
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Combinatorial optimization model and MIP formulation for the structural
analysis of conditional differential-algebraic systems

Mathieu Lacroix a,b, A. Ridha Mahjoub a,⇑, Sébastien Martin a

a LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France
b LIMOS, Université Blaise Pascal Clermont-Ferrand II, Complexe Scientifique des Cézeaux, 63177 Aubière Cedex, France

a r t i c l e i n f o

Article history:
Available online 9 December 2010

Keywords:
Differential-algebraic system
Structural analysis
Graph
Integer linear program
Matching
Branch-and-Cut algorithm

a b s t r a c t

In this paper we consider the structural analysis problem for differential-algebraic systems with condi-
tional equations. This problem consists, given a conditional differential-algebraic system, in verifying if
the system is structurally nonsingular for every state, and if not in finding a state in which the system
is structurally singular. We give a formulation for this problem as an integer linear program. This is based
on a transformation of the problem into a matching problem in an auxiliary graph. We also show that the
linear relaxation of that formulation can be solved in polynomial time. Using this, we develop a Branch-
and-Cut algorithm for solving the problem and present some experimental results.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Differential-algebraic systems (DAS) are used for modeling
complex physical systems such as electrical networks and dynamic
movements. Such a system can be given as

f1ðx; _x; pÞ ¼ 0;
f2ðx; _x; pÞ ¼ 0;

..

.

fnðx; _x; pÞ ¼ 0;

ð1Þ

where x = (x1,x2, . . . ,xn) is the variable vector, _x ¼ ð _x1; _x2; . . . ; _xnÞ is
the derivative vector associated to x with respect to time and
p = (p1,p2, . . . ,pm) is the vector of the input values of the problem.
We will mean by input values what is called in DAS literature as in-
put vector and parameter vector.

As example, consider for instance the electrical circuit RL of
Fig. 1. This network contains a coil L and a resistance R in series.
The voltage U and current i at the terminal of the self are unknown.

For this circuit we can associate the following differential
system:

_i� 1
L

U ¼ 0;

Riþ U � EðtÞ ¼ 0:

Here the DAS has two equations where U and i are the variables and
E(t) is a known time function.

Establishing that a DAS definitely is not solvable can be helpful.
A typical problem that appears, for instance, in physical system
modeling and simulation is when too many or too few equations
are specified in the system, thus leading to inconsistent states of
the model. In consequence, a necessary (but not sufficient) condi-
tion for solvability is that the number of variables and equations
must agree. Object-oriented modeling languages like Modelica
(Fritzson, 2003) enforce this as simulation is not possible if this
is not the case.

The index matrix M of a DAS (Poulsen, 2001) is the n � n matrix
given by

Mi;j ¼
1 if _xi appears in equation j;

0 if xi appears in equation j and not _xi;

�1 if both _xi and xi do not appear in equation j:

8><
>:

Note that Mi,j consists of the leading derivative of variable xi in
equation j.

Definition 1.1 Poulsen (2001). A DAS is called structurally non-
singular if there exists a permutation of rows and columns of its
index matrix M so that the entire diagonal of the resulting matrix,
say M, only contains non-infinity elements, i.e.,

Mi;i–�1; for i ¼ 1; . . . ;n:

Otherwise, the system is called structurally singular.
As it is mentioned in Pantelides (1988), Poulsen (2001), Bunus

and Fritzson (2008) structurally singular systems have no solution
since it is impossible to find consistent initial conditions. Thus, a

0360-8352/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2010.12.002

⇑ Corresponding author.
E-mail addresses: lacroix@lamsade.dauphine.fr (M. Lacroix), mahjoub@lamsa-

de.dauphine.fr (A. Ridha Mahjoub), martin@lamsade.dauphine.fr (S. Martin).

Computers & Industrial Engineering 61 (2011) 422–429

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

Author's personal copy

necessary condition for a DAS to be solvable is that it is structurally
nonsingular. The nonsingularity does not however guarantee its
solvability. The structural analysis problem (SAP) of a DAS consists
in verifying whether or not the system is structurally nonsingular.

In many practical situations, physical systems have different
states generated by some technical conditions. These may be, for
instance, related to temperature changements in hydraulic sys-
tems. In more formal way, we call condition a boolean depending
on the values of a particular set of input values among p1, . . ., pn.
An embedded condition is a condition which depends on several dif-
ferent input values. A conditional equation is an equation whose
form depends on the values of a condition. An equation without
conditions is called nonconditional or simple.

Physical systems generally yield DASs with conditional equa-
tions. A conditional equation may take different forms, simple or
embedded. Moreover, it may generate one or more nonconditional
equations. A conditional DAS is a DAS with conditional equations.

In the sequel, we will consider conditional DASs with simple
conditional equations such that each equation may take two possi-
ble values, depending on whether the associated condition is true
or false, and may generate only one nonconditional equation. We
suppose that all the conditions are independent. That is to say
the value of a condition does not depend on the value of any other
condition. As it will turn out, the results we will obtain for this case
can be easily extended to DAS’s with arbitrary structure.

A conditional DAS may then have different forms depending on
the assignment of the true and false values to the conditions. Each
assignment yields a nonconditional system called a state of the sys-
tem. Consider for example the following DAS with three equations
and three variables:

C1 : if a > 0

then 0 ¼ 4x2
1 þ 2 _x1 þ 4x2 þ 2;

else 0 ¼ _x2 þ 2x3 þ 4;
C2 : if b > 0

then 0 ¼ 6 _x2 þ 2 _x3 þ 2;
else 0 ¼ x1 þ _x2 þ 1;

C3 : if c > 0
then 0 ¼ 6 _x1 þ x2 þ 2;
else 0 ¼ 3 _x2 þ x3 þ 3:

ð2Þ

For conditions a > 0, b > 0, c > 0, system (2) is nothing but the
following.

C1 : 0 ¼ 4x2
1 þ 2 _x1 þ 4x2 þ 2;

C2 : 0 ¼ 6 _x2 þ 2 _x3 þ 2;
C3 : 0 ¼ 6 _x1 þ x2 þ 2:

ð3Þ

And conditions a > 0, b > 0, c 6 0 yield the system.

C1 : 0 ¼ 4x2
1 þ 2 _x1 þ 4x2 þ 2;

C2 : 0 ¼ 6 _x2 þ 2 _x3 þ 2;
C3 : 0 ¼ 3 _x2 þ x3 þ 3:

ð4Þ

Definition 1.2. Given a conditional DAS, the SAP consists in
verifying if the system is structurally nonsingular in every state,
and if not to determine a state in which the system is structurally
singular.

In Lacroix, Mahjoub, and Martin (2010), it has been shown that
the SAP for DAS with conditional equations is NP-complete. To the
best of our knowledge, this is the first and only work that has been
done on the SAP for DASs with conditional equations. This paper is
concerned with this extension of the problem. The purpose of the
paper is to propose a model and a resolution approach for the prob-
lem in this case. In what follows we will give some definitions
needed in the sequel.

A matching of a graph is a subset of edges such that no two
edges share a common node. Matchings have been shown to be
useful for modeling various discrete structures (Lovasz & Plummer,
1986). A well known and widely studied problem in combinatorial
optimization is the matching problem. This consists, given a graph
G = (V,E), in finding a matching with maximum cardinality (Ed-
monds, 1965; Lovasz & Plummer, 1986). A stable set of a graph is
a set of vertices no two of which are adjacent. A graph is called
bipartite if the set of vertices can be divided into two disjoint sets
U and V such that every edge connects a node in U to a node in
V, that is, U and V are stable sets. A matching M of a bipartite graph
G = (U [V,E) such that jUj = jVj = n is called perfect if jMj = n.

The paper is organized as follows. In Section 2 we present some
related works. In particular, we discuss the relation between
matchings and SAP in bipartite graphs. In Section 3 we give a
graph model for the SAP for conditional DAS and an integer pro-
gramming formulation. A polynomial time algorithm for solving
the linear relaxation of this formulation is discussed in Section 4.
In Section 5 we devise a Branch-and-Cut algorithm based on these
results and present some experimental results. Sections 6 is dedi-
cated to extensions of our approach to DASs with embedded
conditions.

2. Related works and matchings

The SAP has been considered in the literature for noncondition-
al DASs.

Given a DAS, one can associate a bipartite graph G = (U [V,E)
where U corresponds to the variables, V to the equations, and there
is an edge uivj 2 E between a node ui 2 U and a node vj 2 V if the
variable xi, in the form xi or _xi, corresponding to ui appears in the
equation corresponding to vj. Graph G is called the incidence graph
of the DAS. Note that a DAS is structurally singular if and only if
there exists a perfect matching in its incidence graph G.

As the perfect matching problem in bipartite graphs can be
solved in polynomial time, the SAP for nonconditional DAS’s can
also be solved in polynomial time.

Consider, for instance, the following DAS with seven equations
and seven variables:

C1 : 0 ¼ x5 þ 4x6;

C2 : 0 ¼ 2x2 þ x7 þ _x3;

C3 : 0 ¼ 3x1 þ 3x3 þ _x7;

C4 : 0 ¼ x5 þ 4x2;

C5 : 0 ¼ 2x4 þ x2 þ _x6;

C6 : 0 ¼ 3x4 þ 3x2 þ _x7;

C7 : 0 ¼ 3x2 þ _x4:

ð5Þ

Fig. 1. Electrical circuit.

M. Lacroix et al. / Computers & Industrial Engineering 61 (2011) 422–429 423

Author's personal copy

Let (50) be the DAS obtained from (5) by replacing the equation C6

by the equation:

C 06 : 0 ¼ 3x1 þ 3x2:

The incidence graphs corresponding to DASs (5) and 50 are shown in
Fig. 2 (a) and (b), respectively. Here nodes u1; . . . ;u6;u06;u7 are asso-
ciated with equations C1; . . . ;C6;C

0
6;C7 and nodes v1, . . ., v7 are asso-

ciated with variables x1, . . ., x7, respectively. A perfect matching is
displayed in bold edges in Fig. 2 (a), implying that system (5) is
structurally nonsingular. However, the maximum matching of the
incidence graph corresponding to system (50), displayed in Fig. 2
(b), is not perfect, which implies that system (50) is structurally
singular.

Several graph-theoretical techniques (which may be considered
as variants or extensions of the above idea) have been proposed for
approaching the SAP (Bujakiewicz, 1994; Duff & Gear, 1986; Muro-
ta, 2000). Murota (Murota, 2000) also introduces graph decompo-
sition techniques that permit to identify structurally singular and
nonsingular subsystems structurally nonsingular and singular. This
reduces to decomposing the associated oriented graph into strong
connected components. Given a maximal matching M in the bipar-
tite incidence graph G = (U [V,E), the associated oriented graph is
obtained from G by orienting all the edges of M from U to V and all
the other edges from V to U. This decomposition is unique. Such a
decomposition can also be obtained using the well known Dul-
mage and Mendelsohn decomposition (Dulmage & Mendelsohn,
1963). Murota (Murota, 2000) also studies extensions of his ap-
proach and further aspects within the framework of matroids
and matrices. In Reibig and Feldmann (2002), Reibig and Feldmann
propose a method for solving the SAP of nonconditional DAS gen-
erated from the description of electrical networks. The method is
based on graph and matroid theory. It permits to reduce the prob-
lem to the determination of what is called a fundamental circuit of a
matroid, induced by a certain bipartite graph. Jian-Wan, Li-Ping,
Fan-Li, Yi-Zhong, and Guo-Biao (2006) and Nilsson (2008) consider
the SAP in relation with Modelica models. A Modelica source code
is first translated into a so-called ‘‘flat model’’ which is nothing but
a DAS. In Jian-Wan et al. (2006), the authors propose a method for
analysing and detecting minimal structurally singular subsystems.
The method uses Dulmage and Mendelsohn decomposition tech-
nique in a first step to isolate the structurally singular subsets of
equations. Then for each such subsystem, a set of fictitious equa-
tions is formulated. These are related to the underlaying physical
system. The resulting system of equations is in turn decomposed
and so on until a minimal structurally singular subsystem is de-
tected. The method is applied in a recursive way until all the min-
imal structurally singular components are localized. Leitold and
Hangos (2001) consider the DAS for dynamic process models. They
propose a graph-theoretical method for analysing the differential
index. The method is an extension of Murota’s approach (Murota,
2000), where an incidence graph is considered for each differential
index.

In Pantelides (1988), Pantelides considers the problem of deter-
mining whether differentiation of a subset of the equations of a
DAS provides further constraints to be satisfied by the initial val-
ues. A graph-theoritical algorithm is proposed to locate those sub-
sets of the system equations which need to be differentiated.
Bunus and Fritzson (2008) propose a methodology for detecting
and repairing overconstrained and underconstrained DASs based
on graph-theoritical approaches. In Poulsen (2001) Poulsen pro-
poses a methodology and approach for analysing general DASs.
The methodology is mainly based on structural index analysis. This
uses a new and original matrix representation of the structural
information of a general DAS instead of a graph representation.

3. The SAP for conditional DAS

In this section we discuss the SAP for conditional DASs. We will
give a graph based model and a MIP formulation for the problem.

As explained in the introduction, the SAP for a conditional DAS
consists in verifying whether the system is structurally nonsingu-
lar in any state, and if not, in finding a state in which the system
is structurally singular. The SAP thus reduces to verifying whether
or not the bipartite graph related to any state of the system con-
tains a perfect matching. Fig. 3 shows the incidence bipartite
graphs for systems (3) and (4). However, a difficulty that arises
here is that the number of possible states of a conditional DAS
may be exponential. So the approaches used so far for noncondi-
tional DASs cannot, unfortunately, be applied for that problem. A
more efficient method is thus needed for solving it. In the rest of
this section we shall discuss a graph based model for the problem
and purpose a MIP formulation.

Given a conditional DAS with n equations, say C1, . . ., Cn, and n
variables, say x1, . . ., xn, we consider a bipartite graph G = (U [V,E)
where U = {u1, . . . ,un} (resp. V = {v1, . . . ,vn}) is associated with the
equations (resp. variables). Between a vertex ui 2 U and a vertex
vj 2 V we consider an edge, called true edge (resp. false edge), if
the variable xj appears in equation Ci, when the condition of Ci is
supposed true (resp. false). Let Et

i (resp. Ef
i) be the set of true (resp.

false) edges incident to ui, for all i = 1, . . ., n. Then

E ¼
[

i¼1;...;n

ðEt
i [Ef

i Þ:

Fig. 4 shows the graph G associated with system (2).
Thus, the SAP reduces to find whether or not there exists a sub-

graph of G, say G
0
, containing, for each node ui, either Et

i or Ef
i , and

which does not have a perfect matching. We will refer to such a
subgraph as a feasible solution of the problem and we will refer
to this problem as the perfect matching free subgraph problem
(PMFSP). In consequence, the SAP for conditional DASs can also
be presented as follows. Given a bipartite graph G = (U [V,E) with
jUj = jVj and such that the set of edges incident to ui for i = 1, . . ., n is
partitioned into two sets Ef

i ; Et
i , determine whether or not there is a

subgraph G
0
= (U [V,E

0
) of G containing for each ui 2 U either Et

i or
Ef

i and being perfect matching free. Thus we have the following.

(a) (b)

Fig. 2. Incidence graphs of DASs (5) and (5’), respectively. Fig. 3. Incidence graphs.

424 M. Lacroix et al. / Computers & Industrial Engineering 61 (2011) 422–429

Author's personal copy

Theorem 1. The SAP for a conditional DAS is equivalent to the PMFSP
in the associated bipartite graph.

In Lacroix et al. (2010), it is proved that the PMFSP is NP-com-
plete. It is shown that the PMFSP is equivalent to the stable set
problem in a particular case of tripartite graphs. Which is in turn
proved to be NP-complete.

Integer programming (Grötschel, Lovasz, & Schrijver, 1981) is
one of the most powerful tools of mathematical programming
and combinatorial optimization. Several problems from various
domains can be formulated as integer programs. Effective methods
have been developed for formulating, analysing and solving these
problems. In what follows we will propose an integer program-
ming based model for the PMFSP, and thus for the underlaying SAP.

With a vertex ui 2 U let us associate a binary variable x(ui)
which takes 1 if and only if Et

i is contained in G
0

and 0 if and only
if Ef

i is contained in G
0
, that is, x(ui) = 1 if the condition of equation

Ci is true and 0 if not.
Given x 2 {0,1}U, one needs to test whether or not the subgraph

G
0
induced by x contains a perfect matching. If G

0
contains a perfect

matching, say M, we then have x(ui) = 1 for all i such that M \ Et
i –;

and x(ui) = 0 for all i such that M \ Ef
i –;. Thus x satisfies the follow-

ing equation:X
uiv j2M\Et

i

xðuiÞ þ
X

uiv j2M\Ef
i

ð1� xðuiÞÞ ¼ n:

Conversely, G
0

does not contain any perfect matching, if, for every
matching M of G,X
uiv j2M\Et

i

xðuiÞ þ
X

uiv j2M\Ef
i

ð1� xðuiÞÞ 6 n� 1:

In consequence, the decision problem PMFSP is equivalent to
find whether there exists a solution for the following integer pro-
gram (P).

min 0x

ðPÞ
X

uiv j2M\Et
i

xðuiÞ þ
X

uiv j2M\Ef
i

ð1� xðuiÞÞ 6 n� 1 for all M 2M; ð6Þ

0 6 xðuiÞ 6 1; for all ui 2 U; ð7Þ
xðuiÞ 2 f0;1g; for all ui 2 U; ð8Þ

where M is the set of perfect matchings of G. Indeed, the PMFSP has
a ‘‘yes’’ answer, that is the underlaying DAS is structurally nonsin-
gular, if and only if the program above has no feasible solution. Con-
straints (6) will be called matching inequalities. Constraints (7) are
the so-called trivial inequalities and constraints (8) are the integral-
ity constraints.

Hence, in order to solve PMFSP, one can use integer program-
ming tools for solving (P). One of the most powerful techniques
in integer programming and combinatorial optimization is the
so-called polyhedral approach. This consists in reducing the resolu-
tion of the program to a sequence of linear programs. This ap-
proach is based on a deep investigation of the convex hull of the
solutions of the problem.

A drawback of formulation (P) is that the polyhedron given by
inequalities (6)–(8) may be empty if the PMFSP has no feasible
solution, that is if the DAS is structurally nonsingular. The polyhe-
dral approach based on that model, would not then be appropriate.
In order to avoid this situation and always work with a feasible
program, we are going to slightly modify the matching inequalities
and give an equivalent optimization formulation whose associated
polyhedron is always nonempty. Consider the following program
(Q), where y is a new non-negative variable.

min yX
uiv j2M\Et

i

xðuiÞ þ
X

uiv j2M\Ef
i

ð1� xðuiÞÞ � y 6 n� 1; for all M 2M; ð9Þ

ðQÞ0 6 xðuiÞ 6 1; for all ui 2 U; ð10Þ
0 6 y; ð11Þ
xðuiÞ 2 f0;1g; for all ui 2 U: ð12Þ

Clearly, x is a solution of (P) if and only if (x,0) is a solution of
(Q). Thus in order to solve problem (P), one can solve problem
(Q). If (x,y) is an optimal solution of (Q) with y – 0, then the system
in question is structurally nonsingular for all the states, and if y = 0
then the state induced by x is structurally singular. Inequalities (9)
will be also called matching inequalities. Inequality (11) expresses
the fact that the new variable is non-negative and is also called a
trivial inequality. Note that the approach we used to transform
the decision model (P) to an optimization one is similar to that
used in Phase I in linear programming for detecting a feasible basic
solution. As in program (P), the number of inequalities in (Q) may
be exponential. In order to solve (Q) using a branch-and-cut ap-
proach, one needs an efficient algorithm for separating inequalities
(9). In the following section we devise a polynomial time separa-
tion algorithm for these inequalities.

4. Separation

The separation problem for inequalities (9) consists, given a solu-
tion ðx�; y�Þ 2 RU

þ � Rþ, in determining whether ðx�; y�Þ satisfies
inequalities (9), and if not in finding an inequality violated by
ðx�; y�Þ. An algorithm which solves this problem is called a separa-
tion algorithm. Since inequalities (9) are in exponential number in
program (Q), the separation algorithm is a key ingredient for being
able to use these inequalities within a cutting plane algorithm. In
what follows, we will give a polynomial time separation algorithm
for these inequalities. From the equivalence between separation
and optimization in combinatorial optimization (Grötschel et al.,
1981), this will imply that the linear relaxation of problem (Q)
can be solved in polynomial time.

Let ðx�; y�Þ 2 RU
þ � Rþ. With an edge uivj 2 E associate the weight

w(uivj) given by

wðuiv jÞ ¼
1 if uiv j 2 Et

i \ Ef
i ;

1� x�ðuiÞ if uiv j 2 Ef
i ;

x�ðuiÞ if uiv j 2 Et
i :

8>><
>>:

If the maximum weight of a perfect matching M in G, with respect
to these weights, is greater than y� þ n� 1, then the inequality of
type (9), corresponding to M, is violated. Otherwise, all the inequal-
ities of type (9) are satisfied.

For instance, consider system (2) and the solution x�(u1) = 0.7,
x�(u2) = 0.4, x�(u3) = 0.3, y� = 0.2. Therefore we associate with the
edges of the corresponding bipartite graph in Fig. 4 the following
weights w(u1v1) = 0.7, w(u1v3) = 0.3, w(u2v1) = 0.6, w(u2v3) = 0.4,
w(u3v1) = 0.3, w(u3v3) = 0.7, w(u1v2) = w(u2v2) = w(u3v3) = 1. The
maximum perfect matching with respect to w is {u1v1,u2

v2,u3v3} with w(M) = 2.4. As y� + n � 1 = 2.2, w(M) > y� + n � 1.

Fig. 4. Graph representing system (2).

M. Lacroix et al. / Computers & Industrial Engineering 61 (2011) 422–429 425

Author's personal copy

Since u1v1 2 Et
1; u2v2 2 Et

2 \ Ef
2; u3v3 2 Ef

3, we have that the
inequality

xðu1Þ þ xðu2Þ þ 1� xðu2Þ þ 1� xðu3Þ � y 6 2

is violated with respect to ðx�; y�Þ.
Thus, the separation problem for inequalities (9) reduces to

compute a maximum weight perfect matching in a bipartite graph.
Moreover, this can be solved in polynomial time (Lovasz & Plum-
mer, 1986).

5. Branch-and-Cut algorithm

Branch-and-Cut methods are very powerful techniques for solv-
ing hard integer programming and combinatorial optimization
problems. These methods consist of a combination of a cutting
plane technique and a Branch-and-Bound algorithm. In this sec-
tion, we present a Branch-and-Cut algorithm for the SAP for condi-
tional DAS. Our aim is to address the algorithmic applications of
the model and the theoretical results presented in the previous
sections. To start the optimization, we consider the following lin-
ear program given by the trivial inequalities, that is

min y
0 6 xðuiÞ 6 1; for all ui 2 U;

0 6 y:

An important task in the Branch-and-Cut algorithm is to deter-
mine whether or not an optimal solution of the linear relaxation of
the SAP is feasible. An optimal solution ð�x; �yÞ of the linear relaxa-
tion is feasible for the SAP if �x is integer and ð�x; �yÞ satisfies the
matching inequalities. Thus verifying if ð�x; �yÞ is feasible for SAP
can be done in polynomial time. Note that if �x is integer, then �y
is also integer. If an optimal solution ð�x; �yÞ of the linear relaxation
of the SAP is not feasible, the Branch-and-Cut algorithm generates
a matching inequality that is valid for our problem and violated by
ð�x; �yÞ. We remark that all inequalities are global (i.e. valid in all the
Branch-and-Cut tree). Our separation algorithm is applied on the
graph G weighted by the current LP-solution ð�x; �yÞ.

To store the generated inequalities, we create a pool whose size
increases dynamically. In each iteration, the new inequalities are
added to the pool. The generated inequalities are removed from
the current LP when they are not active. We first separate inequali-
ties from the pool. If all the inequalities in the pool are satisfied by
the current LP-solution, then we separate the matching inequalities.

The Branch-and-Cut algorithm has been implemented in C++
using ABACUS library (Elf, Gutwenger, Jünger, & Rinaldi, 2001) to
manage the Branch-and-Cut tree and CPLEX 11.0 as LP-solver. To
separate inequalities (9), we use Galil, Micali, and Gabow algo-
rithm (Galil, Micali, & Gabow, 1986) for solving the maximum
weight perfect matching. This algorithm runs in O(nmlog(n)) time
where n is the number of nodes and m the number of edges of
the graph. Actually, we use the version implemented in Lemon
Graph Library (Jüttner, Dezsö, & Kovács, 2010).

The algorithm was tested on a Pentium core 2 duo 2.66 GHz
with 2 Gb RAM. We fixed the CPU time limit to 1 h. Results are pre-
sented here for randomly generated instances and realistic in-
stances. For randomly instances, tests were performed for
systems with up to n = 70 equations. (Recall that the corresponding
bipartite graphs have 2n nodes). The systems are considered in
such a way that each equation has between k � 1 and k + 1 vari-
ables where k is fixed. Actually, the systems met in practice, as
those that will be tested here, respect that restriction. In conse-
quence, in the incidence graphs of the instances, every node has
a degree between k � 1 and k + 1. Our tests were performed for k
between 5 and 25. Five instances were tested for each problem
and we will provide the average results.

The results are given in Tables 1 and 2. Table 1 reports the aver-
age results obtained for the randomly generated problems, while
Table 2 presents the results for the realistic ones.

The entries in the tables are:

n : the number of equations
k : the integer indicating that the number of variables

in each equation is between k � 1 and k + 1
o/p : the number of problems solved to optimality over

the number of instances tested
CPU : the total CPU time in second
No : the number of generated nodes in the Branch-and-

Cut tree
Match : the number of generated matching inequalities
Gap : the gap between the optimal value and the lower

bound obtained at the root node of the Branch-and-
Cut tree

Table 1
Randomly generated instances.

n k o/p CPU No Match Gap

20 5 5/5 0 1 20.4 0
20 10 5/5 3.6 18.2 625.8 0.66
20 15 5/5 3.4 7 444.2 0.67
20 20 5/5 2.6 15.4 359 0.65
25 5 5/5 0.2 1.4 13.6 0
25 10 5/5 0 1 1.8 0
25 15 5/5 13.8 18.2 1201.4 0.29
25 20 5/5 29.2 73.4 2189 0.65
30 5 5/5 8.4 6.6 1079.6 0
30 10 4/5 1340 129.4 98373.8 0.54
30 15 4/5 2071.8 99.8 130,632 0.67
30 20 3/5 1826.6 55.8 99637.4 0.63
30 25 2/5 2884.6 46.6 142051.2 0.33
35 5 5/5 4.8 1 720.75 0
35 10 2/5 2643.4 12.6 134,868 0.44
35 15 0/5 3600 1 162749.2 –
40 5 5/5 14 1 932 0
40 7 4/5 883.8 1 36967.8 0
40 9 3/5 1694.2 1 61363.8 0
45 5 5/5 55 1.4 2112.6 0
45 7 3/5 2099.4 1 57603.2 0
45 9 0/5 3600 1 100906.8 –
50 5 5/5 62.8 1 2079.4 0
50 7 5/5 1312.8 1 28117.4 0
50 9 1/5 3068.4 1 61452.6 0
55 5 5/5 628.6 1 11635.2 0
55 7 0/5 3600 1 56792.6 –
55 9 0/5 3600 1 55639.2 –
60 5 5/5 558.8 1 8736.8 0
60 7 2/5 3003.8 1 35038.6 0
60 9 0/5 3600 1 42140.6 –
65 5 4/5 1520.4 1 34,944 0
65 7 0/5 3600 1 34064.6 –
65 9 0/5 3600 1 35083.5 –
70 5 2/5 1819.5 1 25,240 0
70 7 0/5 3600 1 29590.5 –
70 9 0/5 3600 1 29,768 –

Table 2
Realistic instances.

n k CPU No Match Gap

51 3 0 1 1 0
75 3 3 63 32 1
81 3 0 1 1 0

111 3 7 510 256 1
135 3 33 2047 1024 1
159 3 227 8190 4096 1
183 3 2399 32,766 16,384 1
255 3 3600 26,945 13,478 –

426 M. Lacroix et al. / Computers & Industrial Engineering 61 (2011) 422–429

Author's personal copy

From Table 1, summarizing the results for the random instances,
it appears that the CPU time strongly depends on the integer k. For
instance, for the problems with n = 35 equations and k equal to 5,
all the instances have been solved to optimality. Whereas for the
same instances with k greater than or equal to 15, none of the in-
stances have been solved in the time limit. This may be explained
by the fact that when k is high, the associated graph is quite dense,
and hence contains more perfect matchings. In consequence, verify-
ing if there is a configuration of the system which does not yield to a
perfect matching, may need a lot of time. However when the graph is
sparse, this can be done much faster. We also remark that a signifi-
cant number of matching inequalities have been generated for most
of the instances with 30 equations and more.

The instances of Table 2 correspond to realistic systems having
between 51 and 255 equations. These systems were generated by
composition of small electrical circuits. These instances have been
much easier to solve. In fact, as it appears from the table, all the in-
stances have been solved to optimality except the system contain-
ing 255 equations. We also remark that, as for the random
instances, a big number of matching inequalities have been gener-
ated for all the large instances. In addition, we observe that, in con-
trast of the random instances, the algorithm generates much more
nodes in the Branch-and-Cut tree.

Finally, let us mention that we have tested an implicit enumer-
ation algorithm for solving the SAP but we could not solve the
problem for instances with more than 35 equations. This shows
the efficiency of the Branch-and-Cut algorithm we propose.
6. Extension: DASs with embedded conditions

The approach developed above can be extended for integrating
embedded conditions. DASs with embedded conditions are more
complex to handle. In this section we discuss this generalization.

Each embedded conditional equation can generate several non-
conditional equations. If an embedded conditional equation Cd

generates q equations with respect to a condition d, then it can
be expanded to q conditional equations C1, . . ., Cq such that each
equation Cr may generate the rth equation of Cd according to con-
dition d whether it is true or false. For example, consider the fol-
lowing embedded DAS with three equations and four variables.
C1 : if a > 0

then
if b > 0

then 0 ¼ _x2;

else 0 ¼ 3x1;

else
if c > 0

then 0 ¼ 3x3 þ _x2;

else 0 ¼ x4;

C2 : if d > 0
then

if e > 0
then 0 ¼ 4x2 þ _x1;

else 0 ¼ x3;

if f > 0
then 0 ¼ x1;

else 0 ¼ x4 þ x3;

else 0 ¼ x1 þ _x4 þ 1;
0 ¼ x4 þ _x2 þ 1;

C3 : if a > 0
then 0 ¼ 6 _x1 þ 2;
else 0 ¼ 3 _x2 þ x3 þ 3þ x4:

ð13Þ

Observe that C2 can be decomposed into two sub-equations:

C 02 :if d > 0
then

if e > 0
then 0 ¼ 4x2 þ _x1;

else 0 ¼ x3;

else 0 ¼ x1 þ _x4 þ 1;
C 002 :if d > 0

then
if f > 0

then 0 ¼ x1;

else 0 ¼ x4 þ x3;

else 0 ¼ x4 þ _x2 þ 1:

Therefore, system (13) can be expressed by ðC1;C
0
2;C

00
2;C3Þ Thus

any conditional equation of a DAS with embedded conditions may
be decomposed into smaller conditional sub-equations or embedded
conditional sub-equations. In the sequel we consider systems that
are minimal, that is to say in which the conditional equations can-
not be decomposed anymore. The system expressed by
ðC1;C

0
2;C

00
2;C3Þ is minimal. As for the non-embedded DAS, we sup-

pose that each conditional equation generates one simple equation
for each combination of conditions. We also suppose, without loss
of generality, that every embedded conditional equation, may gen-
erate exactly one nonconditional equation. Given a DAS with
embedded equations we will call combination of conditions any
assignment of the values true and false to the conditions of an
equation of the system. By our hypothesis any combination of con-
dition assigned to an embedded equation yields only one noncon-
ditional equation.

For instance, in system (13), the equation 0 ¼ _x2 in C1 is the re-
sult of the combination {a > 0, b > 0} and 0 = x4 + x3 in C002 is the re-
sult of the combination {d > 0, f 6 0}. Let C1, . . ., Cm be the possible
combinations of conditions. Remark that the number of combina-
tions Ck is polynomial in the size of the system. For system (13),
we have the following combinations: C1 = {a > 0, b > 0},
C2 = {a > 0, b 6 0}, C3 = {a 6 0, c > 0}, C4 = {a 6 0, c 6 0}, C5 = {d > 0,
e > 0}, C6 = {d > 0, e 6 0}, C7 = {d > 0, f > 0}, C8 = {d > 0, f 6 0},
C9 = {d 6 0}, C10 = {a > 0} and C11 = {a 6 0}.

For k = 1, . . ., m, let Rk be the set of combinations of conditions
that are implied by Ck, that is the combinations that are satisfied
if Ck so is. For instance, for the example above, C10 = {a > 0} is im-
plied by C1 = {a > 0, b > 0}. For k = 1, . . ., m, let Tk be the set of com-
binations Cl which are incompatible with Ck, that is Ck and Cl cannot
occur at the same time. For the example above C2 and C4 are
incompatible. Note that any two combinations Ck and Cl related
to the same equation are compatible.

Consider the bipartite graph G = (U [V,E) where U = {u1, . . . ,un}
corresponds to the minimal conditional equations of the system,
V = {v1, . . . ,vn} corresponds to the variables, and we consider an
edge uivi between two nodes ui 2 U and vi 2 V if the variable vi ap-
pears in a simple equation that may be generated by the condi-
tional equation corresponding to ui, when a combination Ck of
conditions holds.

Let Ek be the set of edges implied by combinations Ck, for k = 1,
. . ., m. Thus

E ¼
[

k¼1;...;m

Ek:

Observe that an edge of E may appear in more than one set Ek.
For system (13), the edge sets Ek, generated by combination C1,

. . ., C11, are E1 = {u1v2}, E2 = {u1v1}, E3 = {u1v3,u1v2}, E4 = {u1v4},
E5 = {u2v2,u2v1}, E6 = {u2v3}, E7 = {u3v1}, E8 = {u3v4,u3v3}, E9 = {u2v1,

M. Lacroix et al. / Computers & Industrial Engineering 61 (2011) 422–429 427

Author's personal copy

u2v4,u3v4,u3v2}, E10 = {u4v1} and E11 = {u4v2,u4v3,u4v4}. The inci-
dence graph is given in Fig. 5. Note that nodes u2, u3 correspond
to the conditional equations C02, C002. The number on each edge cor-
responds to the set Ek to which the edge belongs.

Thus the DAS is structurally singular if and only if there exists a
family F of sets Ek whose edges cover the nodes of U and such that
the subgraph induced by these edges does not contain a perfect
matching. Moreover, F must satisfy the following:

(a) if Ek; El 2F, then Ck and Cl are compatible, and
(b) if Ek 2F and Cl 2 Rk, then El 2F.

One can easily verify for graph G of Fig. 5 that the sets E1, E6, E7,
E10 constitute a feasible family that covers the nodes u1, . . ., u4 and
verifies the conditions (a) and (b) above. However the subgraph in-
duced by these sets does not contain a perfect matching. In conse-
quence, the family of conditions C1, C6, C7, C10 induces a
structurally singular system. Given a DAS with embedded condi-
tions we will call state of the system any set of combinations Ck

covering all the equations of the system and whose edge sets Ek

verify conditions (a), (b) above.
As for the DASs studied in the previous section, the problem

here is to find a state in which the system is structurally singular
or to show that such a state does not exist, that is the system is
structurally nonsingular in any state. So, in graph G, this consists
in finding a subgraph induced by a state of the system which does
not contain a perfect matching, or to show that for any state the
corresponding subgraph contains such a matching.

The generalized PMFSP (GPMFSP) consists in finding a perfect
matching free subgraph satisfying conditions (a) and (b) and cover-
ing U or to show that such a subgraph does not exist. In what fol-
lows we will propose an integer programming based model for this
problem.

With every set of edges Ck we associate a binary variable xk such
that xk = 1 if Ck is considered in the state of the system and xk = 0 if
not. Clearly, if x represents a state of the system, then x satisfies the
following inequalities

xk þ xl 6 1; for all l 2 Tk; for k ¼ 1; . . . ;m;

xk 6 xl; for all l 2 Rk; for k ¼ 1; . . . ;m:

Moreover if M is a perfect matching of G, then x satisfies the
equation

Xm

k¼1

jEk \Mjxk ¼ n:

Thus, by considering the following constraint, one can discard this
solution.

Xm

k¼1

jEk \Mjxk 6 n� 1:

Consider the following integer program ðbPÞ.
max y ð14Þ
Xm

k¼1

jEk \Mjxk 6 n� 1; for all M 2M; ð15Þ

xk þ xl 6 1; for all l 2 Tk; for k ¼ 1; . . . ;m; ð16Þ
xl 6 xk; for all l 2 Rk; for k ¼ 1; . . . ;m ð17ÞX

k¼1;...;m
Ek\dðuiÞ–;

xk P y; for all ui 2 U; ð18Þ

0 6 xk 6 1; for all Ek � E; ð19Þ
0 6 y; ð20Þ
xk 2 f0;1g; for all Ek � E: ð21Þ

where M is the set of perfect matching in G. We claim that the SAP
is equivalent to program ðbPÞ. Actually, we have that GPMFSP has a
solution if and only if ðbPÞ has an optimal solution (x,y) with y = 1. In
fact, first remark that any two combinations of conditions Ck, Cl re-
lated to the same equation are incompatible, and then the corre-
sponding edge sets Ek, El cannot be considered together. Then any
feasible solution satisfiesX

k¼1;...;m
Ek\dðuiÞ–;

xk 6 1; for all ui 2 U:

This implies that y 6 1. Moreover, y is integer. Otherwise, since the
left hand side of (18) is integer, the solution (x,y + �) with � > 0 is
also feasible, contradicting the optimality of (x,y). Now it is clear,
by constraints (15)–(17), (19)–(21) that every optimal solution
(x,y) of ðbPÞ induces a subgraph which does not contain a perfect
matching. Moreover, the edge sets Ek such that xk = 1 satisfy condi-
tions (a) and (b). If y = 1, then the subgraph induced by x also covers
all the nodes of U thanks to constraints (18), which implies that the
subgraph induced by x is a solution of GPMFSP. Suppose now that

y = 0. Since the objective function of ðbPÞ maximizes y, there must
exist i 2 {1, . . . ,n} such that

P
k¼1;...;m

Ek\dðuiÞ–;
xk ¼ 0. Otherwise, (x,1) would

be also a solution of ðbPÞ which contradicts the optimality of (x,y).
But this implies that there does not exist a perfect matching free
subgraph covering the nodes of U and satisfying conditions (a)
and (b). In consequence, the GPMFSP has no solution.

Due to the equivalence between GPMFSP and SAP for embedded
DASs, it follows that an embedded DAS is structurally nonsingular
if and only if ðbPÞ has an optimal solution with y = 0.

Clearly, constraints (16)–(20) can be separated in polynomial
time (by enumeration). For constraints (15), the separation prob-
lem can be reduced to the maximum weight matching problem
in a bipartite graph.

7. Concluding remarks

In this paper we have studied the SAP for conditional DASs. We
have proposed integer programming formulations for the problem
for both the embedded and non-embedded cases. We have shown
that the linear relaxations of these models can be solved in polyno-
mial time. Based on the formulation for the non-embedded ver-
sion, we have developed a Branch-and-Cut algorithm for solving
the problem in this case and presented some computational re-
sults. These show that the difficulty of the problem strongly de-
pends on the density of the incidence graph. They also show that
the linear relaxation of the problem is not so tight. Further valid
inequalities are needed to strengthen the linear relaxation. For this
a deep investigation of the associated polytope would be neces-
sary. This is one of the directions of our futur research. A second
direction is to develop a Branch-and-Cut algorithm for the embed-

Fig. 5. Graph G.

428 M. Lacroix et al. / Computers & Industrial Engineering 61 (2011) 422–429

Author's personal copy

ded case. Here the problem is much harder. However, our polyhe-
dral investigation for the non-embedded problem would be very
helpful for the embedded one.

Acknowledgments

We would like to thank the two anonymous referees for their
very constructive comments that permitted us to much improve
the presentation of the papers. We would also like to thank Sébast-
ien Furic, Bruno Lacabanne and El Djillali Talbi from LMS-Imagine
for stimulating discussions. This work has been supported by the
project ANR-06-TLOG-26-01 PARADE. The financial support is
much appreciated.

References

Bujakiewicz, P. (1994). Maximum weighted matching for high index differential
algebraic equations. Doctor’s dissertation, Delft University of Technology.

Bunus, P., & Fritzson, P. (2008). Automated static analysis of equation-based
components. Simulation, 80, 321–345.

Duff, I. S., & Gear, C. W. (1986). Computing the structural index. SIAM Journal on
Algebraic and Discrete Methods, 594–603.

Dulmage, A. L., & Mendelsohn, N. S. (1963). Coverings of bipartite graphs. Canadian
Journal of Mathematics, 517–534.

Edmonds, J. (1965). Maximum matching and a polyhedron with 0,1-vertices. Journal
of Research of the National Bureau of Standards, 69B, 125–130.

Elf, M., Gutwenger, C., Jünger, M., & Rinaldi, G. (2001). Branch-and-cut algorithms for
combinatorial optimization and their implementation in ABACUS. Computational
combinatorial optimization. Springer. pp. 157–222.

Fritzson, P. (2003). Principles of object-oriented modeling and simulation with
Modelica 2.1. Wiley-Interscience.

Galil, Z., Micali, S., & Gabow, H. N. (1986). An O(EV log V) algorithm for finding a
maximal weighted matching in general graphs. SIAM Journal on Computing, 15,
120–130.

Grötschel, M., Lovasz, L., & Schrijver, A. (1981). The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 169–197.

Jian-Wan, D., Li-Ping, C., Fan-Li, Z., Yi-Zhong, W., & Guo-Biao, W. (2006). An analyzer
for declarative equation based models. Modelica, 349–357.

Lacroix, M., Mahjoub, A. R., & Martin, S. (2010). Structural analysis for differential-
algebraic systems: Complexity, formulation and facets. In Proceeding ISCO 2010,
electronic notes in discrete mathematics (Vol. 36, pp. 1073–1080).

Leitold, A., & Hangos, K. M. (2001). Structural solvability analysis of dynamic
process models. Computers and Chemical Engineering, 25, 1633–1646.

Jüttner, A., Dezsö, B., & Kovács, P. (2010). Lemon graph library. <https://
lemon.cs.elte.hu/trac/lemon>.

Lovasz, L., & Plummer, M. D. (1986). Matching theory. North-Holland.
Murota, K. (2000). Matrices and matroids for systems analysis. Springer-Verlag.
Nilsson, H. (2008). Type-based structural analysis for modular systems of equations.

In Proceedings of the 2nd international workshop on equation-based object-
oriented languages and tools (pp. 71–81).

Pantelides, C. C. (1988). The consistent initialization of differential-algebraic
systems. SIAM Journal of Scientific and Statistical Computing, 213–231.

Poulsen, M. Z. (2001). Structural analysis of DAEs. Ph.D. thesis, Informatics and
Mathematical Modelling Technical University of Denmark.

Reibig, G., & Feldmann, U. (2002). A simple and general method for detecting
structural inconsistencies in large electrical networks. Circuits and Systems I:
Fundamental Theory and Applications, 237–240.

M. Lacroix et al. / Computers & Industrial Engineering 61 (2011) 422–429 429

