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1 Introduction

The Cumulative Capacitated Vehicle Routing Problem (CCVRP) aims at minimizing the

sum of arrival times at customers, instead of the classical route cost. Its applications

arise mainly in humanitarian logistics and routing for relief, where the priority is the

fast and equitable delivery of vital goods and supply, for example after a natural disaster

[1]. It generalizes the NP-hard traveling repairman problem (TRP), which has already

been proven harder to solve and to approximate than the TSP [2], by adding capacity

constraints and a homogeneous vehicle fleet.

To the best of our knowledge, few papers in the literature address the CCVRP. Ngueveu

et al. [4] proposed a time-based formulation (TF), identified specific properties, described

two polynomial lower bounds and a memetic algorithm (MA) tested on instances from 50

to 200 nodes. The authors also showed that the objective function of the CCVRP can

be expressed as the sum of the cost of each edge e, multiplied by a “coefficient”, which is

equal to 0 if e is unused, otherwise it is equal to one plus the number of customers visited

after crossing edge e, before returning to the depot. Ribeiro and Laporte [5] presented an

adaptive large neighborhood search heuristic (ALNS) that outperforms MA on most in-

stances from 50 to 420 nodes. At each iteration of the ALNS, a subset of clients is removed

from the current solution then reinserted in it using different heuristics. The authors used

a request bank to store clients that could not be inserted due to capacity limitations, and

penalized the objective function, to ensure exploration of a large neighborhood.

The remainder of the paper presents a new flow-based formulation that outperforms

(TF) and is better suited for branch-and-cuts, as well as some valid strengthening cuts.
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2 Flow-based formulation

Mathematical models for the CCVRP are defined on a complete non-oriented graph G =

(V,E,C) where V = {0, ..., n, n+1} represents the sets of nodes, V ′ = V \{0, n+1} is the

set of clients whereas nodes 0 and n+1 correspond to the depot. E is the set of edges and

a cost cij ∈ C is assigned to each edge e = (i, j) ∈ E to represent the length or traveling

time between nodes i and j. A fleet of R identical vehicles of capacity Q is located at

the depot and available to satisfy the demand qi > 0 of each client i ∈ V ′. A route is

performed by a single vehicle and each client is served exactly once.

Model (TF) from [4] uses decision variables tki equal to the arrival time of vehicle k at

client i and xkij the binary variable equal to 1 if vehicle k crosses edge (i, j) from i to j.

(TF) minF =
R
∑

k=1

∑

i∈V ′

tki (1)

subject to (s.t.)

∑

i∈V

xkij =
∑

i∈V

xkji, ∀j ∈ V ′, ∀k ∈ {1 . . . R} (2)

R
∑

k=1

∑

j∈V

xkij = 1, ∀i ∈ V ′ (3)

∑

i∈V ′

∑

j∈V

xkijqi ≤ Q, ∀k ∈ {1 . . . R} (4)

∑

j∈V

xk0j =
∑

i∈V

xki,n+1 = 1, ∀k ∈ {1 . . . R} (5)

tki + cij ≤ tkj + (1− xkij)T, ∀i ∈ V \ {n+ 1}, ∀j ∈ V, ∀k ∈ {1 . . . R} (6)

tki ≥ 0, ∀i ∈ V, ∀k ∈ {1 . . . R} (7)

xkij ∈ {0, 1}, ∀i ∈ V, ∀j ∈ V, i &= j, ∀k ∈ {1 . . . R} (8)

The sum of arrival times is to be minimized (1) whilst respecting the following constraints:

a vehicle arriving at customer i must leave it (2); each customer is served by exactly one

route (3) and vehicle capacity must be respected (4); the depot is at the beginning and

at the end of each route (5); finally, constraints (6) compute the arrival times at each

node and prevent subtours with the help of T defined as a large positive constant. This

formulation has a polynomial number of variables and constraints, but suffers from a

very weak linear relaxation which makes it less efficient for branch-and-bound algorithms,

because optimal solutions of the linear relaxation of (TF) can have a cost of zero.

Our new mathematical model for the CCVRP relies on flow variables to compute

optimal “coefficients” of edges in the objective-function (similar for example to [3] for the

TRP). It uses decision variables fij equal to the amount of flow circulating from i to j on
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edge e = (i, j) and the binary variable xe equal to 1 if edge e is used, to obtain:

(FF) minF =
∑

i∈V \{n+1}

∑

j∈V ′\{i}

cijfij (9)

s.t.

∑

e∈δ(i)

xe =

{

R if i ∈ {0, n+ 1}

2 otherwise.
, ∀i ∈ V (10)

∑

e∈S

xe ≥ 2

⌈
∑

i∈S qi

Q

⌉

, ∀S ⊆ V ′ (11)

∑

k∈V \{i}

fik −
∑

k∈V \{i}

fki =

{

n if i = 0

−1 otherwise.
, ∀i ∈ V \ {n+ 1} (12)

fi0 = fi,n+1 = fn+1,i = 0, ∀i ∈ V ′ (13)

fie,je + fje,ie ≤ γxe, ∀e = (ie, je) ∈ E (14)

fij ≥ 0, ∀i ∈ V, ∀j ∈ V ′ \ {i} (15)

xe ∈ {0, 1}, ∀e ∈ E (16)

The objective function (9) minimizes the solution cost equal to the sum of the flow costs,

since the flow fij passing from i to j corresponds to one plus the number of clients that

follow edge e = (i, j) before the return to the depot. Constraints (10) are degree constraints

ensuring that two edges are incident to each client, R edges are incident to the starting

depot 0 and R edges are incident to the ending depot n + 1. Constraints (11) are the

capacity constraints. Constraints (12) correspond to the flow conservation constraints:

the depot generates n units of flow and each client consumes one unit of flow. Constraints

(13) forbids flow returning to the depot. Finally, constraints (14) link the binary and real

decision variables by forbidding flow on unused edges, with the help of a high constant γ

which corresponds to the maximum number of customers delivered by a vehicle.

Formulation (FF) has a polynomial number of variables but an exponential number

of constraints. Its efficiency lies in the fact that the total amount of flow generated by

the depot and circulating through the graph is predefined. In addition, (FF) could be

partitioned into 2 parts: a CVRP (10)-(11) and a flow computation problem (12)-(13),

both connected through linking constraints (14). Therefore it is possible to apply on

(FF) all known valid cuts from the CVRP literature. However, preliminary computational

results showed that such straightforward branch-and-cut is not efficient, because the linear

relaxation tends to produce very fractional solutions to satisfy the linking constraints (14).

3 Strengthening cuts and resulting branch-and-cut

Additional inequalities are added in order to strengthen the linear relaxation of (FF). The

circulation of flow is forced on edges used with equations (17). Moreover, the flow from
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any customer entering i is limited by (18).

fij + fji ≥ xe, ∀e = (i, j) ∈ E, j &= n+ 1 (17)
∑

k∈V ′\{i}

fki ≤ (γ − 1)(1− x(0,i)), ∀i ∈ V ′ (18)

The branch-and-cut algorithm designed for (FF) starts from an initial linear relaxation

(FF)(0) with strengthening constraints (17) but without capacity constraints (11). Vio-

lated capacity cuts are identified with CVRPSEP[6]. Branching is applied only on binary

variables xe. A priority level of 2 is assigned to each variable xe ∈ δ(0) and 1 to each

variable xe ∈ E \ δ(0), because edges connected to the starting depot carry the highest

amount of flow and thus indirectly have a higher impact on the objective-function. The

branching is applied on the most fractional variable among the ones with the highest pri-

ority level. If the variable chosen x′e belongs to δ(0), then the additional constraint (18)

is added to strengthen the generated subproblem that has assigned value 1 to x′e.

4 Conclusion

The paper introduces a flow-based formulation for the CCVRP, that outperforms time-

based models from the literature. Valid cuts are identified to strengthen its linear relax-

ation. Computational analysis of the resulting branch-and-cut algorithm will be presented.
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