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a b s t r a c t

The Eulerian closed walk problem in a digraph is a well-known polynomial-time solvable
problem. In this paper, we show that if we impose the feasible solutions to fulfill some
precedence constraints specified by paths of the digraph, then the problem becomes
NP-complete. We also present a polynomial-time algorithm to solve this variant of the
Eulerian closed walk problem when the set of paths does not contain some forbidden
structure. This allows us to give necessary and sufficient conditions for the existence of
feasible solutions in this polynomial-time solvable case.

© 2012 Published by Elsevier B.V.

1. Introduction

The Eulerian closed walk problem is one of themost famous problems in graph theory. It can be presented as follows. Let
D = (V , A) be a digraph. A walk of D is a sequence P = (a1, . . . , ak) of arcs of A with k ≥ 1, ai = (ui, vi) for all i = 1, . . . , k
and vi = ui+1 for i = 1, . . . , k − 1. A walk having no vertex appearing more than once is called a path. If P = (a1, . . . , ak)
is a walk of D, with a1 = (u1, v1) and ak = (uk, vk), then P is said to be of length k. The vertex u1 (respectively vk) is called
the starting (respectively end) vertex of P; both vertices u1 and vk are the extremities of P . A closed walk is a walk having
vk = u1. A closed walk P is Eulerian if each arc of D appears exactly once in P . The Eulerian Closed Walk Problem (ECWP)
consists of finding an Eulerian closed walk in D. Digraphs having an Eulerian closed walk are called Eulerian. Such digraphs
are connected and for each vertex, its indegree and outdegree are equal. From the description of Eulerian digraphs, it is easy
to see that given an Eulerian digraph D, the ECWP can be solved in linear time.

In this paper, we consider a variant of the ECWP where the Eulerian closed walk has a fixed starting vertex and must
fulfill some precedence constraints on the arcs, specified by a partial order on arcs, the latter being defined by a set of paths.
Before stating the problem, we introduce some notation. Given a walk P and two distinct arcs a, a′ of A, we write a ≺P a′ if a
and a′ belong to P and a precedes a′ in P , that is, if P traverses a before a′. Moreover if we consider a pathQ = (a1, a2, . . . , ak)
of D, k ≥ 1, we say that the walk P respects the path Q if, for all a, a′

∈ A, a ≠ a′,

a ≺Q a′ and a, a′
∈ P ⇒ a ≺P a′.
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Note that two adjacent arcs of Q are not necessarily adjacent in P . It is straightforward to see that if a closed walk P is
considered, then the ordering relation ≺p makes sense only if a specific vertex is chosen as the starting vertex of P . This
specification of the starting vertex will be omitted wherever this information is obvious.
We now precisely define the problem we consider hereafter. Let D = (V , A) be a loopless Eulerian digraph and v0 ∈ V be a
specified vertex. (Note that D is not necessarily simple, that is, it may have multiple arcs.) The required partial order on A is
given by a set K = {Q1,Q2, . . . ,Qq} of paths of D, q ≥ 1. The Eulerian Closed Walk with Precedence Path Constraints Problem
(ECWPPCP) consists of finding an Eulerian closed walk P of Dwhose starting vertex is v0 and which respects all the paths of
K , that is, for i = 1, 2, . . . , q, if a ≺Qi a′, then a ≺P a′, for all a ≠ a′

∈ A. An instance of the ECWPPCP then is defined by
the (ordered) triple (D, v0, K). From the definition of the precedence constraints, a path composed of only one arc does not
induce any precedence constraint. Therefore, in the rest of the paper, we will only consider in K paths of at least two arcs.
The aim of this paper is to study the complexity of the ECWPPCP. We show that the ECWPPCP is NP-complete in general.
We also present a polynomial-time algorithm to solve it when the set of paths does not contain a forbidden structure. This
allows us to give necessary and sufficient conditions for the existence of feasible solutions in this polynomial-time solvable
case.

Studying the ECWPPCP was originally motivated by the so-called Single-vehicle Preemptive Pickup and Delivery Problem
(SPPDP) [1,2]. In this vehicle routing problemwith a single vehicle having limited capacity, each demandmay be temporarily
unloaded elsewhere than its destination and picked up later, generatingwhat is called a reload. This preemptive variant of the
Single-vehicle Pickup and Delivery Problem (SPDP) [3] aims to achieve some significant transportation cost savings, since it
tends to decrease the distance traveled by the vehicle.
A common way of representing a feasible solution to a vehicle routing problem consists of specifying, on one hand, the
sequence of arcs of the vehicle route (that is, of awalk), and on the other hand, the sets of arcs of the demandpaths.Moreover,
for the (classical) pickup and delivery problem, it is well-known that every vertex of the given digraph is visited exactly once
by the vehicle. Consequently, the set of arcs traversed by the vehicle is sufficient to represent a feasible solution to the SPDP.
Unfortunately, this property does not hold for our preemptive version of the SPDP; a vertex may now be visited more than
once and then, the demand paths are no more implicitly given by the vehicle route.
For the single-vehicle preemptive pickup and delivery problem, some synchronization constraints have to be taken into
account in order to deal with the reloads, that is, with vertices visited more than once. In terms of representing a feasible
solution to the SPPDP, one might consider the sequence (rather than the set) of arcs of the vehicle route. Kerivin et al. [1]
proved that this additional information is not sufficient to guarantee the feasibility of the vehicle route with respect to the
reloads; one then needs to also consider the set of arcs of the demand paths in a representation of a feasible solution to the
SPPDP. To avoid carrying too much information (and then variables when formulating the SPPDP as a mixed-integer linear
program), a natural question that may be posed is whether or not one can get rid of the sequence of arcs of the vehicle route,
and therefore only represent a feasible solution to the SPPDP by the sets of arcs of the vehicle route and the demand paths.
In other words, can one find, in polynomial time, the sequence of arcs of the vehicle route (satisfying the reloads) from the
knowledge of its set of arcs and the paths the demands are carried along? Since the vehicle starts and finishes its route at
a specified depot, this is exactly the Eulerian closed walk with precedence path constraints problem when D is the digraph
induced by the set of arcs of the vehicle route, v0 is the vertex representing the depot of the vehicle, and each path in K
corresponds to a demand path.

To the best of our knowledge, the ECWPPCP has not been considered yet. Nevertheless, some variants of the Eulerian
closed walk problem have been already considered, three of them being related to the so-called DNA Fragment Assembly
Problem (DFAP) and de Bruijn graphs [4–6].
Pevzner et al. [4] actually considered the Eulerian Superpath Problem (ESP)which has almost the same input as the ECWPPCP
(that is, digraph D, starting vertex v0 and set K of paths), yet seeks an Eulerian closed walk starting at v0 and having all the
paths specified in K as subpaths. A main difference lies in the definition of the elements of K ; in the ESP, each path in K is
specified by a sequence of adjacent vertices, whereas a sequence of incident arcs is used to specify each path in K in the
ECWPPCP. Pevzner et al. [4] proved that the ESP is NP-complete by reducing the DFAP, known for being NP-hard [7], to it.
They also pointed out that the ESP can be solved in polynomial time whenever the digraph D is simple. Note that despite
looking alike, the ESP and ECWPPCP are quite different; for instance, as we will see in Section 2, the ECWPPCP remains
NP-complete even when D is a simple digraph.
A second variant of the ECWP, called the Eulerian Closed Walk of Lexicographically Minimal Label Problem (ECWLMLP), was
considered by Moreno and Matamala [5]. An instance of the ECWLMLP is specified by an Eulerian digraph D = (V , A), a
vertex v0 in V , an arc-labeling function over an alphabet Σ and a word X of Σ |A|. The ECWLMLP looks for an Eulerian closed
walk P starting at v0 and so that the word induced by P is lexicographically before X . Moreno and Matamala proved the
NP-completeness of the ECWLMLP by reducing the directed Hamiltonian circuit problem, which is a well-known NP-hard
problem [8], to its decision problem. They also gave a greedy algorithm, running in linear time, to solve the ECWLMLP when
for each vertex v ∈ V , all the arcs leaving v have different labels.
Another problem which is worth being mentioned is the Positional Eulerian Path Problem (PEPP) which was considered by
Hannenhalli et al. [6]. Given a digraph D = (V , A) and an interval Ia ⊆ {1, 2, . . . , |A|} associated with every arc a of D, the
PEPP consists of finding an Eulerian walk Q in D so that the position of arc a in Q belongs to Ia, for any a ∈ A. Using a quite
simple reduction from the Hamiltonian path problem in a digraph of indegrees and outdegrees exactly two [9], Hannenhalli
et al. showed that the PEPP is NP-complete.
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Fig. 1. Transformation of vertex v1 .

The paper is organized as follows. In Section 2 we prove that the ECWPPCP is NP-complete, even when the digraph D
is simple and K satisfies some additional conditions. Section 3 is then dedicated to a polynomial-time solvable case of the
ECWPPCP, based on some forbidden structures for the path set K . Some concluding remarks are given in Section 4.

The rest of this section is devoted to some notation and terminology used throughout the paper. The reader is referred
to [10] for any used terminology not defined in the paper.

Given a digraph D = (V , A), for any vertex v ∈ V , we denote by δin(v) (δout(v)) the set of arcs of A entering (leaving)
v. The cardinality of this arc set is called the indegree (outdegree) of v. ∆in and ∆out denote the maximum indegree and
outdegree of the vertices of D, respectively. Note that we may need to specify the graph as a subscript in the notation (e.g.,
δout
D (v)), whenever the considered graph may not be clearly deduced from the context.
Given a vertex subset U of V , D[U] represents the subgraph of D induced by U , that is, the subgraph (U, A[U]) where A[U]

consists of all the arcs of D spanned by U . Given an arc subset F of A, D[F ] represents the subgraph of D induced by F , that
is, the subgraph (V [F ], F) where V [F ] is the set of nodes covered by F . If P = (a1, a2, . . . , ak) and Q = (b1, b2, . . . , bl)
are two walks of D so that the head of the arc ak equals the tail of the arc b1, the concatenation of P and Q is the walk
(a1, a2, . . . , ak, b1, b2, . . . , bl) and it is denoted by (P,Q ). If P = (a1, a2, . . . , ak) is a walk of D, then a subpath of P is a set
(ai, ai+1, . . . , ai+s) of contiguous arcs in P , where i ∈ {1, 2, . . . , k} and s ∈ {0, 1, . . . , k− i}. Let C be a collection of walks of
D. We denote by V [C] the set of vertices of D spanned by the walks in C .
Given a path set K of D and an arc a ∈ A, the path set K \ a is the path set obtained from K by removing the arc a in any
path of K . If a belongs to a path, say Q , but is not the first or last arc of Q , that is, if Q = (a1, a2, . . . , al, a, al+1, al+2, . . . , aq),
then, removing a from Q leads to the two paths (a1, a2, . . . , al) and (al+1, al+2, . . . , aq).
Consider now the set K of paths of D involved in the definition of an instance of the ECWPPCP. Let a and a′ be two distinct
arcs of D. For a sake of conciseness, if there exists a path P in K so that a ≺P a′, then wemay write a ≺K a′ instead of a ≺P a′

whenever specifying path P is not relevant. If a and a′ are incident in D, and a ≺K a′, then a is called a predecessor of a′

with respect to K and a′ is called a successor of a with respect to K . Since an arc a of D may have several predecessors and
successors with respect to K , we denote by PK (a) and SK (a) the sets of predecessors and successors, respectively.

2. NP-completeness of the ECWPPCP

In this section, we prove the NP-completeness of the Eulerian closed walk with precedence path constraints problem. To
do so, we use a polynomial reduction from the Directed Hamiltonian Circuit of indegrees and outdegrees exactly two Problem
(2DHCP), which can be stated as follows. Let DH = (VH , AH) be a digraph having all its vertices of indegree and outdegree
two. The 2DHCP consists of asserting whether or not DH contains a Hamiltonian circuit, that is, a closed walk traversing all
the vertices of VH exactly once. The 2DHCP is known to be NP-complete [9]. We remark that the proof given by Plesnik [9]
was devised for digraphs with indegrees and outdegrees at most two. By considering some additional arcs, we can easily
extend this result to digraphs (with possible multiple arcs) with indegrees and outdegrees two.

The first step of our reduction is the construction of an Eulerian digraph D = (V , A) from DH = (VH , AH), along with
the definition of a set K of paths of D and the specification of a starting vertex v0 of D. Suppose that VH = {v1, v2, . . . , vn}.
With vertex v1 of VH , we associate six vertices v1

1, v
2
1, v

3
1, v

4
1, w1, w2, together with the following ten arcs: (v1

1, v
3
1), (v

3
1, v

2
1),

(v2
1, v

4
1), (v

1
1, w1), (w1, w2), (w2, v

2
1), (v

4
1, w1), (w1, v

2
1),(v

3
1, w2), (w2, v

3
1). Let A1 be the set composed of these ten arcs.

(See Fig. 1.)
For any i ∈ {2, 3, . . . , n}, we associate with vi four vertices v1

i , v
2
i , v

3
i , v

4
i , together with the eight following arcs

(v1
i , v

3
i ), (v

3
i , v

2
i ), (v

2
i , v

4
i ), (v

1
i , v

2
i ), (v

4
i , w1), (w1, v

2
i ), (v

3
i , w2), (w2, v

3
i ). Let Ai be the set composed of these eight arcs,

for any i = 2, 3, . . . , n. (See Fig. 2.) Note that the only difference between the transformations of vertex v1 and vertices vi,
for i = 2, 3, . . . , n, is that the path ((v1

1, w1), (w1, w2), (w2, v
2
1)) is replaced by the arc (v1

i , v
2
i ) in Ai, i = 2, 3, . . . , n.

Let

V = {v
j
i : i = 1, 2, . . . , n, j = 1, 2, 3, 4} ∪ {w1, w2}.

At this point, all the vertices in V have their indegree which equals their outdegree, except the vertices v1
i and v2

i , for
i = 1, 2, , . . . , n, which have a difference of two between their indegree and outdegree.
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Fig. 2. Transformation of vertex vi , i = 2, 3, . . . , n.

Fig. 3. Transformation of arcs in AH .

We now consider the arcs of DH in the following manner. With every arc (vi, vj) in AH , we associate the arc (v2
i , v

1
j ). (See

Fig. 3.)
Let

A =


n

i=1

Ai


∪ {(v2

i , v
1
j ) : (vi, vj) ∈ AH}.

The digraph D = (V , A) clearly is connected. Moreover, since DH has all its vertices of indegree and outdegree two, the
vertices v1

i and v2
i , for i = 1, 2, , . . . , n, now have the same indegree and outdegree. Therefore, the digraph D is Eulerian.

To obtain an instance of the ECWPPCP, we need to be given a specific vertex v0 of D (which will be the starting vertex of the
Eulerian closed walk) as well as a set K of paths of D. Let v0 = v2

1 . For any i = 1, 2, . . . , n, let Pi and Qi be the paths of D
defined as

Pi =

(v4

i , w1), (w1, w2), (w2, v
3
i ), (v

3
i , v

2
i )

,

Qi =

(v4

i , w1), (w1, v
2
i )

.

The set K of paths which needs to be respected by the Eulerian closed walk of D is the following

K = {Pi : i = 1, 2, . . . , n} ∪ {Qi : i = 1, 2, . . . , n} ∪ {

(v1

1, w1), (w1, w2), (w2, v
2
1)

}.

The digraph D has (4n + 2) vertices and (10n + 2) arcs, and can be obviously constructed in polynomial time. (Note that
|AH | = 2n.) The set K contains (2n + 1) paths.

Lemma 1. If DH has a Hamiltonian circuit, then D has an Eulerian closed walk which, starting at v2
1 , respects the precedence path

constraints specified by K .

Proof. Let CH be a Hamiltonian circuit of DH . Without loss of generality, we suppose that CH = ((v1, v2), (v2, v3), . . . ,
(vn−1, vn), (vn, v1)). Our proof consists of constructing an Eulerian closed walk C of D in several steps. At each of them, we
check that no path in K is not respected by the current sequence of selected arcs.
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The first arc sequence we consider is obtained by substituting arc (vi, vi+1) of CH by the walk
(v2

i , v
4
i ), (v

4
i , w1), (w1, v

2
i ), (v

2
i , v

1
i+1), (v

1
i+1, v

2
i+1)


for any i = 1, 2, . . . , n − 1, and arc (vn, v1) by the walk

(v2
n, v

4
n), (v

4
n, w1), (w1, v

2
n), (v

2
n, v

1
1), (v

1
1, w1), (w1, w2)


.

Let C1 be the resulting sequence of arcs. Clearly, C1 corresponds to a walk starting at v2
1 . Since (w1, w2) is the last arc of C1,

(v4
i , w1) belongs to C1 for i = 1, 2, . . . , n, and C1 does not go through any vertex v3

i , i = 1, 2, . . . , n, C1 respects the paths
Pi, i = 1, 2, . . . , n. Moreover, as the paths Qi and


(v1

1, w1), (w1, w2)

are subpaths of C1 and (w2, v

2
1) does not belong to C1,

the latter straightforwardly respects K .
Consider now the digraph D∗

= (V ∗, A∗) induced by the remaining arcs of D, that is, by A \ C1. We have that V ∗
=

V \

{v4

i : i = 1, 2, . . . , n} ∪ {w1}

and

|δin
D∗(v)| − |δout

D∗ (v)| =

1 if v = v2
1,

−1 if v = w2,

0 if v ∈ V ∗
\ {v2

1, w2}.

Moreover, D∗ is connected since it contains the arcs (w2, v
3
i ), (v1

i , v
3
i ) and (v3

i , v
2
i ) for i = 1, 2, . . . , n, and they span

all the vertices in V ∗. Removing arc (w2, v
2
1) does not disconnect any pair of vertices of V ∗; therefore, D∗

− (w2, v
2
1) =

(V ∗, A∗
\ {(w2, v

2
1)}) is an Eulerian digraph. Furthermore, the digraph D∗

[V ∗
\ {w2}] may not be connected, yet each vertex

in V ∗
\ {w2} clearly has equal indegree and outdegree. Let D∗

1,D
∗

2, . . . ,D
∗
p , p ≥ 1, be the strongly connected components

of D∗
[V ∗

\ {w2}] which obviously are Eulerian. Since w2 and v3
i are adjacent in D∗ for i = 1, 2, . . . , n, there must exist

ik ∈ {1, 2, . . . , n} so that v3
ik
is a vertex of D∗

k , for any k = 1, 2, . . . , p. Consider any strongly connected component D∗

k ,
k = 1, 2, . . . , p. Any Eulerian closed walk C∗

k of D∗

k starting at v3
ik
can be transformed into a closed walk C̃k of D∗ starting at

w2 in the following manner. The first arc of C̃k is (w2, v
3
ik
). All the arcs of C∗

k are then added to C̃k sequentially, according to if
the head of the added arc is a vertex v3

i , for some i ∈ {1, 2, . . . , n}, then the circuit

(v3

i , w2)(w2, v
3
i )

is added to C̃k before

moving to the next arc of C∗

k . Once we have dealt with all the arcs of C∗

k , we complete C̃k by adding (v3
ik
, w2). Since any C̃k,

for k = 1, 2, . . . , p, starts at vertex w2, the concatenation (C̃1, C̃2, . . . , C̃p) of these Eulerian closed walks clearly forms an
Eulerian closed walk C2 of D∗

− (w2, v
2
1).

Let C be the concatenation of C1, C2 and arc (w2, v
2
1). Note that C is composed of all the arcs in A. Moreover, since C1 starts

at v2
1 and ends at w2 which is the starting vertex of closed walk C2, C is an Eulerian closed walk of D starting at v2

1 . For any
i = 1, 2, . . . , n, the paths


(v4

i , w1), (w1, w2)

and


(w2, v

3
i ), (v

3
i , v

2
i )

are respected by C1 and C2, respectively. Recalling

that all the paths Qi, for i = 1, 2, . . . , n, are subpaths of C1, we can conclude that C respects all the paths of K , and our proof
is complete. �

In order to prove the converse of Lemma 1, we need to give the following technical result.

Proposition 2. If the digraph D has an Eulerian closed walk C which starts at v2
1 and respects the precedence path constraints

specified by K , then the closed walk

(v2

i , v
4
i ), (v

4
i , w1), (w1, v

2
i )

is a subpath of C for i = 1, 2, . . . , n.

Proof. For any i = 1, 2, . . . , n, vertex v4
i has exactly one entering arc and one leaving arc inD. Therefore


(v2

i , v
4
i ), (v

4
i , w1)


is a subpath of the Eulerian closed walk C . Moreover, since C respects all the paths Qi of K , we have

(v2
i , v

4
i ) ≺C (v4

i , w1) ≺C (w1, v
2
i ) for i = 1, 2, . . . , n.

Suppose there exists j ∈ {1, 2, . . . , n} so that

(v2

j , v
4
j ), (v

4
j , w1), (w1, v

2
j )

is not a subpath of C , that is, an arc a1 ∈

δout(w1) \ {(w1, v
2
j )} directly follows (v4

j , w1) in C , and then a1 ≺C (w1, v
2
j ). Let I ⊂ {1, 2, . . . , n} represent the subscripts

i of the vertices v4
i which appear in C before v4

j . Without loss of generality, we suppose that

(v2

i , v
4
i ), (v

4
i , w1), (w1, v

2
i )

is

a subpath of C for all i ∈ I . We clearly have

(w1, v
2
i ) ≺C (v4

j , w1) ≺C (v4
i′ , w1) for i ∈ I and i′ ∉ I ∪ {j}. (1)

Therefore, a1 cannot obviously be any of the arcs (w1, v
2
i ) with i ∈ I . If a1 = (w1, v

2
i′) with i′ ∉ I ∪ {j}, then because of

path Qi′ being respected by C , one would have (v4
i′ , w1) ≺C (w1, v

2
i′), that is, (v

4
i′ , w1) ≺C (v4

j , w1), a contradiction with
(1). Consequently, a1 has to be arc (w1, w2). Since C respects all the paths Pi of K , we must have (v4

i , w1) ≺C (w1, w2)

for i = 1, 2, . . . , n. From C being an Eulerian closed walk and δout(w1) = {(w1, v
2
i ) : i = 1, 2, . . . , n} ∪ {(w1, w2)}, we

straightforwardly have (w1, v
2
i ) ≺C (w1, w2) for i = 1, 2, . . . , n. Therefore, (w1, v

2
j ) ≺C a1 = (w1, w2) which contradicts

the definition of a1. The arc following (v4
j , w1) in C must then be (w1, v

2
j ), and our proof is complete. �

We can now state the converse of Lemma 1.
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Fig. 4. Walk C; the solid arcs are the ones in the Hamiltonian circuit; the dashed arcs are the deleted ones; each pair of vertices within a dotted box is
contracted.

Lemma 3. If D has an Eulerian closed walk which starts at v2
1 and respects the precedence path constraints specified by K , then

DH has a Hamiltonian circuit.

Proof. Let C be such an Eulerian closed walk of D. Since C respects all the paths of K , arc (w1, w2) appears in C after all the
arcs of D entering w1, that is,

a ≺C (w1, w2) for all a ∈ δin(w1), (2)

and before all the arcs of D leaving w2, that is,

(w1, w2) ≺C a for all a ∈ δout(w2). (3)

Moreover, due to |δout(v)| = |δin(v)| for all v ∈ V , we have that

a ≺C (w1, w2) for all a ∈ δout(w1) \ {(w1, w2)}, (4)

and

(w1, w2) ≺C a for all a ∈ δin(w2) \ {(w1, w2)}. (5)

Furthermore, by considering all the paths Pi of K , we also have

(w1, w2) ≺C (v3
i , v

2
i ) for i = 1, 2, . . . , n,

which, combined with (5), implies that all the vertices v3
i , i = 1, 2, . . . , n, appear after arc (w1, w2) in C .

Let C be the walk obtained from C by only considering the arcs of D preceding (w1, w2) in C . We will show that C contains a
Hamiltonian circuit of DH after a series of arc deletions and vertex contractions. (See Fig. 4.) Note that C starts at v2

1 , ends at
w1 and does not contain any vertex in {v3

i : i = 1, 2, . . . , n}. Moreover, from (2) and Proposition 2, we deduce that closed
walk ((v2

i , v
4
i ), (v

4
i , w1), (w1, v

2
i )), i ∈ {1, 2, . . . , n}, is a subpath of C . Removing such closed walks in C leads to a closed

walk, say C̃ , starting at v2
1 , ending at w1, spanning node set {v2

i : i = 1, 2, . . . , n}, and which does not contain any vertex of
{v3

i , v
4
i : i = 1, 2, . . . , n}. Moreover, we have δin(v2

i ) ∩ C̃ = {(v1
i , v

2
i )} for all i = 2, 3, . . . , n, and δin(v2

1) ∩ C̃ = ∅ due to (3).
Furthermore, the last arc of C̃ is (v1

1, w1). C̃ \ {(v1
1, w1} is then a walk starting at v2

1 , ending at v1
1 and being composed of an

alternate sequence of arcs of {(v2
i , v

1
j ) : (vi, vj) ∈ AH} and of {(v1

i , v
2
i ) : i = 2, 3, . . . , n}. As any arc (v2

i , v
1
j ) corresponds to

an arc (vi, vj) of DH , contracting v1
i and v2

i to a vertex vi for all i = 1, 2, . . . , n leads to a Hamiltonian circuit of DH . �

Proposition 4. The Eulerian closed walk with precedence path constraints problem is NP-complete.

Proof. Clearly the problem is in NP.Moreover, the construction from an instance of theNP-complete 2DHCP into an instance
of the ECWPPCP can be performed in polynomial time. Therefore, the NP-completeness of the Eulerian closed walk with
precedence path constraints problem directly follows from Lemmas 1 and 3. �

One can remark that the vertices v4
i , for i = 1, 2, . . . , n, are not necessary in the reduction proof. However, if they are

removed, each path Qi, i = 1, 2, . . . , n, has to be replaced by ((v2
i , w1), (w1, v

2
i )), which corresponds to a circuit and not to

a path. Therefore, in order to obtain an instance with a path set K , the vertices v4
i , i = 1, 2, . . . , n, must be kept.

In Section 1, we mentioned that the ECWPPCP and the Eulerian Superpath Problem considered by Pevzner et al. [4] are
quite different, despite some similarities in their statement. In fact, the ESP has been proved to be polynomial-time solvable
when the digraph D is simple [4]. The next result shows that for the ECWPPCP, this restriction on D does not make the
problem be easier to solve.

Corollary 5. The Eulerian closedwalkwith precedence path constraints problem remainsNP-completewhenD is a simple digraph.
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Fig. 5. Set Aw of arcs of D′ .

Proof. Consider a NP-complete instance of the ECWPPCP defined by an Eulerian digraph D = (V , A) having multiple arcs, a
starting vertex v0 and a set K of paths ofD. LetD′

= (V ′, A′) be the simple digraph obtained fromD by sequentially replacing
each multiple arc (u, v) by the two arcs (u, w) and (w, v) where w is a new vertex with indegree and outdegree one. The
same substitutions are applied to the paths of K , and let K ′ be the set of resulting paths of D′. The construction of D′ and K ′

can obviously be done in polynomial time. Moreover, it is straightforward to see that both instances of the ECWPPCP (i.e.,
the one defined by D, v0 and K , and the one defined by D′, v0 and K ′) are equivalent. �

The remaining of this section is devoted to proving that the ECWPPCP remains NP-complete even if, for each arc of D, its
total number of predecessors and successors with respect to K is at most two. This is motivated by the fact that, as will be
shown in Section 3, and pointed out in the concluding remarks, the problem is polynomial-time solvable if each arc of D has
at most one successor (predecessor) with respect to K .

Recall that for any arc a in A, SK (a) and PK (a) represent the sets of successors and predecessors of a with respect to K ,
respectively. We now introduce the following notation which will make our statements clearer. Let S3(K) be the sets of arcs
of A having at least three successors with respect to K , that is,

S3(K) = {a ∈ A : |SK (a)| ≥ 3}.

We denote by σ3(K) the cardinality of the family {SK (a) : a ∈ S3(K)}, that is,

σ3(K) =


a∈S3(K)

|SK (a)|.

Similarly for the sets of at least three predecessors, we define

P3(K) = {a ∈ A : |PK (a)| ≥ 3},

and

π3(K) =


a∈P3(K)

|PK (a)|.

Lemma 6. Consider a digraph D = (V , A), a vertex v0 of D, and a set K of paths of D. If σ3(K) ≥ 3, then the instance (D, v0, K)
of the ECWPPCP can be polynomially reduced to an instance (D′, v0, K ′) of the ECWPPCP wherein σ3(K ′) ≤ σ3(K) − 1 and
π3(K ′) ≤ π3(K).

Proof. Since σ3(K) ≥ 3,we obviously have S3(K) ≠ ∅. Let a1 = (v1, v2) be an arc in S3(K), and consider an arc a2 = (v2, v3)
in SK (a1).
First, we construct the digraph D′

= (V ′, A′) from D by

(i) replacing arc a1 by the two arcs (v1, w1) and (w1, v2), where w1 is a new vertex,
(ii) replacing arc a2 by the two arcs (v2, w2) and (w2, v3), where w2 is a new vertex,
(iii) adding the three arcs (w1, w2), (w2, w3) and (w3, w1), where w3 is a new vertex.

Let Aw be the set of new arcs, that is,

Aw = {(v1, w1), (w1, v2), (v2, w2), (w2, v3), (w1, w2), (w2, w3), (w3, w1)} .

We then have V ′
= V ∪ {w1, w2, w3} and A′

= (A \ {a1, a2}) ∪ Aw . (See Fig. 5.) Note that any vertex in {vi, wi : i = 1, 2, 3}
has equal indegree and outdegree in D′. Since D is an Eulerian digraph, so is D′.
Second, we define the paths of D′ which compose the set K ′. We remark that since K is only composed of paths of D, arcs a1
and a2 cannot both belong to a path of K without a1 being the predecessor of a2. With any path P in K , we then associate a
path in the following manner,

(iv) keep P unchanged, if P does not contain either a1 or a2,
(v) replace a1 by subpath ((v1, w1), (w1, v2)), if P contains a1 but not a2,
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(vi) replace a2 by subpath ((v2, w2), (w2, v3)), if P contains a2 but not a1,
(vii) replace subpath (a1, a2) by subpath ((v1, w1), (w1, w2), (w2, v3)), if P contains both a1 and a2.

We also add to K ′ the two paths ((w1, w2), (w2, w3)) and ((v2, w2), (w2, v3)). This results in a set K ′ composed of |K | + 2
paths of D′. Note that transforming (D, v0, K) into (D′, v0, K ′) can be straightforwardly performed in polynomial time.
Since the verticesw1,w2 andw3 have their indegree and outdegree atmost two, neither the arcs (v1, w1), (v2, w2), (w1, w2),
(w2, w3), and (w3, w1) belong to S3(K ′) nor the arcs (w1, v2), (w2, v3) , (w1, w2), (w2, w3) and (w3, w1) belong to P3(K ′).
Furthermore from the construction of K ′, we clearly have

|SK ′(a)| = |SK (a)| for all a ∈ A′
\ Aw, (6)

|PK ′(a)| = |PK (a)| for all a ∈ A′
\ Aw. (7)

Moreover because of (v) and (vii), we easily obtain

|SK ′ ((w1, v2)) | = |SK (a1)| − 1, (8)
|PK ′ ((v1, w1)) | = |PK (a1)|. (9)

Using (vi) and (vii), we also deduce

|SK ′ ((w2, v3)) | = |SK (a2)|, (10)
|PK ′ ((v2, w2)) | = |PK (a2)| − 1. (11)

From (6), we clearly have S3(K ′)∩(A′
\Aw) = S3(K)∩(A\{a1, a2}), and from (7),P3(K ′)∩(A′

\Aw) = P3(K)∩(A\{a1, a2}).
Therefore, to compare σ3(K ′) with σ3(K), and π3(K ′) with π3(K), we only have to consider the arcs a1 and a2 for K and the
arcs of Aw for K ′. Suppose a2 ∈ S3(K); the argument is similar if a2 ∉ S3(K). By (10), we also have (w2, v3) ∈ S3(K ′). From
(6), (8) and (10), we then obtain

σ3(K ′) =


a∈S3(K ′)

a∉Aw

|SK ′(a)| +


a∈S3(K ′)

a∈{(w1,v2),(w2,v3)}

|SK ′(a)|

≤


a∈S3(K)

a∉{a1,a2}

|SK (a)| + |SK (a1)| − 1 + |SK (a2)|

= σ3(K) − 1,

the inequality coming from (w1, v2) ∉ S3(K ′) if |SK (a1)| = 3. Using (7), (9) and (11), we can similarly prove that
π3(K ′) ≤ π3(K).
We now need to prove that (D, v0, K) has a feasible solution if and only if (D′, v0, K ′) has one. Consider an Eulerian closed
walk C of D which respects K . Since a2 ∈ SK (a1), we must have a1 ≺C a2. Let C ′ be the Eulerian closed walk of D′ obtained
from C by substituting ((v1, w1), (w1, w2), (w2, w3), (w3, w1), (w1, v2)) and ((v2, w2), (w2, v3)) for a1 and a2, respectively.
Since C respects K , it is straightforward to see that C ′ respects all the paths of K ′ generated by (iv), (v) and (vi). Moreover
from the substitutions for a1 and a2, C ′ clearly respects the paths ((w1, w2), (w2, w3)) and ((v2, w2), (w2, v3)). Because of
a1 ≺C a2, we also have (w1, w2) ≺C ′ (w2, v3), which implies that C ′ respects all the paths of K ′ generated by (vii). Therefore,
C ′ is a feasible solution to instance (D′, v0, K ′) of the ECWPPCP.
Conversely, let C

′
be an Eulerian closed walk of D′ which respects K ′. If path ((w1, w2), (w2, v3)) was a subpath of C

′
, then

by considering the paths of K ′ ((v2, w2), (w2, v3)) and ((w1, w2), (w2, w3)), one would have

(v2, w2) ≺C ′ (w1, w2) ≺C ′ (w2, v3) ≺C ′ (w2, w3).

Yet, this contradicts the Eulerian-walk property of C
′
. Therefore, both paths ((w1, w2), (w2, w3)) and ((v2, w2), (w2, v3))

represent subpaths of C
′
. Since C

′
respects all the paths of K ′ generated by (vii), we know that (v1, w1) ≺C ′

(w1, w2) ≺C ′ (w2, w3). Consequently, we can easily deduce that walk ((v1, w1), (w1, w2), (w2, w3), (w3, w1), (w1, v2))

is a subpath of C
′
. Moreover due to C

′
respecting subpath ((v1, w1), (w1, w2), (w2, v3) considered in (vii), walk

((v1, w1), (w1, w2), (w2, w3), (w3, w1), (w1, v2)) appears before path ((v2, w2), (w2, v3)) in C
′
. Let C be the Eulerian

closed walk of D obtained from C
′
by replacing walk ((v1, w1), (w1, w2), (w2, w3), (w3, w1), (w1, v2)) and path

((v2, w2), (w2, v3)) by arcs a1 and a2, respectively. Since all the paths of K ′ except ((w1, w2), (w2, w3)) and
((v2, w2), (w2, v3)) are derived from all the paths of K , C obviously respects K , and our proof is complete. �

A similar result can be obtained for the whole number of predecessors π3(K) associated with the arcs of P3(K). The next
lemma then is given without proof.

Lemma 7. Consider a digraph D = (V , A), a vertex v0 of D, and a set K of paths of D. If π3(K) ≥ 3, the instance (D, v0, K)
of the ECWPPCP can be polynomially reduced to an instance (D′, v0, K ′) of the ECWPPCP wherein σ3(K ′) ≤ σ3(K) and
π3(K ′) ≤ π3(K) − 1. �
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Fig. 6. Transformation of arcs of A′

K ′ ; SK ′ (a1) = {a2, a3}, the solid arcs may belong to K , the bold arcs belong to K , and the dashed arcs cannot belong to K .

Fig. 7. A MSF path set K on a simple digraph.

We can now state our main complexity result.

Theorem 8. The Eulerian closed walk with precedence path constraints problem is NP-complete even if every arc has at most two
successors and predecessors with respect to K , that is, |SK (a)| + |PK (a)| ≤ 2 for all a ∈ A.

Proof. Consider any instance (D, v0, K)of the ECWPPCP. By Lemmas6 and7, there exists a polynomial-time reductionwhich
transforms (D, v0, K) into another instance (D′, v0, K ′) of the ECWPPCP so that S3(K ′) = ∅,P3(K ′) = ∅, and (D′, v0, K ′) is as
hard to solve as (D, v0, K). (Note that neither σ3(K) nor π3(K) exceeds |A|

2.) Moreover, each arc a of D′ satisfies |SK ′(a)| ≤ 2
and |PK ′(a)| ≤ 2.
To obtain an instance satisfying the condition of the theorem,we need to transform (D′, v0, K ′) into a new instance (D, v0, K)
of the ECWPPCP as follows. (See Fig. 6.) Let A′

K ′ be the set of arcs of D′ which appear in paths of K ′. Digraph D =

V , A


is

obtained from D′ by sequentially replacing any arc a = (ua, va) of A′

K ′ by the path ((ua, wa), (wa, za), (za, va)), where wa

and za are two new vertices. For any path P = (a1, a2, . . . , ak) of K ′, substitute the (k − 1) paths

(zai , vai), (uai+1 , wai+1)


,

i = 1, 2, . . . , k − 1, to generate the set K of paths of D. (Recall that vai = uai+1 for i = 1, 2, . . . , k − 1.) Once again, this
transformation can be performed in polynomial time. Since S3(K ′) = ∅ and P3(K ′) = ∅, we also have S3(K) = ∅ and
P3(K) = ∅. Moreover from the generation of the paths of K , we know that none of the arcs (wa, za), a ∈ A′

K ′ , appears in a
path of K . Therefore, each arc a of D satisfies |SK (a)| + |PK (a)| ≤ 2.
Since the vertices in {wa, za : a ∈ A′

K ′} have indegree and outdegree one in D, any Eulerian closed walk of D contains
((ua, wa), (wa, za), (za, va)) as a subpath, for a ∈ A′

K ′ . It therefore follows that an Eulerian closed walk of D′ respecting K ′

exists if and only if an Eulerian closed walk of D respecting K exists. The instance (D, v0, K) is then as hard to solve as the
original instance (D, v0, K). �

3. A polynomial-time solvable case

In this section, we show that every instance (D, v0, K) of the ECWPPCP can be solved in polynomial time if there does
not exist an arc of D having more than one successor with respect to K .

Throughout this section, the triple (D, v0, K) always refers to a digraph D = (V , A) with |V | = n and |A| = m, a vertex
v0 of V , and a path set K of D with |K | = q. We remark that (D, v0, K) corresponds to an instance of the ECWPPCP if D is
Eulerian. The path set K is called Multiple Successor Free (MSF) if every arc of D has at most one successor with respect to K .
Fig. 7 shows an example of a MSF set K composed of three paths represented by dashed arcs, dotted arcs, and dot-dashed
arcs, respectively.

We now introduce the definition of impregnable subgraphs which is the keystone of our analysis towards devising a
polynomial-time algorithm for the ECWPPCP. Consider a triple (D, v0, K). Let D′

= (V ′, A′) be a subgraph of D without
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isolated vertex. A vertex v of V ′ is calledD′-impregnablewith respect toD, v0, and K if at least one of the following conditions
holds:

(i) for any arc a in δin
D′(v) there exists an arc a′ in δout

D′ (v) with a ≺K a′,
(ii) δout(v) ⊆ A′ and v ≠ v0.

The subgraph D′ is then called impregnable with respect to D, v0, and K if each vertex of V ′ is D′-impregnable with respect
to D, v0, and K . Note that the notion of impregnability depends on the original digraph D, and v0 and K as well. Fig. 7 gives
an example of a subgraph D′

= D \ {(v3, v0)} of D which is impregnable with respect to D, v0, and K . Indeed, the vertices
v0 and v3 are D′-impregnable because of (i), and the vertices v1, v2 and v4 are D′-impregnable because of (ii). Note that the
D′-impregnability of v0 is clear since it has no entering arc and v2 is also D′-impregnable by (i).

Lemma 9. An instance (D, v0, K) of the ECWPPCP has no solution if D contains an impregnable subgraph, say D′
= (V ′, A′), with

respect to D, v0, and K .

Proof. Indeed, the last arc of D′ traversed by any Eulerian closed walk C of D starting from v0, say a, is an arc entering either
v0 or a vertex v ∈ V ′ with δout(v) \ A′

≠ ∅. Therefore, this vertex is D′-impregnable with respect to D, v0, and K because of
(i). Hence there exists an arc a′ of δout

D′ (v) with a ≺K a′. Since a is the last arc of D′ traversed by C , we have a′
≺C a, implying

that C does not respect K . �

In what follows, we will show that checking whether D contains an impregnable subgraph with respect to D, v0, and K
can be done in polynomial time if K is MSF. Indeed, this is shown using Algorithm 1 given below, hereafter referred as the
Impregnable Subgraph Detection Algorithm. This algorithm successively removes all the arcs of the digraph D which have no
successor with respect to K or for which all the successors with respect to K have already been removed. If, at the end of the
algorithm, there still exist some arcs which have not been removed, these latter form an impregnable subgraph. Otherwise,
we can claim that D does not contain an impregnable subgraph with respect to D, v0, and K .

The algorithm uses a vertex stack. Two operations, namely Push and Pop, are used for the stack. The first one consists of
pushing a vertex into the top of the stack whereas the second one consists of removing from the stack the vertex which is
at the top of the stack.

Algorithm 1: Impregnable Subgraph Detection Algorithm
Input: Triple (D, v0, K) with K MSF.
Output: An impregnable subgraph of D with respect to D, v0, and K if it exists.
begin

A′
= A;

Stack S = {v0};
while S ≠ ∅ do

v = Pop(S);
foreach (u, v) ∈ δin

D[A′]
(v) do

if @(v, w) ∈ A′ with (u, v) ≺K (v, w) then
A′

= A′
\ {(u, v)};

Push(S, u);

if A′
≠ ∅ then

return D[A′
];

end

Proposition 10. The Impregnable Subgraph Detection Algorithm works correctly in time O(mq∆in).

Proof. We first prove the correctness of the Algorithm. First, assume that at the end of Algorithm 1, A′
≠ ∅. LetW1 andW2

be the sets of vertices of V [A′
] which appeared and did not appear in the stack S, respectively. Since v0 ∉ W2 and a vertex

in V \ {v0} is pushed into S whenever one of its leaving arcs is removed from A′, we clearly have δout
D (v) ⊆ A′ for v ∈ W2.

The vertices in W2 are then D[A′
]-impregnable with respect to D, v0, and K due to Condition (ii). Let v1 ∈ W1. Consider the

iteration of Algorithm1where v1 is popped out of S for the last time. Any arc in δin
D (v1)∩A′ having no successor in δout

D (v1)∩A′

is then removed from A′. Therefore, at the end of Algorithm 1, all the arcs in δin
D[A′]

(v1) have a successor in δout
D[A′]

(v1), meaning
that v1 is D[A′

]-impregnable with respect to D, v0, and K due to Condition (i). It then follows that D[A′
] is impregnable with

respect to D, v0, and K .
Assume now that D contains a subgraph, say D̄ = (V̄ , Ā), which is impregnable with respect to D, v0 and K , and suppose

that A′
= ∅ at the end of the algorithm. Let (u, v) be the first arc of Ā to be removed from A′. The algorithm implies that

v has been pushed into S. Since any vertex different from v0 is pushed into S whenever one of its leaving arc is removed
from A′, and (u, v) is the first arc of Ā being removed from A′, it follows that v corresponds either to v0 or to a vertex having
at least one leaving arc which does not belong to Ā. The D̄-impregnability of v with respect to D, v0 and K then follows by
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Condition (i). This means that there exists an arc (v, w) of Ā with (u, v) ≺K (v, w). Note that (v, w) is removed from A′

before (u, v). For otherwise (u, v) could not be removed at this step. But this contradicts the fact that (u, v) is the first arc
of D̄ being removed. Therefore, we have A′

≠ ∅ and the algorithm then works correctly.
Anytime a vertex is pushed into S, an arc is removed from A′. The number of iterations of our algorithm is then at mostm.

Each iteration involves checking for every entering arc of the current vertex v whether it has a successor in δout
D[A′]

(v). Since
K contains q paths and the indegree of v is at most ∆in, the Impregnable Subgraph Detection Algorithm has a complexity of
O(mq∆in). �

We now devise a second algorithm, Algorithm 2, later referred to as the ECWPPCP algorithm, which permits to solve
the ECWPPCP when the path set is MSF. Given an instance (D, v0, K) of the ECWPPCP, the ECWPPCP algorithm first checks
whether or not D contains an impregnable subgraph with respect to D, v0, and K , using Algorithm 1. If no such subgraph
exists, then a solution of the ECWPPCP is constructed as follows. We begin with an empty closed walk C . At each iteration
of the algorithm, we add to C an arc leaving the end vertex of C until C becomes an Eulerian closed walk of D. Moreover, we
ensure that C starts from v0 and respects K at each iteration, which implies that C is a solution.

During the algorithm, the arc set A′ corresponds to the arcs of A which have not been yet added to C . The digraph
D′

= (V , A′) is the spanning digraph of D given by A′, and K ′ corresponds to the restriction of K on D′.
At each iteration, an arc (u, v), where u corresponds to the end vertex of C , is removed from A′ and added at the end

of C . The arc (u, v) is chosen in order to ensure that (C, (u, v)) respects K , and the digraph D′
\ (u, v) does not contain an

impregnable subgraph with respect to D′
\ (u, v), v0, and K ′

\ (u, v). The algorithm ends when A′ is empty, which implies
that C is a solution of the ECWPPCP for (D, v0, K).

Algorithm 2: ECWPPCP algorithm
Input: Instance (D, v0, K) of the ECWPPCP with K MSF
Output: Either an impregnable subgraph of Dwith respect to D, v0, and K , or a solution of ECWPPCP for (D, v0, K)
begin

Apply Algorithm 1 to check if D contains an impregnable subgraph with respect to D, v0, and K ;
if D contains an impregnable subgraph D∗ with respect to D, v0 and K then

return D∗;
A′

= A;
K ′

= K ;
C = ∅;
u = v0;
while A′

≠ ∅ do
D′

= (V , A′);
Choose (u, v) ∈ A′ so that :
(i) (C, (u, v)) respects K ,
(ii) D′

\ (u, v) does not contain an impregnable subgraph with respect to D′
\ (u, v), v0, and K ′

\ (u, v).

C = (C, (u, v));
A′

= A′
\ (u, v);

K ′
= K ′

\ (u, v);
u = v;

return C;
end

Proposition 11. The ECWPPCP algorithm works correctly in O(m2q∆in∆out).

Proof. By Lemma 9, an instance (D, v0, K) has no solution if D contains an impregnable subgraph with respect to D, v0, and
K . We now suppose that D does not contain such impregnable subgraph, and then show that the ECWPPCP Algorithm ends
and returns a solution of (D, v0, K), say C . For this, we have to show that, at each iteration of the algorithm, if C is a walk
that respects K , u is the end vertex of C and A′

= A \ C is such that D′
= (V , A′) does not contain any impregnable subgraph

with respect to D′, v0 and K ′, then there exists an arc (u, v) of A′ leaving u such that:
1. (C, (u, v)) respects K ,
2. D′

\ (u, v) = (V , A′
\ (u, v)) does not contain any impregnable subgraph with respect to D′

\ (u, v), v0, and K ′
\ (u, v).

We distinguish two cases, depending on whether or not vertex u corresponds to v0. First, suppose that u = v0. Hence, C is
a closed walk. Since A′

= A \ C and D is Eulerian, we have |δin
D′(v0)| = |δout

D′ (v0)|. As A′
≠ ∅, we have that δout

D′ (v0) ≠ ∅.
Otherwise, every vertex of D[A′

] satisfies δout
D′ (v) ⊆ A′ and, as v0 is not a vertex of D[A′

], it follows that D[A′
] is impregnable

with respect to D′, v0, and K ′, a contradiction.
Moreover, there must exist an arc (v0, v1) of A′ leaving v0 and having no predecessor in A′ with respect to K ′. Otherwise,

as K ′ is MSF, we obtain that for any arc a of A′ entering v0, there exists an arc a′ of A′ leaving v0 with a ≺K ′ a′. This implies
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that v0 is D[A′
]-impregnable with respect to D′, v0, and K ′. It follows that D[A′

] is impregnable with respect to D′, v0, and K ′

which contradicts the hypothesis.
Since every arc of A \ A′ satisfies a ≺C (v0, v1), C respects K , and (v0, v1) has no predecessor in A′ with respect to K ′,

we deduce that (C, (u, v)) respects K . Suppose now that D′
\ (v0, v1) contains an impregnable subgraph, say D̄ = (V̄ , Ā),

with respect to D′
\ (v0, v1), v0, and K ′

\ (v0, v1). Since (v0, v1) is not an arc of Ā, every vertex of V̄ which is D̄-impregnable
with respect to D′

\ (v0, v1), v0, and K ′
\ (v0, v1) due to Condition (i) is still D̄-impregnable with respect to D′, v0 and K ′.

In the same way, since (v0, v1) is not an arc leaving a vertex different from v0, every vertex D̄-impregnable with respect
to D′

\ (v0, v1), v0, and K ′
\ (v0, v1) due to Condition (ii) is also D̄-impregnable with respect to D′, v0 and K ′. Thus, D̄ is an

impregnable subgraph of D′ with respect to D′, v0, and K ′, a contradiction. Therefore, if u = v0, then there exists an arc of A′

satisfying Conditions 1. and 2. and leaving v0.
Suppose now that u ≠ v0. We denote by B the set of arcs leaving u and having no predecessor in A′ with respect to K ′.

Since C is a walk starting at v0 and ending at u, and D is Eulerian, we have |δin
D′(u)| < |δout

D′ (u)|. As K is MSF, it follows that
B is not empty. Moreover, since C respects K , the path (C, (u, u′)) also respects K for every arc (u, u′) ∈ B. We now have
to show that there exists at least one arc (u, u′) of B so that the digraph D′

\ (u, u′) does not contain a subgraph which is
impregnable with respect to D′

\ (u, u′), v0, and K ′
\ (u, u′).

Suppose the contrary, that is, for every arc (u, u′) ∈ B, there exists an impregnable subgraph, sayD(u,u′)
= (V (u,u′), A(u,u′)),

of D′
\ (u, u′) with respect to D′

\ (u, u′), v0, and K ′
\ (u, u′). We then obtain the following result.

Claim 12. B contains at least two arcs. Moreover, each arc (u, u′) of B is the only arc leaving u which does not belong to A(u,u′).

Proof. Let (u, u′) be an arc of B. By hypothesis, D(u,u′) is impregnable with respect to D′
\ (u, u′), v0 and K ′

\ (u, u′), but not
with respect to D′, v0, and K ′. Since D(u,u′) is a subgraph of D′

\ (u, u′), the arc (u, u′) does not belong to A(u,u′). From the
definition of impregnable subgraphs, every vertex of D(u,u′) which is D(u,u′)-impregnable with respect to D′

\ (u, u′), v0, and
K ′

\ (u, u′) due to Condition (i) is also D(u,u′)-impregnable with respect to D′, v0, and K ′. Moreover, every vertex of D(u,u′)

different from u which is D(u,u′)-impregnable with respect to D′
\ (u, u′), v0, and K ′

\ (u, u′) due to Condition (ii) is also
D(u,u′)-impregnable with respect to D′, v0, and K ′. We then deduce that u is D(u,u′)-impregnable with respect to D′

\ (u, u′),
v0, and K ′

\ (u, u′), but not with respect to D′, v0, and K ′. This implies that

(a) δout
D′ (u) ⊈ A(u,u′),

(b) there exists an arc, say (ū, u), of A(u,u′) with no successor in A(u,u′) with respect to K ′,
(c) δout

D′\(u,u′)
(u) ⊆ A(u,u′).

Implications (a) and (b) come from the non D(u,u′)-impregnability of uwith respect to D′, v0, and K ′ whereas Implication (c)
is given by the D(u,u′)-impregnability of uwith respect to D′

\ (u, u′), v0, and K ′
\ (u, u′).

From Implications (a) and (c), we deduce that δout(u) \ A(u,u′)
= {(u, u′)}. Moreover, as |δin

D′(u)| < |δout
D′ (u)| and (ū, u) is

an arc of δin
D′(u), we have |δout

D′ (u)| ≥ 2. Since the arcs of δout
D′ (u) \ (u, u′) belong to D(u,u′), from Implication (b), they do not

have (ū, u) as predecessor with respect to K ′. The number of predecessors of δout
D′ (u) \ {(u, u′)} with respect to K ′ is then at

most |δin
D′(u)| − 1 < |δout

D′ (u) \ (u, u′)|. As K is MSF, there exists an arc of δout
D′ (u) \ (u, u′) having no predecessor in A′ with

respect to K ′. This arc then belongs to B and is different from (u, u′).

Let Ā be the union of the arc sets A(u,u′) for all arcs (u, u′) of B. Consider the subgraph D̄ = (V (Ā), Ā) induced by Ā. Clearly,
u is D̄-impregnable with respect to D′, v0, and K ′. Indeed, Claim 12 implies that δout

D′ (u) ⊆ Ā. As u ≠ v0, the impregnability
of u is given by Condition (ii).

Consider any vertex v of V̄ \ u. If, for some arc (u, u′) of B, vertex v is D(u,u′)-impregnable with respect to D′
\ (u, u′),

v0, and K ′
\ (u, u′) due to Condition (ii), it means that δout

D′\(u,u′)
(v) ⊆ A(u,u′). Since v ≠ u, we have δout

D′\(u,u′)
(v) = δout

D′ (v).

Moreover, as A(u,u′)
⊆ Ā, we have δout

D′ (v) ⊆ Āwhich implies that v is D̄-impregnable with respect to D′, v0, and K ′.
Suppose now that the impregnability of v is always given by Condition (i). Then, consider any arc (v′, v) of δin

D̄
(v). By

construction, there exists an arc (u, u′) of B such that (v′, v) belongs to δin
D(u,u′)(v). Since v is D(u,u′)-impregnable with respect

toD′
\(u, u′), v0, and K ′

\(u, u′) due to Condition (i), there exists (v, v′′) belonging to δout
D(u,u′)(v)with (v′, v) ≺K ′\(u,u′) (v, v′′).

By construction, (v, v′′) also belongs to Ā and (v′, v) ≺K ′ (v, v′′). Thus, every arc of Ā entering v has a successor in Ā, which
implies that v is D̄-impregnable with respect to D′, v0, and K . Consequently, we conclude that D̄ is a subgraph of D′ which is
impregnable with respect to D′, v0, and K ′, a contradiction. Therefore, there exists one arc of B satisfying Conditions 1. and
2., which ends the proof of the correctness of the algorithm.

We now establish the complexity of the algorithm. The loop is executed at most m times. At each iteration, we have to
test, for every arc a leaving u, if D′

\ a does not contain any impregnable subgraph with respect to D′
\ a, v0, and K ′

\ a, and
if (C, a) respects K . The complexities of these two operations are O(mq∆in) and O(q), respectively. Since every vertex has at
most ∆out leaving arcs, the complexity of each iteration is O(mq∆in∆out). �

Algorithm 2 gives necessary and sufficient conditions for an instance of the ECWPPCP to admit a solution when the path
set is MSF.
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Theorem 13. An instance (D, v0, K) of the ECWPPCP where K is MSF has a solution if and only if D does not contain a subgraph
which is impregnable with respect to D, v0, and K . �

4. Concluding remarks

In this paper, we studied the Eulerian closed walk problem where some precedence constraints are specified by a set of
paths K . We first proved its NP-completeness by a polynomial reduction from the directed Hamiltonian circuit of indegrees
and outdegrees exactly two problem.We then refined this result by showing that the NP-completeness is preserved if every
arc has at most two successors and predecessors with respect to K . We finally presented a polynomial-time algorithm to
solve the problem when each arc of D has at most one successor with respect to K . For this polynomial case, we also gave
necessary and sufficient conditions for the problem to admit a solution.

We can point out a further polynomial-time solvable case for the ECWPPCP when each arc has at most one predecessor
with respect to K . For this, it suffices to see that every instance (D, v0, K) where each arc has at most one predecessor can
be transformed into the instance (Dr , v0, Kr) of the ECWPPCP by reversing all the arcs of A and all the paths of K , that is,
(u, v) ∈ Ar if and only if (v, u) ∈ A, and ((v1, v2), (v2, v3), . . . , (vk−1, vk)) ∈ Kr if and only if ((vk, vk−1), (vk−1, vk−2), . . . ,
(v2, v1)) ∈ K . Therefore, each arc of Ar has at most one successor with respect to Kr and the ECWPPCP Algorithm applies to
this new instance. Any solution returned by the algorithm can be transformed into a solution of (D, v0, K) by reversing its
arcs (i.e., ((v0, v1), (v1, v2), . . . , (vr , v0)) ofDr is transformed into ((v0, vr), (vr , vr−1), . . . , (v1, v0)) ofD). If an impregnable
subgraph is found, this implies that the instance (D, v0, K) has no solution.

One can also consider the node-precedence variant of the ECWPPCP defined as follows. In this variant, we suppose that
the underlying graph is simple andwalks and paths are defined by sequences of vertices instead of sequences of arcs. Remark
that the vertex sequence of a walk may contain several copies of a same vertex. A closed walk then respects a path P if its
contains a copy of every vertex of P in the same order as in P . In amore formal way, given a closedwalk C = (u1, u2, . . . , uk)
and a path P = (v1, v2, . . . , vl), C respects P if there exists a mapping π : {1, 2, . . . , l} → {1, 2, . . . , k} such that vi = uπ(i)
for all i = 1, 2, . . . , l and π(i) < π(j) for all i < j ∈ {1, 2, . . . , l}.

Given an instance (D, v0, K), the node-precedence variant of the ECWPPCP then consists of finding whether or not there
exists an Eulerian closed walk of D starting from v0 and respecting all the paths of K . This problem is clearly NP-complete
due to the NP-completeness of the ECWPPCP. To see this, one can transform any instance (D, v0, K) of the ECWPPCP into an
instance (D′, v0, K ′) of the node-precedence variant as follows. Replace each arc (ui, vi) by the two arcs (ui, wi) and (wi, vi),
where wi is a new vertex, for all i = 1, 2, . . . ,m. Also replace in K ′ every path ((u1, v1), (u2, v2), . . . , (uk, vk)) of K by the
path (w1, v1, w2, v2, . . . , wk, vk). Clearly, any Eulerian closed walk C ′ of D′ can be transformed into an Eulerian closed walk
C of D by replacing each subpath ((ui, wi), (wi, vi)) by the arc (ui, vi), for all i = 1, 2, . . . ,m. Moreover, since C ′ goes exactly
once through each vertex wi, i = 1, 2, . . . ,m, C ′ traverses wi before wj if and only if (ui, vi) ≺C (uj, vj). This implies that if
C ′ respects K ′, then C respects K . The converse can be shown along the same line. Moreover, the construction of (D′, v0, K ′)
from (D, v0, K) can be done in polynomial time.

This work has been motivated by the question of representing a solution of the single-vehicle preemptive pickup and
delivery problem as briefly mentioned in the introduction. An outcome of the NP-completeness of the ECWPPCP is that in
the general case, a solution of this routing problem needs to be defined by the sequence (and not only by the set) of arcs of
the vehicle route, together with the sets of arcs of the demand paths. However, if the vehicle cannot carry more than one
demand at a time, then paths of K are pairwise arc-disjoint, which means that each arc of D has at most one predecessor
and one successor with respect to K . Therefore in this case, the main algorithm of Section 3 allows to check in polynomial
time whether or not a solution, defined by the sets of arcs of the vehicle route and the demand paths, is feasible for this
unitary case of the SPPDP. Consequently, it is possible to avoid the order on the arc set associated with the vehicle route in
the representation of a solution of the unitary SPPDP. All these results are the basis of the different integer linear programs
given in [1] to model various cases of the SPPDP, and of the ongoing polyhedral study on the unitary case as well.
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