is also
equimodular.

Suppose now that δ(v) belongs to MF . Then, the column of AF associated
with uv has zeros in each row but χδ(v). Let A?Fx = b?F be the system obtained
from AFx = bF by removing the equation associated with δ(v). Then F ? = {x ∈
Pk(G) : A?Fx = b?F } is a face of Pk(G) of dimension dim(F )+1. Indeed, it contains
F and z + αχuv /∈ F for every point z of F and α > 0. Hence, A?F is face-defining
for F ?. This matrix is equimodular by the maximality assumption on F , and so
is AF by Statement (ii) of Observation 2.6. ut

Claim 3.3 |M ∩ δ(v)| 6= 1 for every multicut M ∈MF .

Proof Suppose there exists a multicut M tight for F such that |M ∩ δ(v)| = 1.
Without loss of generality, suppose that M contains uv but not vw. Then, F ⊆
{x ∈ P2h+1(G) : xvw ≥ xuv} because of the partition inequality (2a) associated
with the multicut M4δ(v). Moreover, the partition inequality associated with δ(v)
and the integrality of P2h+1(G) imply F ⊆ {x ∈ P2h+1(G) : xvw ≥ h + 1}. The
proof is divided into two cases.

Case 1: F ⊆ {x ∈ P2h+1(G) : xvw = h+ 1}. We prove this case by exhibiting an
equimodular face-defining matrix for F . By Observation 2.5, this implies that AF
is equimodular, which contradicts the assumption on F .
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Equality xvw = h+ 1 can be expressed as a linear combination of equations of
AFx = bF . Let A′Fx = b′F denote the system obtained by replacing an equation of
AFx = bF by xvw = h+ 1 in such a way that the underlying affine space remains
unchanged. Denote by N the set of multicuts ofMF containing vw but not uv. If
N 6= ∅, then let N be in N . We now modify the system A′Fx = b′F by performing
the following operations.

1. For all M ∈ MF strictly containing δ(v), replace the equation associated
with M by the partition constraint (2a) associated with M \vw set to equality,
that is, x(M \ vw) = (h+ 1)dM\vw − 1.

2. If δ(v) ∈ MF , then replace the equation associated with δ(v) by the box
constraint xuv = h.

3. If N 6= ∅, then replace the equation associated with N by the box constraint
xuv = h+ 1.

4. For all M ∈ N \ N , replace the equation associated with M by the partition
constraint (2a) associated with M4δ(v) set to equality, that is, x(M4δ(v)) =
(h+ 1)dM4δ(v) − 1.

These operations do not change the underlying affine space. Indeed, for every
multicut M strictly containing δ(v) and tight for F , the set M \ vw is a multicut
tight for F by Lemma 2.11 and F ⊆ {x ∈ P2h+1(G) : xvw = h+ 1}. If δ(v) is tight
for F , then F ⊆ {x ∈ P2h+1(G) : xuv = h} because F ⊆ {x ∈ P2h+1(G) : xvw =
h + 1}. For M ∈ N , by Observation 2.2, the set M4δ(v) is a multicut of order
dM . The tightness of the constraint (2a) associated with N and the constraint (2a)
associated with M4δ(v) imply that F ⊆ {x ∈ P2h+1(G) : xvw ≤ xuv}. Since
F ⊆ {x ∈ P2h+1(G) : xvw ≥ xuv}, we have F ⊆ {x ∈ P2h+1(G) : xuv = h + 1}
and M4δ(v) is tight for F . It follows that, if δ(v) ∈MF , then N = ∅. Therefore,
at most one among Operations 2 and 3 is applied so the rank of the matrix remains
unchanged.

Let A′′Fx = b′′F be the system obtained by removing the equation xvw = h+ 1
from A′Fx = b′F . By construction, A′′Fx = b′′F is composed of constraints (2a) set
to equality and possibly xuv = h or xuv = h + 1. Moreover, the column of A′′F
associated with vw is zero. Let F ′′ = {x ∈ P2h+1(G) : A′′Fx = b′′F }. For every point
z of F and α ≥ 0, z+αχvw belongs to F ′′ because the column of A′′F associated with
vw is zero, and z + αχvw ∈ P2h+1(G). This implies that dim(F ′′) ≥ dim(F ) + 1.

If F ′′ is a face of P2h+1(G), then A′′F is face-defining for F ′′ by Observation 2.7
and because A′F is face-defining for F . By the maximality assumption on F , A′′F
is equimodular, and hence so is A′F by Statement (i) of Observation 2.6.

Otherwise, by construction, F ′′ = F ? ∩ {x ∈ RE : xuv = t} where F ? is
a face of P2h+1(G) strictly containing F and t ∈ {h, h + 1}. Therefore, there
exists a face-defining matrix for F ′′ given by a face-defining matrix for F ? and the
row χuv. Such a matrix is equimodular by the maximality assumption of F and
Statement (i) of Observation 2.6. Hence, A′′F is equimodular by Observation 2.5,
and so is A′F by Statement (i) of Observation 2.6.

Case 2: F 6⊆ {x ∈ P2h+1(G) : xvw = h + 1}. Thus, there exists z ∈ F such
that zvw > h + 1. By Claim 3.2, there exists a multicut N 6= δ(v) containing
vw which is tight for F . By Statement (i) of Theorem 2.10, the existence of z
implies that N is a bond, hence it does not contain uv. The set L = N4δ(v) is
a bond of G. The partition inequality (2a) associated with L implies that F ⊆
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{x ∈ P2h+1(G) : xvw = xuv} and L is tight for F . Moreover, N is the unique
multicut tight for F containing vw. Suppose indeed that there exists a multicut B
containing vw tight for F . Then, B is a bond by Statement (i) of Theorem 2.10 and
the existence of z. Moreover, B4N is a multicut not containing vw. This implies
that no point x of F satisfies the partition constraint associated withB4N because
x(B4N) = x(B)+x(N)−2x(B∩N) = 2(2h+1)−2x(B∩N) ≤ 4h+2−2xvw ≤ 2h,
a contradiction.

Consider the matrix A?F obtained from AF by removing the row associated
with N . Matrix A?F is a face-defining matrix for a face F ? ⊇ F of P2h+1(G)
because F ? contains F and z + αχuv for every point z of F and α > 0. By the
maximality assumption, the matrix A?F is equimodular. Let BF be the matrix
obtained from AF by replacing the row χN by the row χN −χL. Then, BF is face-
defining for F . Moreover, BF is equimodular by Statement (ii) of Observation 2.6—
a contradiction. ut

Let A′Fx = b′F be the system obtained from AFx = bF by removing uv’s
column from AF and subtracting h + 1 times this column to bF . We now show
that {x ∈ P2h+1(G′) : A′Fx = b′F } is a face of P2h+1(G′) if δ(v) /∈ MF , and of
P2h+1(G′) ∩ {x : xuw = h} otherwise. Indeed, consider a multicut M in MF . If
M = δ(v), then the equation of A′Fx = b′F induced by M is nothing but xuw = h.
Otherwise, by Lemma 2.11 and Claim 3.3, the set M \ uv is a multicut of G′

(relabelling vw by uw) of order dM if uv /∈ M and dM − 1 otherwise. Thus, the
equation of A′Fx = b′F induced by M is the partition constraint (2a) associated
with M \ uv set to equality.

By construction and Claim 3.3, A′F has full row rank and one column less than
AF . We prove that A′F is face-defining by exhibiting dim(F ) affinely independent
points of P2h+1(G′) satisfying A′Fx = b′F . Because of the integrality of P2h+1(G),
there exist n = dim(F ) + 1 affinely independent integer points z1, . . . , zn of F .
By Claims 3.2 and 3.3, there exists a multicut strictly containing δ(v). Then,
Statement (i) of Theorem 2.10 implies that F ⊆ {x ∈ RE : xuv ≤ h + 1, xvw ≤
h + 1}. Combined with the partition inequality xuv + xvw ≥ 2h + 1 associated
with δ(v), this implies that at least one of ziuv and zivw is equal to h + 1 for
i = 1, . . . , n. Since exchanging the uv and vw coordinates of any point of F gives
a point of F by Claim 3.3, the hypotheses on z1, . . . , zn are preserved under the
assumption that ziuv = h + 1 for i = 1, . . . , n − 1. Let y1, . . . , yn−1 be the points
obtained from z1, . . . , zn−1 by removing uv’s coordinate. Since every multicut of
G′ is a multicut of G with the same order, y1, . . . , yn−1 belong to P2h+1(G′). By
construction, they satisfy A′Fx = b′F so they belong to a face of P2h+1(G′) or
P2h+1(G′) ∩ {x : xuw = h}. This implies that A′F is a face-defining matrix of
P2h+1(G′) if δ(v) /∈MF , and of P2h+1(G′) ∩ {x : xuw = h} otherwise.

By induction, P2h+1(G′) is a box-TDI polyhedron and hence so is P2h+1(G′)∩
{x : xuw = h}. Hence, A′F is equimodular by Theorem 2.4. Since AF is obtained
from A′F by copying a column, then also AF is equimodular—a contradiction. ut

By definition of box-TDIness and Qk(G), Theorem 3.2 implies that Qk(G) is
box-TDI whenG is series-parallel. The converse does not hold. Indeed, for instance,
when G = (V,E) is a minimal k-edge-connected graph, Qk(G) is nothing but the
single point χE so it is a box-TDI polyhedron.
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4 An Integer TDI System for P2h(G)

Let G be a series-parallel graph. In this section we provide an integer TDI system
for P2h(G) with h positive and integer.

The proof of the main result of the section is based on the characterization
of TDIness by means of Hilbert bases. A set of vectors {v1, . . . , vk} is a Hilbert
basis if each integer vector that is a nonnegative combination of v1, . . . , vk can be
expressed as a nonnegative integer combination of them. The link between Hilbert
basis and TDIness is stated in the following theorem.

Theorem 4.1 (Theorem 22.5 of [34]) A system Ax ≥ b is TDI if and only
if for every face F of P = {x : Ax ≥ b}, the rows of A associated with tight
constraints for F form a Hilbert basis.

In the previous theorem, we could restrict to minimal faces: indeed, the cone
generated by the constraints tight for a face F is a face of the cone generated by
the constraints active for a face F ′ ⊆ F [34].

Remark 4.2 A system Ax ≥ b is TDI if and only if, for each minimal face F of
P = {x : Ax ≥ b}, the rows of A associated with constraints tight for F form a
Hilbert basis.

The rest of the section is devoted to prove that the system given by the partition
constraints and the nonnegativity constraints, which describes Pk(G) when k is
even, is TDI when G is series-parallel.

The proof is based on the TDIness of System (5) and the structure of inequali-
ties (3a). Their right-hand sides are proportional to k, hence it is enough to prove
the case k = 2. This allows us to use Theorem 2.13 to obtain a TDI system for
P2(G). In terms of Hilbert bases, the TDIness of this system implies that, given a
face F of P2(G), the integer points of the associated cone are the half sum of the
cuts tight for F . The technical part of the proof is to show that each integer point
of this cone is also the sum of incidence vectors of the multicuts tight for F .

Theorem 4.3 For a series-parallel graph G and a positive integer h, System (3)
is TDI.

Proof We only prove the case h = 1 since multiplying the right hand side of a
system by a positive constant preserves its TDIness [34, Section 22.5].

The proof is done by induction on the number of edges of the graph G = (V,E).
When G consists of two vertices connected by a single edge `, System (3) is x` ≥
2, x` ≥ 0 and is TDI. If G is the circuit {e, f}, System (3) is xe + xf ≥ 2, x ≥ 0
and is TDI.

(Parallelization) Let now G be obtained from a series-parallel graph H by
adding an edge g parallel to an edge f of H. System (3) associated with G is
obtained from that associated with H by duplicating f ’s column in constraints (3a)
and adding the nonnegativity constraint xg ≥ 0. By Lemma 3.1 of [7], System (3)
is TDI.

For the other cases, we prove the TDIness of System (3) associated with G
using Remark 4.2. More precisely, we prove that for any extreme point z of P2(G),
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the set of vectors {χM : M ∈ Tz} ∪ {χe : e ∈ E, ze = 0} is a Hilbert basis, where
Tz is the set of multicuts tight for z.

(1-sum) Let G be the 1-sum of two series-parallel graphs G1 = (W 1, E1) and
G2 = (W 2, E2) and let z be an extreme point of P2(G). By construction, we have
z = (z1, z2) where zi ∈ P2(Gi) for i = 1, 2. Moreover, for each multicut M ∈ Tz,
the graph obtained from G(z) by contracting the edges of E \ M is a circuit.
Indeed, it is 2-edge-connected since G(z) is, and it has z(M) = dM edges and dM
vertices. Therefore M is either a multicut of G1 tight for z1 or one of G2 tight
for z2.

By induction, Systems (3) associated with G1 and G2 are TDI. Thus, {χM :
M ∈ Tz ∩ M(Gi)} ∪ {χe : e ∈ Ei, ze = 0} is a Hilbert basis for i = 1, 2 by
Theorem 4.1. Since they belong to disjoint spaces, their union is a Hilbert basis.
By Theorem 4.1, System (3) is TDI.

(Subdivision) Let G = (V,E) be obtained by subdividing an edge uw of a
series-parallel graph G′ = (V ′, E′) into a path of length two uv, vw, and let z be
an extreme point of P2(G).

Without loss of generality, suppose zuv ≥ zvw. Define z′ ∈ ZE
′

by z′uw = zvw
and z′e = ze for all edges e in E′ \ uw. Note that z′ belongs to P2(G′) since G′(z′)
is obtained by contracting the edge uv in G(z), and this contraction preserves
2-edge-connectivity.

Note that for all e ∈ E, ze ∈ {0, 1, 2}. Indeed, since z is an extreme point of
P2(G) which is also described by System (1), if ze > 0, then e belongs to a cut D
tight for z. Moreover, as zuv ≥ zvw, the partition constraint (3a) associated with
δ(v) implies that zuv ∈ {1, 2}. We now consider two different cases depending on
the value of zuv.

Case 1: zuv = 2.
We first show that every multicut of Tz containing uv is a bond. Indeed, note

that every multicut M with dM = 2 is a bond. If a multicut M = δ(V1, . . . , VdM ) ∈
Tz satisfies dM ≥ 3 and uv ∈ δ(V1, V2), then M ′ = δ(V1 ∪ V2, V3, . . . , VdM ) is a
multicut and satisfies

z(M ′) ≤ z(M)− 2 < dM − 1 = dM ′ .

Hence, the partition constraint (3a) associated withM ′ is violated, a contradiction.
Moreover, there exists at most one bond of Tz, say N , containing uv. As

otherwise suppose there exist two bonds B1 and B2 in Tz containing uv. Then,
z(B14B2) ≤ z(B1) + z(B2)− 2zuv = 0, which contradicts the constraint (3a) as-
sociated with the multicut B14B2. For a multicut M not containing uv, M ∈ Tz
if and only if M ∈ Tz′ . This implies that Tz = Tz′ ∪ N . By induction and Theo-
rem 4.1, Tz′ ∪ Ez′ is a Hilbert basis. As Ez = Ez′ (identifying uv and vw) and N is
the only member of Tz ∪ Ez containing uv, Tz ∪ Ez is also a Hilbert basis.

Case 2: zuv = 1.
Let v be an integer point of the cone generated by Tz ∪ Ez. We prove that v

can be expressed as an integer nonnegative combination of the vectors of Tz ∪ Ez.
This implies that Tz ∪ Ez is a Hilbert basis.
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Let Bz be the set of bonds of Tz. Since System (5) is a TDI system describing
P2(G) in series-parallel graphs, the set of vectors {1

2χ
B : B ∈ Bz} ∪ Ez forms a

Hilbert basis by Theorem 4.1. Then, there exist λB ∈ 1
2Z+ for all B ∈ Bz and

µe ∈ Z+ for all e ∈ Ez such that v =
∑
B∈Bz

λBχ
B +

∑
e∈Ez µeχ

e.
Since zuv ≥ zvw, the partition inequality (3a) associated with δ(v) implies

that zvw = 1 and δ(v) ∈ Tz. In particular, vw /∈ Ez. The vector v is an integer
combination of vectors of Tz ∪ Ez if and only if v − bλδ(v)cχδ(v) is, thus we may

assume that λδ(v) ∈ {0, 1
2}. Define w ∈ ZE

′
by:

we =

{
vuv + vvw − 2λδ(v) if e = uw,
ve otherwise.

Note that (B \ uw)∪ uv and (B \ uw)∪ vw are bonds of Tz whenever B is a bond
of Tz′ containing uw because z′uw = zuv = zvw = 1. Moreover, a bond B of Tz′
which does not contain uw is a bond of Tz. Since δ(v) is the unique bond of G
containing both uv and vw and Ez = Ez′ , we have:

w =
∑

B∈Bz′ :uw∈B
(λ(B\uw)∪uv + λ(B\uw)∪vw)χB +

∑
B∈Bz′ :uw 6∈B

λBχ
B +

∑
e∈Ez′

µeχ
e.

Thus, w belongs to the cone generated by Tz′ ∪ Ez′ . By the induction hypothesis,
Tz′ ∪Ez′ is a Hilbert basis, hence there exist λ′M ∈ Z+ for all M ∈ Tz′ and µ′e ∈ Z+

for all e ∈ Ez′ such that w =
∑
M∈Tz′

λ′Mχ
M +

∑
e∈Ez′

µ′eχ
e.

Consider the familyN of multicuts of Tz′ where each multicut M of Tz′ appears
λ′M times. Suppose first that λδ(v) = 0. Then, vuv+vvw multicuts ofN contain uw.
Let P be a family of vuv multicuts of N containing uw and Q = {F ∈ N : uw ∈
F} \ P. Then, we have

v =
∑

M∈N :uw/∈M

χM +
∑
M∈P

χ(M\uw)∪uv +
∑
M∈Q

χ(M\uw)∪vw +
∑
e∈Ez′

µ′eχ
e. (6)

Suppose now that λδ(v) = 1
2 . Then, wuw = vuv + vvw − 1 multicuts of N

contain uw. Let P be a family of vuv − 1 multicuts of N containing uw, let Q be
a family of vvw − 1 multicuts in {F ∈ N : uw ∈ F} \ P, and denote by N the
unique multicut of N containing uw which is not in P ∪Q. Then, we have

v =
∑

M∈N :uw/∈M

χM+
∑
M∈P

χ(M\uw)∪uv+
∑
M∈Q

χ(M\uw)∪vw+χ(N\uw)∪δ(v)+
∑
e∈Ez′

µ′eχ
e.

(7)
Every M ∈ Tz′ not containing uw is in Tz. For every M ∈ Tz′ containing uw,

(M \uw)∪uv, (M \uw)∪vw and (M \uw)∪ δ(v) belong to Tz since z′uw = zuv =
zvw = 1. Since Ez = Ez′ , then v is a nonnegative integer combination of vectors of
Tz ∪ Ez in both (6) and (7). This proves that Tz ∪ Ez is a Hilbert basis. Therefore
by Remark 4.2, System (3) is TDI. ut

The box-TDIness of Pk(G) and the TDIness of System (3) give the following
result.

Corollary 4.4 System (3) is box-TDI if and only if G is series-parallel.
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Proof If G is series-parallel, then System (3) is box-TDI by Theorems 3.2 and 4.3,
since a TDI system describing a box-TDI polyhedron is box-TDI [12]. If G is
not series-parallel, Theorem 3.2 ensures that Pk(G) is not box-TDI, therefore
System (3) is not box-TDI. ut

Theorem 4.3 leaves open the following problem:

Open Problem 4.5 Characterize the classes of graphs such that System (3) is
TDI.

5 An Integer TDI System for P2h+1(G)

In this section, we prove that System (2) is TDI if and only if G is a series-parallel
graph—see Theorem 5.1. Proving the TDIness for k odd is considerably more
involved than for k even. The first difference with the even case is the lack of a
known TDI system describing Pk(G) when k is odd, even a noninteger one. Thus,
no property of the Hilbert bases associated with Pk(G) is known, and the approach
used to prove Theorem 4.3 cannot be applied. Instead, following the definition of
TDIness, we prove the existence of an integer optimal solution to each feasible
dual problem.

Another difference with the case k even follows from the structure of the parti-
tion inequalities (2a). In particular, the presence of the constant “−1” in the right-
hand sides perturbs the structure of tight multicuts. Indeed, when k is odd, the
tightness of δ(V1, . . . , Vn) does not imply that of δ(V1), . . . , δ(Vn). Consequently,
it is not clear how the contraction of an edge impacts the tightness of a multicut
δ(V1, . . . , Vn): merging adjacent Vi’s is not sufficient to obtain new tight multicuts.
Due to the link between tight multicuts and positive dual variables, the structure
of the optimal solutions to the dual problem is completely modified when subdi-
viding an edge. Proving directly that subdivision preserves TDIness turned out
to be challenging, and we overcome this difficulty by deriving new properties of
series-parallel graphs—see Lemma 2.3.

The proof of Theorem 5.1 focuses on properties of vertices of degree 2 in a min-
imal counterexample to the TDIness of System (2). In particular, we prove that no
two vertices of degree 2 are adjacent (Claim 5.9), or in the same circuit of length 4
(Claim 5.11). Moreover, no triangle contains vertices of degree 2 (Claim 5.10).
By Lemma 2.3, this implies that the graph is not series-parallel. To derive these
properties, we study the interplay between cuts associated with degree 2 vertices
and dual optimal solutions—see Claims 5.3-5.8.

Theorem 5.1 For h positive and integer, System (2) is TDI if and only if G is
series-parallel.

Proof If G is not series-parallel, then System (2) is not TDI because every TDI
system with integer right-hand side describes an integer polyhedron [22], but when
G has a K4-minor, System (2) describes a noninteger polyhedron [10].

We now prove that, if G is series-parallel, then System (2) is TDI. We prove
the result by contradiction. Let G = (V,E) be a series-parallel graph such that
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System (2) is not TDI. By definition of TDIness, there exists c ∈ ZE such that
D(G,c):

max
∑

M∈MG

bMyM

s.t.
∑

M∈MG:e∈M
yM ≤ ce for all e ∈ E,

yM ≥ 0 for all M ∈MG,

(8a)

(8b)

is feasible, bounded, but admits no integer optimal solution, where bM = (h +
1)dM − 1 for all M ∈MG. Without loss of generality, we assume that:

(i) G has a minimum number of edges,
(ii)

∑
e∈E ce is minimum with respect to (i).

By definition, D(G,c) is feasible if and only if c ≥ 0. Hence, by minimality assump-
tion (ii), D(G,c′) has an optimal integer solution for every integer c′ 6= c such that
0 ≤ c′ ≤ c.

Let M be a multicut of G. We denote by ξM the vector of {0, 1}MG whose
only nonzero coordinate is the one associated with M . We say that M is active
for a solution y to D(G,c) if yM > 0. Note that, by complementary slackness, a
multicut is active for an optimal solution to D(G,c) only if it is tight for an optimal
solution to the primal problem. In particular, if a multicut is tight for no point
of P2h+1(G), then it is active for no optimal solution to D(G,c). Thus, we will use
Lemma 2.11 and Theorem 2.10 to deduce properties on the optimal solutions to
D(G,c).

Claim 5.1 G is simple, 2-connected, and nontrivial.

Proof Suppose for a contradiction that there exist two parallel edges e1 and e2

and ce1 ≤ ce2 . Since a multicut contains either both e1 and e2 or none of them, the
inequality (8a) associated with e2 is redundant because ce1 ≤ ce2 . This contradicts
minimality assumption (i), so G is simple.

Assume for a contradiction that G is not 2-connected. Then G is the 1-sum
of two distinct graphs G1 = (V1, E1) and G2 = (V2, E2). By Statement (ii) of
Theorem 2.10, the multicuts of G that intersect both E1 and E2 are not tight for
the points of P2h+1(G), by complementary slackness, these multicuts are not active
for the optimal solutions to D(G,c). Hence, every optimal solution y to D(G,c) is of
the form:

yM =


y1
M if M ∈MG1

,
y2
M if M ∈MG2

,
0 otherwise,

for all M ∈MG,

where yi is an optimal solution to D(Gi,c|Ei
) for i = 1, 2. By minimality assump-

tion (i), there exists an integer optimal solution ȳi to D(Gi,c|Ei
) for i = 1, 2,

implying that (ȳ1, ȳ2) is an integer optimal solution to D(G,c), a contradiction.
Finally, if G = K2, MG contains only one multicut, say {e}, and the optimal

solution to D(G,c) is y∗{e} = ce which is integer. ut

Claim 5.2 For all edges e ∈ E, ce ≥ 1.
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Proof By hypothesis, c ≥ 0 is integer and D(G,c) has an optimal solution, say
y∗. Suppose for a contradiction that there exists an edge e ∈ E with ce = 0. Set
G′ = G/e and c′ = c|(E\e). The active multicuts for y∗ do not contain the edge
e so they are multicuts of G′ since MG′ = {M ∈ MG|e /∈ M}. Hence, the point
y′ ∈ RMG′ defined by y′M = y∗M for all M ∈MG′ is a solution to D(G′,c′).

By minimality assumption (i), there exists an integer optimal solution ỹ to
D(G′,c′). Extending ỹ to a point of ZMG by setting to 0 the missing component

gives an integer solution to D(G,c) with cost b>ỹ ≥ b>y′ = b>y∗. This is an integer
optimal solution to D(G,c) since y∗ is optimal, a contradiction to the hypothesis
that D(G,c) has no integer optimal solution. ut

Claim 5.3 Every optimal solution y to D(G,c) satisfies 0 ≤ yM < 1 for all M ∈
MG.

Proof By contradiction, suppose that y∗ is an optimal solution to D(G,c) such
that there exists a multicut M such that y∗M ≥ 1. Therefore, the point y′ defined
by y′ = y∗ − ξM is a solution to D(G,c′) where c′ = c − χM . By minimality
assumption (ii), D(G,c′) admits an integer optimal solution y′′. The point ỹ defined
by ỹ = y′′ + ξM is an integer solution to D(G,c) and we have:

b>ỹ = b>y′′ + bM ≥ b>y′ + bM = b>y∗.

Therefore ỹ is an integer optimal solution to D(G,c), a contradiction. ut

From the definition of series-parallel graphs, Claim 5.1 implies that G contains
at least one degree 2 vertex. Let V̂ be the set of degree 2 vertices of G.

Claim 5.4 Let v ∈ V̂ , δ(v) = {e1, e2}, y be an optimal solution to D(G,c), and
M1 be an active multicut for y such that M1 ∩ δ(v) = e1. If δ(v) is active for y,
then no multicut whose intersection with δ(v) is e2 is active for y.

Proof We prove the result by contradiction. Assume thatM1 and δ(v) are active for
y and that there exists a M2 active for y with M2∩δ(v) = e2. By Observation 2.2,
M ′i = Mi ∪ δ(v) is a multicut of G such that dM ′i = dMi

+ 1 for i = 1, 2. Let
0 < ε ≤ min{yM1

, yM2
, yδ(v)}. Then, the point:

y′ = y − ε
(
χM1 + χM2 + χδ(v)

)
+ ε

(
χM

′
1 + χM

′
2

)
is a solution to D(G,c), and we have b>y′ = b>y+ε, implying that y is not optimal,
a contradiction. ut

Claim 5.5 For every optimal solution to D(G,c), the constraints (8a) associated
with the edges incident to a degree 2 vertex are tight.

Proof We prove the result by contradiction. Suppose that there exist an optimal
solution y∗ to D(G,c) and a vertex v with δ(v) = {e1, e2} such that the inequal-
ity (8a) associated with e1 is not tight. For i = 1, 2, let si be the slack of the
constraint associated with ei, that is,

si = cei −
∑

M∈MG:ei∈M
y∗M .
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Inequality (8a) associated with e2 is tight, as otherwise there exists 0 < η ≤
min{s1, s2}, such that y∗ + ηξδ(v) is a solution to D(G,c), a contradiction to the
optimality of y∗. Hence, Claims 5.2 and 5.3 imply that there are at least two
distinct multicuts M1 and M2 active for y∗ and containing e2. Let 0 < ε ≤
min{y∗M1

, y∗M2
, s1}. For i = 1, 2, e1 ∈ Mi, as otherwise y′ = y∗ + ε(ξMi∪e1 − ξMi

)

is a solution to D(G,c). This solution is such that b>y′ = b>y∗ + ε(h+ 1) > b>y∗,
a contradiction to the optimality of y∗. Thus, both M1 and M2 contain δ(v).
Since they are distinct, at least one of them, say M1, strictly contains δ(v). Then,
y′′ = y∗+ε(−ξM1

+ξM1\e2 +ξδ(v)) is a solution to D(G,c) because M1\e2 belongs to

MG by Lemma 2.11. Then, b>y′′ = b>y∗+ε(−bM1
+bM1

−(h+1)+2h+1) > b>y∗,
a contradiction. ut

Given a solution y to D(G,c), we define for each vertex v ∈ V̂ the set Ayv as
the set of multicuts active for y that strictly contain δ(v). Moreover we define the
value αyv as:

αyv =
∑

M∈Ay
v

yM . (9)

Claim 5.6 Every optimal solution y to D(G,c) satisfies 0 < αyv < 1 for all v ∈ V̂ .

Proof Suppose for a contradiction that there exist an optimal solution y∗ to D(G,c)

and a vertex v of V̂ such that either αy
∗

v ≥ 1 or αy
∗

v = 0. Denote the two edges
incident to v by e1 and e2 in such a way that ce1 ≤ ce2 .

Suppose first that αy
∗

v ≥ 1. By Claim 5.3, there exist at least two multicuts in
Ay
∗

v . Let Ay
∗

v = {M1, . . . ,Mn}. By Lemma 2.11, for all i = 1, . . . , n, M ′i = Mi \ e1

is a multicut of G with dM ′i = dMi
− 1. Let c′ = c−χe1 . By αy

∗

v ≥ 1, there exist εi

for all i = 1, . . . , n, such that 0 ≤ εi ≤ y∗Mi
and

∑n
i=1 εi = 1. The point y1 defined

by:

y1 = y∗ +
n∑
i=1

(
−εiξMi

+ εiξM ′i
)

is a solution to D(G,c′). By definition of b, we have:

b>y1 = b>y∗ − h− 1. (10)

By minimality assumption (ii), D(G,c′) admits an integer optimal solution, say

y2. This solution satisfies with equality the constraint (8a) associated with e2

as otherwise y2 + ξδ(v) would be a solution to D(G,c) with cost b>y2 + bδ(v) ≥
b>y1 + 2h+ 1, contradicting the assumption that y∗ is optimal by (10) and h ≥ 1.
Hence, there exists a multicut M̄ active for y2 containing e2 but not e1 since
c′e1 + 1 ≤ c′e2 . By definition, M̄ ∪ e1 is a multicut of G of order dM̄ + 1. Define
y3 ∈ ZMG by:

y3
M = y2 − χM̄ + χM̄∪e1

By definition of c′ and y2, the point y3 is an integer solution to D(G,c). Therefore,

by (10), since y2 is optimal in D(G,c′) and by definition of y3, we have:

b>y∗ = b>y1 + h+ 1 ≤ b>y2 + h+ 1 ≤ b>y3.

Thus, y3 is an integer optimal solution to D(G,c), a contradiction.
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Suppose now that αy
∗

v = 0. First, note that δ(v) is not an active multicut for
y∗. Otherwise by Claims 5.2, 5.3 and 5.5, there would be a multicut containing
e1 and not e2, say N1, and a multicut containing e2 and not e1, say N2, which
are both active for y∗. This contradicts Claim 5.4. Hence, by definition of αy

∗

v , no
active multicut contains δ(v).

By Observation 2.2, if a multicut M contains e2 but not e1, then M4δ(v) is a
multicut with the same order and bM = bM4δ(v). Hence, we can define the point

y4 ∈ QMG :

y4
M =


0 if e1 ∈M ,
y∗M + y∗M4δ(v) if e1 /∈M and e2 ∈M ,

y∗M otherwise,
for all M ∈MG,

which is a solution to D(G,ĉ), where ĉ is defined by:

ĉe =


ce1 + ce2 if e = e2,
0 if e = e1,
ce otherwise,

for all e ∈ E.

By construction, we have:

b>y4 = b>y∗. (11)

Using the argument given in the proof of Claim 5.2, we deduce that D(G,ĉ)

admits an integer optimal solution, say y5. Let S be the family of active multicuts
for y5 containing e2, where each multicut M appears y5

M times in S. We have |S| >
ce2 as otherwise y5 would be an integer optimal solution to D(G,c), a contradiction.

We now construct from y5 an integer solution y6 to D(G,c) with the same

cost by replacing e2 by e1 in some active multicuts for y5. More formally, since
|S| ≥ ce1 , there exists S′ ⊆ S with |S′| = ce1 . By Observation 2.2, M4δ(v) is
a multicut of G for all M ∈ S′ and bM = bM4δ(v). Let y6 ∈ ZMG be the point
defined by:

y6 = y5 +
∑
M∈S′

(
ξM4δ(v) − ξM

)
(12)

By construction, we have:

b>y6 = b>y5. (13)

Note that for each M ∈ S′, adding ξM4δ(v) − ξM to a point of RMG increases
(resp. decreases) by 1 the left-hand side of the inequality (8a) associated with e1

(resp. e2) while not changing the left-hand side of the inequalities (8a) associated
with the edges of E \ {e1, e2}. Therefore, by definition of ĉ, y6 is a solution to
D(G,c). By (13), the optimality of y5, and (11), we have:

b>y6 = b>y5 ≥ b>y4 = b>y∗.

Therefore y6 is an integer optimal solution to D(G,c), a contradiction. ut
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Claim 5.6 implies that for each optimal solution y and for each v ∈ V̂ there
exists at least one multicut strictly containing δ(v) that is active for y. For the
following claims we need to define a subset of optimal solutions to D(G,c): let Dv
be the set of optimal solutions to D(G,c) for which δ(v) is not active. Note that
if Dv is not empty, then there exists a solution y in Dv maximizing αzv over all
z ∈ Dv.

The following claim presents the structure of a specific optimal solution to
D(G,c) for which δ(v) is not active.

Claim 5.7 Let v ∈ V̂ with δ(v) = {e1, e2} and let y∗ ∈ Dv maximize αzv over all
z ∈ Dv. Then, there are exactly 3 multicuts active for y∗ intersecting δ(v): two
bonds F ∪ e1 and F ∪ e2 and a multicut F ∪ {e1, e2} of order 3, for some F ⊆ E.

Proof By Claim 5.6, there exists at least one multicut strictly containing δ(v)
which is active for y∗, say M0. By definition of Dv, δ(v) is not active for y∗. Hence,
by Claim 5.5, there exists at least one multicut active for y∗ which contains ei and
not δ(v) \ ei, for i = 1, 2. Let Mi be such a multicut with maximum order.

First, we prove that dM0
= 3. By definition, M0 = δ(v, V2, V3, . . . , VdM0

).
Moreover, by Lemma 2.11 and complementary slackness, the two vertices adja-
cent to v belong to two different classes, say V2 and V3. By contradiction, sup-
pose that dM0

≥ 4. Then, M ′0 = δ(v ∪ V2 ∪ V3, . . . , VdM0
) is a multicut of or-

der dM0
− 2. For i = 1, 2, M ′i = Mi ∪ δ(v) is a multicut of order dMi

+ 1. Let
0 < ε ≤ min{y∗M0

, y∗M1
, y∗M2

}. Then, let y′ ∈ RMG be the point defined by:

y′ = y∗ − εξM0
+ εξM ′0 + ε

∑
i=1,2

(
−ξMi

+ ξM ′i
)
.

By construction, y′ is a solution to D(G,c) with b>y∗ = b>y′. Hence y′ is an

optimal solution, but we have αy
′

v = αy
∗

v + ε because δ(v) ( M ′i for i = 1, 2. This
contradicts the maximality of αy

∗

v . Therefore dM0
= 3.

Now, we show that M1 is a bond. The result for M2 holds by symmetry. By
contradiction, suppose that M1 = δ(V1, . . . , VdM1

) with dM1
≥ 3. Without loss of

generality, we suppose that e ∈ δ(V1) ∩ δ(V2). Then, M ′1 = δ(V1 ∪ V2, . . . , VdM1
)

is a multicut of order dM1
− 1. Moreover, M ′2 = M2 ∪ δ(v) is a multicut of order

dM2
+ 1. Let 0 < ε ≤ min{y∗M1

, y∗M2
} and y′ ∈ RMG be the point defined by:

y′ = y∗ − εξM1
+ εξM ′1 − εξM2

+ εξM ′2 .

By construction, y′ is a solution to D(G,c) with b>y∗ = b>y′. Hence y′ is an

optimal solution, but we have αy
′

v = αy
∗

v + ε because δ(v) (M ′2. This contradicts
the maximality of αy

∗

v . Therefore, dM1
= dM2

= 2.
We now prove that there exists a set F such thatM0 = F∪δ(v), andMi = F∪ei

for i = 1, 2. Note that M1∪M2 is a multicut so y′′ = y∗+ε(ξM1∪M2
−ξM1

−ξM2
) is a

solution to D(G,c). The optimality of y∗ implies dM1∪M2
≤ 3. Since M1 and M2 are

distinct bonds, there exists F ⊆ E\δ(v) such that Mi = F∪ei, for i = 1, 2. Finally,
let N0 = M0 \ e2 and N1 = M1 ∪ e2. Note that ỹ = y∗+ ε(ξN0

− ξM0
+ ξN1

− ξM1
)

is an optimal solution to D(G,c) for which δ(v) is not active. Moreover, N0 and M2

are bonds active for ỹ since dM0
= 3. This implies that N0 = F ∪ e1, and hence

M0 = F ∪ δ(v).
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This implies that M0, M1, and M2 are the only multicuts active for y∗ inter-
secting δ(v). Indeed, if M is a multicut active for y∗ strictly containing δ(v), then
repeating the proof above with M , M1, and M2 shows that there exists F ′ such
that M = F ′ ∪ δ(v), and Mi = F ′ ∪ ei for i = 1, 2. Since Mi = F ∪ ei for i = 1, 2,
we have F ′ = F and hence M = M0. A similar argument holds for any multicut
active for y∗ and intersecting δ(v). ut

Claim 5.8 Let v ∈ V̂ and y∗ be an optimal solution to D(G,c). Then,

(i) if y∗δ(v) = 0, then ce = 1 for all e ∈ δ(v),

(ii) if y∗δ(v) > 0, then αy
∗

v + y∗δ(v) = 1, and there exists e ∈ δ(v) such that ce = 1.

Proof (i.) First suppose that y∗δ(v) = 0, then Dv 6= ∅. Let y′ ∈ Dv maximize αzv
over all z ∈ Dv. Then, by Claim 5.7, there exist exactly two active multicuts for
y′ containing ei for i = 1, 2. Combining Claims 5.3 and 5.5, and the integrality of
c, we obtain that cei = 1 for i = 1, 2.

(ii.) Let now y∗δ(v) > 0. By Claim 5.4, there exists an edge e ∈ δ(v) such that all
multicuts containing e that are active for y contain δ(v). Hence, the constraint (8a)
associated with e is:

ce ≥
∑

M :e∈M
y∗M = y∗δ(v) +

∑
M∈Ay∗

v

y∗M = y∗δ(v) + αy
∗

v . (14)

By Claim 5.5, the constraint (8a) associated with e is tight. Thus, y∗δ(v) +αy
∗

v = ce.
By Claims 5.3 and 5.6 and since ce is integer, we have ce = 1. ut

The last three claims of the proof give some structural property of the graph
G. In particular we focus our attention on the vertices of V̂ .

Claim 5.9 Vertices of degree 2 are pairwise nonadjacent.

Proof Assume for a contradiction that there exist two adjacent vertices v1 and v2

in V̂ , and denote δ(vi) = {e0, ei} for i = 1, 2.

We prove that δ(v1) is active for all optimal solutions to D(G,c), the result for
δ(v2) is obtained by symmetry. By contradiction, suppose that Dv1 6= ∅. Among all
the solutions y ∈ Dv1 , let y1 be one having αyv1 maximum. Then, by Claim 5.7, the
three multicuts active for y1 intersecting δ(v1) are M0 = F ∪ δ(v1), B0 = F ∪ e0,
and B1 = F ∪ e1, where Bi are bonds for i = 0, 1, and F ⊆ E \ δ(v1) contains no
nonempty multicut. By Claim 5.6 on v2, there exists a multicut M active for y1

strictly containing δ(v2). By δ(v1)∩ δ(v2) = e0, M intersects δ(v1). Since dM ≥ 3,
Claim 5.7 for v1 implies M = M0, F = {e2}, and B0 = δ(v2).

As y1
δ(v1) = 0, by Statement (i) of Claim 5.8, ce0 = ce1 = 1. By Claim 5.5, the

constraints associated with e0 and e1 are tight. Since Ay
1

v1 = {M0} by Claim 5.7,
we have:

cei = y1
M0

+ y1
Bi

= 1 for i = 0, 1. (15)

Let {M1, . . . ,Mn} be the set of active multicuts for y1 such that Mi∩{e0, e1, e2} =
e2, for i = 1, . . . , n. By Claim 5.5, the constraint (8a) associated with e2 is tight,
hence, using (15):

ce2 = y1
M0

+ y1
B0

+ y1
B1

+

n∑
i=1

y1
Mi

= 1 + y1
B0

+
n∑
i=1

y1
Mi
. (16)
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By Claim 5.3, B0 active for y1, and ce2 ∈ Z, we have {M1, . . . ,Mn} 6= ∅ and
ce2 ≥ 2. Thus, combining (15) and (16), we have:

n∑
i=1

y1
Mi

= ce2 − 1− y1
B0
≥ y1

M0
. (17)

Then, there exist ε1, . . . , εn such that 0 ≤ εi ≤ y1
Mi

for i = 1, . . . , n, and

n∑
i=1

εi = y1
M0
.

For i = 1, . . . , n, Mi ∪ e0 is a multicut with order dMi
+ 1, hence we can consider

the following solution to D(G,c):

y2 = y1 −

(
y1
M0
ξM0

+
n∑
i=1

εiξMi

)
+

(
y1
M0
ξM0\e0 +

n∑
i=1

εiξMi∪e0

)
. (18)

We have b>y1 = b>y2, but αy
2

v1 = 0, a contradiction to Claim 5.6. Therefore
Dv 6= ∅, and by symmetry we deduce that both δ(v1) and δ(v2) are active for all
optimal solutions to D(G,c).

By Claim 5.4, for every optimal solution y to D(G,c) and every multicut M of
G, if M is active for y and contains ei for some i ∈ {1, 2}, then e0 ∈M .

Let y∗ be the optimal solution to D(G,c) maximizing αyv1 over all y solutions

to D(G,c). We have Ay
∗

v2 ⊆ A
y∗

v1 and all the multicuts in Ay
∗

v2 have order at most 3.

Otherwise, let M ∈ Ay
∗

v2 \ A
y∗

v1 (resp. M ∈ Ay
∗

v2 such that dM ≥ 4), and 0 < ε ≤
min{y∗M , y∗δ(v1)}. The solution

y3 = y∗ − ε(ξM + ξδ(v1)) + ε(ξM\e2 + ξδ(v1)∪e2)

is optimal, but αy
3

v1 = αy
∗

v1 +ε by the choice of M , a contradiction to the maximality

of αy
∗

v1 . Thus, M̄ = {e0, e1, e2} is the only multicut in Ay
∗

v2 .
Let {N1, . . . , Nm} be the set of active multicuts for y∗ such thatNi∩{e0, e1, e2} =

e0 for i = 1, . . . ,m. The constraint associated with e0 is tight by Claim 5.5, hence,
by Ay

∗

v2 ⊆ A
y∗

v1 , we have:

ce0 = αy
∗

v1 + y∗δ(v1) + y∗δ(v2) +
m∑
i=1

y∗Ni
. (19)

By Statement (ii) of Claim 5.8 applied to v1, we have y∗δ(v1) + αy
∗

v1 = 1, and so:

ce0 = 1 + y∗δ(v2) +

m∑
i=1

y∗Ni
. (20)

ByAy
∗

v2 = {M̄} and Statement (ii) of Claim 5.8 applied to v2, we have y∗δ(v2)+y
∗
M̄ =

1, hence:

ce0 = 2− y∗M̄ +
m∑
i=1

y∗Ni
. (21)
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Since ce0 is integer and since y∗M̄ < 1 by Claim 5.3, by (21), we have:

m∑
i=1

y∗Ni
≥ y∗M̄ . (22)

Hence, let λ1, . . . , λm be such that 0 ≤ λi ≤ y∗Ni
for i = 1, . . . ,m, and∑m

i=1 λi = y∗M̄ . Note that δ(v2) = M̄ \ e1. Then, the point

y5 = y∗ −

(
y∗M̄ξM̄ +

m∑
i=1

λiξNi

)
+

(
y∗M̄ξδ(v2) +

m∑
i=1

λiξNi∪e1

)

is a solution to D(G,c), and it is optimal by definition of b. Moreover,

y5
δ(v2) = y∗M̄ + y∗δ(v2) = 1,

a contradiction to Claim 5.3. ut

The following claim forbids a circuit of length 3 to contain a vertex of V̂ .

Claim 5.10 No circuit of length 3 contains a vertex of degree 2.

Proof Assume for a contradiction that in G there exist a vertex v ∈ V̂ and a
circuit {e1, e2, e3} such that δ(v) = {e1, e2}. By Lemma 2.1, a multicut contains
e3 only if it intersects δ(v). On the other hand, by Lemma 2.11 and complementary
slackness, each multicut strictly containing δ(v) and active for an optimal solution
contains e3. Thus, for every optimal solution y to D(G,c), we have:∑

M :e3∈M
yM =

∑
M :e1∈M,M 6=δ(v)

yM +
∑

M :e2∈M,M 6=δ(v)

yM − αyv. (23)

Let y∗ be an optimal solution to D(G,c). By the constraint (8a) associated with
e3, (23), and Claim 5.5, we have:

ce3 ≥
∑

M :e3∈M
y∗M = ce1 + ce2 − 2y∗δ(v) − α

y∗

v . (24)

By Claim 5.6 and Statement (ii) of Claim 5.8, we have 2y∗δ(v) + αy
∗

v < 2. Thus,
by (24) and ce3 ∈ Z, we have ce3 ≥ ce1 + ce2 − 1.

Define G′ = G \ e3 and c′ = c|(E\e3). Note that for each multicut M ∈ MG,
M \ e3 is a multicut of G′ with order at least dM . Hence, y∗ induces a solution
to D(G′,c′) of cost at least b>y∗. By minimality assumption (i), there exists an

integer optimal solution y′ to D(G′,c′), and we have b>y′ ≥ b>y∗.
Let M1 (resp. M2) be the set of multicuts M = δ(V1, . . . , VdM ) of G′ active

for y′ such that the endpoints of e3 belong (resp. do not belong) to a same Vi for
some i ∈ {1, . . . , dM}. For each M ∈ M1 (resp. M ∈ M2), M (resp. M ∪ e3) is a
multicut of G with the same order. Hence,

y′′ =
∑

M∈M1

y′MξM +
∑

M∈M2

y′MξM∪e3
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is a point of ZMG
+ with b>y′′ = b>y′. Thus, b>y′′ ≥ b>y∗, and y′′ is not a

solution to D(G,c). By definition, y′′ respects every constraint of D(G,c) but the
constraint (8a) associated with e3.

By definition of y′′, we have:∑
M :e3∈M

y′′M =
∑

M :e1∈M,M 6=δ(v)

y′′M +
∑

M :e2∈M,M 6=δ(v)

y′′M − αy
′′

v . (25)

Therefore, by y′′ violating the constraint (8a) associated with e3, (25), Statement
(ii) of Claim 5.8, and the inequalities (8a) associated with e1 and e2, we have:

ce3 <
∑

M :e3∈M
y′′M =

∑
M :e1∈M

y′′M+
∑

M :e2∈M
y′′M−αy

′′

v −2y′′δ(v) ≤ ce1+ce2−α
y′′

v −2y′′δ(v).

(26)

Thus, by (24), we have αy
′′

v +2y′′δ(v) < αy
∗

v +2y∗δ(v) < 2. By ce3 ≥ ce2 + ce1 −1, the

integrality of y′′, and (26), we have αy
′′

v = y′′δ(v) = 0, and so ce3 = ce1 + ce2 − 1.

Hence, by the integrality of y′′ and equation (25):

ce3 + 1 =
∑

M :e3∈M
y′′M =

∑
M :e1∈M

y′′M +
∑

M :e2∈M
y′′M = ce1 + ce2 . (27)

For i = 1, 2, since cei ≥ 1, there exists a multicut Mi active for y′′ such that
Mi ∩ δ(v) = ei.

We claim that the constraint (8a) associated with e3 is not tight for y∗. By
ce3 = ce1+ce2−1, (24), and Claim 5.6, δ(v) is active for y∗. Hence, by Statement (ii)
of Claim 5.8, we have:

αy
∗

v + y∗δ(v) = 1. (28)

Hence, by (23) and Claim 5.5, (28), (27), and δ(v) active for y∗, we have:∑
M :e3∈M

y∗M = ce1 + ce2 − 1− y∗δ(v) = ce3 − y
∗
δ(v) < ce3 . (29)

The point y′′ respects all the constraints of D(G,c) except the one associated
with e3, and this constraint is not tight for y∗. Therefore, there exists 0 < λ < 1
such that

ỹ = λy∗ + (1− λ)y′′

is a solution to D(G,c). Moreover, ỹ is optimal because b>y∗ ≤ b>y′′.
All multicuts active for at least one between y∗ and y′′ are active for ỹ. Since

δ(v) is active for y∗ and M1,M2 are active for y′′, the three multicuts M1,M2,
and δ(v) are active for ỹ, a contradiction to Claim 5.4. ut

Claim 5.11 Each circuit of length 4 contains at most one vertex of degree 2.

Proof Assume for a contradiction that there exists a circuit C = {e1, . . . , e4} in G

covering two vertices of V̂ , say v1, v2. By Claim 5.9, v1 and v2 are not adjacent,
hence we assume that δ(v1) = {e1, e2} and δ(v2) = {e3, e4}. Let v3 and v4 be the
remaining vertices of C.

We prove that δ(v1) is active for all optimal solutions to D(G,c). Indeed, if
Dv1 6= ∅, then let y′ ∈ Dv1 maximize αzv1 over all z ∈ Dv1 . By Statement (ii) of
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Theorem 2.10, for every multicut M in Ay
′

v2 , we have M = δ{v2, V2, . . . , VdM }, with
v3 and v4 belonging to different Vi’s, hence M ∩ δ(v1) 6= ∅. However, M \ δ(v1)
contains δ(v2), a contradiction to Claim 5.7 applied to v1. Exchanging the role of
v1 and v2, we deduce that δ(v2) is active for all optimal solutions to D(G,c).

Without loss of generality, there exists an optimal solution y such that αyv1 ≥
αyv2 . Then, we can build from y an optimal solution y∗ to D(G,c) such that Ay

∗

v2 ⊆
Ay
∗

v1 . Indeed, suppose Ayv2 \ A
y
v1 = {M1, . . . ,Mn}. Then, since αyv1 ≥ αyv2 , there

exist N1, . . . , Nm ∈ Ayv1 \ A
y
v2 such that:

n∑
i=1

yMi
≤

m∑
j=1

yNj
. (30)

Hence, there exist ε1, . . . , εm such that 0 ≤ εj ≤ yNj
, for j = 1, . . . ,m, and

m∑
j=1

εj =
n∑
i=1

yMi
. (31)

By Statement (ii) of Theorem 2.10 and complementary slackness, v3 and v4 be-
long to different classes of Nj for each j = 1, . . . ,m, implying that Nj ∩ δ(v2) 6= ∅.
Moreover, since Nj 6∈ Ayv2 , we have |Nj ∩ δ(v2)| = 1, for all j = 1, . . . ,m. Further-
more, since δ(v2) is active for y, by Claim 5.4, there exists an edge in δ(v2), say
e3, such that Nj ∩ δ(v2) = e3 for all j = 1, . . . ,m. Therefore, the point

y∗ = y −

(
n∑
i=1

yMi
ξMi
−

n∑
i=1

yMi
ξMi\e4

)
+

 m∑
j=1

εjξNj∪e4 −
m∑
j=1

εjξNj

 (32)

is a solution to D(G,c) with b>y∗ = b>y and Ay
∗

v2 ⊆ A
y∗

v1 . Let Ay
∗

v2 = {M ′1 . . . ,M ′p}.
For i = 1, . . . , p, since M ′i ∈ Ay

∗

v1 , Statement (ii) of Theorem 2.10 implies M ′i =
δ(v1, v2, V

i
3 , V

i
4 , . . . , V

i
dM′

i

), where V i3 and V i4 contain respectively v3 and v4. Then,

M ′′i = δ(v1, v2 ∪ V i3 ∪ V i4 , . . . , V idM′
i

) is a multicut of order dM ′i − 2 for i = 1, . . . , p.

Since δ(v2) is active for y∗, by Statement (ii) of Claim 5.8, we have αy
∗

v2 +y∗δ(v2) = 1.

Then, the point y1 ∈ QMG defined by:

y1 = y∗ −

(
y∗δ(v2)ξδ(v2) +

p∑
i=1

y∗M ′iξM ′i

)
+

(
p∑
i=1

y∗M ′iξM ′′i

)
,

is a solution to D(G,c′), where c′ = c− χδ(v2).

By dM ′′i = dM ′i − 2 for all i = 1, . . . , p, and αy
∗

v2 + y∗δ(v2) = 1, we have:

b>y1 = b>y∗ − αy
∗

v2 (2h+ 2)− y∗δ(v2)(2h+ 1) = b>y∗ − (2h+ 1)− αy
∗

v2 . (33)

By minimality assumption (ii), D(G,c′) admits an integer optimal solution, say y2.

The point y3 ∈ ZMG defined by y3 = y2 + ξδ(v2) is a solution to D(G,c) such that:

b>y3 = b>y2 + 2h+ 1. (34)
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Therefore, by (33), the optimality of y2, and (34), we have:

b>y∗ = b>y1 + 2h+ 1 + αy
∗

v2 ≤ b
>y2 + 2h+ 1 + αy

∗

v2 = b>y3 + αy
∗

v2 . (35)

By integrality of P2h+1(G) and duality, we have b>y∗ ∈ Z. Furthermore, y3 is
integer by construction, so b>y3 ∈ Z. Then, by (35) and Claim 5.6, we have
b>y∗ ≤ b>y3, and so y3 is an integer optimal solution to D(G,c), a contradiction.

ut

Claims 5.1, 5.9, 5.10, 5.11 and Lemma 2.3 imply that G is not series-parallel,
a contradiction. ut

The box-TDIness of Pk(G) and the TDIness of System (2) give the following
result.

Corollary 5.2 System (2) is box-TDI if and only if G is series-parallel.

Proof By Theorem 5.1, when G is not series-parallel, System (2) is not TDI.
Whenever G is series-parallel, Pk(G) is box-TDI by Theorem 3.2 and System (2)
is TDI by Theorem 5.1. ut
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