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Abstract

In this paper, we are interested in the recourse problem of the 2-stage robust loca-
tion transportation problem. We propose a solution process using a mixed-integer
formulation with an appropriate tight bound.
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1 Introduction

Robust optimization is a recent methodology for handling problems affected
by uncertain data, and where no probability distribution is available. In robust
optimization two decisional contexts are considered for taking decision under
uncertainty. The first one is the single-stage context where the decision-maker
has to select a solution before knowing the realization (values) of the uncer-
tain parameters. Generally, the single-stage approaches provide the worst
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case solutions (Soyster [9]) that are very conservative and far from optimal-
ity in real-world applications. The second approach concerns the multi-stage
context (or dynamic decision-making) where the information is revealed in
stages. Indeed, a part of the decisions must be taken before actual realization
of the uncertain parameters, and another part, called recourse decisions is
taken when the information is known. The multi-stage approach was firstly
introduced by Ben-Tal et. al. [2], and initial focus was on two-stage deci-
sion making on linear programs with uncertain feasible set. Note that the
formulations obtained following this approach are generally untractable.

In this paper, we are interested in a robust version of the location trans-
portation problem with an uncertain demand using a 2-stage formulation.
Recently, Atamturk and Zhang [1] used a two-stage robust optimization in
network flow and design problem to obtain a good approximation of the ro-
bust solutions. Furthermore, Thiele et. al. [10] describe a two-stage robust
approach to address general linear programs affected by uncertain right hand
side. The robust formulation they obtained is a convex (not linear) program,
and they propose a cutting plane algorithm to exactly solve the problem. In-
deed, at each iteration, they have to solve an NP-hard recourse problem on
an exact way, which is time-expensive. Here, we go further in the analysis of
the recourse problem of the location transportation problem, in particular we
define a tight bound for the mixed-integer reformulation.

The paper is organized as follows: in Section 2, the nominal location trans-
portation problem is introduced and its corresponding 2-stage robust formu-
lation. A mixed integer program is then proposed in Section 3 to solve the
quadratic recourse problem with a tight bound. Finally, in Section 4, the
results of numerical experiments are discussed.

2 Robust location transportation problem

We consider the following location transportation problem: a commodity has
to be transported from each of m potential sources, to each of n destinations.
The sources capacities are Ci, i = 1, . . . ,m and the demands at the destina-
tions are βj, j = 1, . . . , n. To guarantee feasibility, we assume that the total
sum of the capacities at the sources is greater than or equal to the sum of
the demands at the destinations. The fixed and variable costs of supplying
from source i = 1, . . . ,m are fi and di, respectively. The cost of transporting
one unit of the commodity from source i to destination j is µij. The goal is
to determine which sources to open (ri), the supply level yi and the amounts
tij to be transported such that the total cost is minimized. The mathemati-



cal formulation of the location transportation problem is the following linear
program, (T ):

(T )



min
m∑
i=1

diyi +
m∑
i=1

firi +
m∑
i=1

n∑
j=1

µijtij

s.t.
n∑
j=1

tij ≤ yi i = 1 . . .m

m∑
i=1

tij ≥ βj j = 1 . . . n

yi ≤ Ciri i = 1 . . .m

yi, tij ≥ 0, ri ∈ {0, 1} i = 1 . . .m, j = 1 . . . n

In case of uncertainty on the demands, we model each demand βj by the

interval [βj − β̂j, βj + β̂j], where βj represents the nominal value of βj, and

β̂j ≥ 0 its maximum deviation. We denote (T β) the location transportation

problem for a given β ∈ [β − β̂, β + β̂], with a nonempty feasible set. Finally,
we denote Z(T β) the optimal value (bounded value) of (T β) for a given β.

Following the approach suggested by [1], [6] and [10], which is a natural
adaptation of the original Bertsimas and Sim approach (see [3]), we define
a parameter Γ, called the budget of uncertainty representing the range of
uncertain demands that can deviate from their nominal values. We have Γ
a real number belongs to [0, n]. For Γ = 0, every right hand side is equal to
its nominal value, while Γ = n leads to consider the problem with the worst
demands.

We are interested in solving a robust version of the problem (T β) with a
2-stage formulation. Indeed, the problem is to determine the minimum cost of
choosing the facility i, i = 1, . . . ,m to be opened (with the ri variables), and
the supply level yi, such that the worst demand is satisfied with a minimum
cost. In this case, ri and yi variables are decided before the realization of the
uncertainty (first stage decisions), while the tij variables represent the recourse
variables to decide after the demands are revealed (second stage decisions).
The robust problem is the following

TRob(Γ)



min

yi≤Ciri

yi≥0, ri∈{0,1}

m∑
i=1

diyi +
m∑
i=1

firi+ max
β∈U

min
n∑

j=1
tij≤yi, i=1...m

m∑
i=1

tij≥βj , j=1...n

tij≥0, i=1...m, j=1...n

m∑
i=1

n∑
j=1

µijtij



where U = {β ∈ Rn : βj = βj + zjβ̂j, j = 1, . . . , n, z ∈ Z} and Z = {z ∈ Rn :∑n
j=1 |zj| ≤ Γ, − 1 ≤ zj ≤ 1, j = 1 . . . n}.

The problem TRob(Γ) is a convex optimization problem that can be solved
using Kelley’s algorithm (see [8], [10]) that optimizes iteratively the master
problem and the recourse problem by generating cuts. In this work, we focus
on the recourse problem, namely

Q(y,Γ)



max
n∑

j=1
|zj |≤Γ

−1≤zj≤1, j=1,...,n

min
n∑

j=1
tij≤yi, i=1...m

m∑
i=1

tij≥βj+β̂jzj , j=1...n

tij≥0, i=1...m, j=1...n

m∑
i=1

n∑
j=1

µijtij

At optimality Z(Q(y,Γ)) represents the worst transportation cost value for a
fixed capacity level y, and Γ deviations. Furthermore, we assume that Q(y,Γ)
has a nonempty feasible set.

Because of the sense of the constraints of Q(y,Γ), the optimal values of the
zj variables will never be negative, and necessarily belong to [0, 1]. Moreover,
by strong duality theorem, one can replace the minimization problem by its
dual (since the problem is always feasible), resulting

Q(y,Γ)



max −
m∑
i=1

yiui +
n∑
j=1

βjvj +
n∑
j=1

β̂jvjzj

s.t. vj − ui ≤ µij i = 1 . . .m, j = 1 . . . n
n∑
j=1

zj ≤ Γ

0 ≤ zj ≤ 1 j = 1 . . . n

ui, vj ≥ 0 i = 1 . . .m, j = 1 . . . n

where ui, vj are the dual variables.

The obtained program has a quadratic shape with (m+ 2n) variables and
(nm + n + 1) constraints. More precisely, it is a bilinear program subject to
linear constraints, which is a class of convex maximization problems proven
NP-hard (see [4]). From a complexity viewpoint, the resulting problem is not
solvable in polynomial time. Instead of solving it on a direct way, we will
reformulate Q(y,Γ) as a mixed integer program. We present this formulation
in Section 3.



3 Mixed-integer program reformulation

In the current formulation of Q(y,Γ), Γ is a real number varying between 0
and n. Nevertheless, one can assume Γ to be integer, representing the number
of the constraints for which βj 6= βj. In this case, proposition 3.1 is required
to give a MIP formulation of the problem Q(y,Γ).

Proposition 3.1 If Γ is an integer number then there exists an optimal so-
lution (u∗, v∗, z∗) of Q(y,Γ) such that z∗j ∈ {0, 1}, j = 1, . . . , n.

From Proposition 3.1 and assuming that Γ ∈ N (Γ ≤ n), we deduce that,
at optimality either βj is equal to its nominal value βj, or its worst value

βj + β̂j. Furthermore, because of binary variables zj we are able to linearize
the problem Q(y,Γ) by replacing each product vjzj in the objective function
with a new variable ωj and adding constraints that enforce ωj to be equal
to vj if zj = 1, and zero otherwise (see [7]). The problem becomes a mixed
integer program

Q(y,Γ)



max −
m∑
i=1

yiui +
n∑
j=1

βjvj +
n∑
j=1

β̂jωj

s.t. vj − ui ≤ µij i = 1 . . .m, j = 1 . . . n
n∑
j=1

zj ≤ Γ

ωj ≤ vj j = 1 . . . n

ωj ≤Mzj j = 1 . . . n

ui, vj, ωj ≥ 0, zj ∈ {0, 1} j = 1 . . . n, i = 1 . . .m

where M is a sufficiently large constant. For reducing the integrality gap, M
needs to be as small as possible. We give the following tight bound for M :

Mj = v∗j (n)
where v∗j (n), j = 1, . . . , n is the optimal solution value of v variables inQ(y, n).
For the proof, see [5]. In the next Section, we are interested in numerical
experiments, performed on the transportation problem in order to compare
the tight bound previously defined with an arbitrarily large M .

4 Numerical experiments

Several series of tests were performed for various values of the parameters of
the transportation problem, namely the number of sources, the number of



demands, the amounts available at each source, the nominal and the highest
demands at each destination and the transportation costs. To be closer to
the reality, we choose to set the number of demands greater than the number
of sources. All other numbers are randomly generated as follows: for all
j = 1, . . . , n , the nominal demand βj belongs to [10, 50], and the deviation

β̂j = pjβj, such that pj represents the percentage of maximum increase of each

demand j. We take pj in [0.1, 0.5], which ensures β̂j to be strictly positive. The
amounts yi at each source i = 1, . . . ,m are obtained by an equal distribution
of the sum of the maximum demands. Finally, the costs are in [1, 50].

The problem Q(y,Γ) was solved with CPLEX 11.2. For each (n,m), ten
instances have been generated. Table 1 shows results of average running time
and percentage of solved instances, for each one of the two bounds previously
mentioned (see Section 3), such that the computation was stopped after one
hour.

Table 1
Running time results

Running time (s) % solved instances

n×m Γ M v∗(n) M v∗(n)

25% 2.63 0.76 100 100

250× 10 50% 1178.14 14.05 50 100

75% 215.24 0.97 90 100

The results described in Table 1 show that the computing time obtained
by setting M to the bound v∗(n) is significantly lower than the arbitrarily
bound. Moreover, we remark that the running time increases for the value
of Γ between n/2 and n whatever the bound is (see figure 1.a). Figure 1.b
illustrates the evolution of the objective value versus Γ for a sample m = 100
and n = 250. The curve obtained is an increasing concave function, where
Z(Q(y,Γ)) increases quickly for small values of Γ and slowly for high values.
This is due to the model itself, since whenever Γ increases, the most influent
uncertain parameters will be chosen.

Additional experiments have been performed on the uncertain transporta-
tion problem using the v∗(n) bound, in order to determine the limit size of the
problem that can be solved within one hour of CPU time. In Figure 2.a when
n = 500, we observe that the running time grows as the number of sources m
increases. Indeed, for m = 10 the problem takes few seconds to be solved. An
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Fig. 1. A sample m=100, n=250: a. Running time vs Γ. b. Objective value vs Γ.

average of 20 minutes is needed for instances with m = 80 and Γ = 60% of to-
tal deviation, and one hour for those with m ∈ [300, 500] and Γ = 50%. When
n = 1000 uncertain demands (Figure 2.b), all instances containing m = 10
sources are solved within one hour, whatever is Γ between 10% and 100%. For
100 ≤ m ≤ 500 the solver is not able to reach the optimal within this time for
Γ = 50%, and for m ≥ 600 there are memory issues with the solver.
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Fig. 2. Running time (s) vs Γ : a. Tests n=500. b. Tests n=1000.

5 Conclusion

The aim of this paper is to solve the recourse problem of the robust 2-stage
location transportation problem. Previously, the 2-stage formulation has al-
ready been considered in [1] and [10]. Nevertheless, the limit size of solved
instances with Kelley’s algorithm, was performed for about 30 uncertain pa-
rameters. Here, we present the first (to our knowledge) extensive computation



analysis on a particular recourse problem (namely, the location transportation
problem), which is the most difficult part of the 2-stage robust optimization.
Indeed, the tight bound we propose allows us to solve big size instances. Fur-
thermore, this work seems to be promising to solve big size problems of the
general 2-stage robust location transportation problem. This will be the aim
of future research.
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