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a b s t r a c t

In robust optimization, themulti-stage context (or dynamic decision-making) assumes that
the information is revealed in stages. So, part of the decisionsmust be taken before knowing
the real values of the uncertain parameters, and another part, called recourse decisions, is
takenwhen the information is known. In this paper, we are interested in a robust version of
the location transportationproblemwith anuncertain demandusing a 2-stage formulation.
The obtained robust formulation is a convex (not linear) program, and we apply a cutting
plane algorithm to exactly solve the problem. At each iteration, we have to solve an NP-
hard recourse problem in an exact way, which is time-consuming. Here, we go further in
the analysis of the recourse problem of the location transportation problem. In particular,
we propose a mixed integer program formulation to solve the quadratic recourse problem
and we define a tight bound for this reformulation. We present an extensive computation
analysis of the 2-stage robust location transportation problem. The proposed tight bound
allows us to solve large size instances.

© 2011 Published by Elsevier B.V.

1. Introduction

Robust optimization is a recentmethodology for handling problems affected by uncertain data, andwhere no probability
distribution is available on the ambiguous parameters.

The goal of the robust optimization framework is to obtain a ‘‘robust’’ solution, which protects the decisionmaker against
adverse realizations of the uncertainty. A specific definition of robustness depends on the modeling of the uncertainty, the
location of the uncertaintywithin the problem (in the objective function and/or in the constraints), and the decision-making
context (in particular, the way information is revealed over time). Within the problem under consideration in this paper,
the uncertainty concerns the constraints, or in other words the feasibility of a solution.

According to the decision-making context, the robust approaches can be divided into two categories. The first category
is suited to the single-stage context, where the decision-maker has to select a solution before knowing the real value
of each uncertain parameter. When uncertainty affects the feasibility of a solution (because constraint coefficients are
uncertain), robust optimization seeks to obtain a solution that will be feasible for any realization taken by the unknown
coefficients (Soyster [15]); however, complete protection from adverse realizations often comes at the expense of a severe
deterioration in the objective. This extreme approach can be justified in some engineering applications of robustness, such
as robust control theory, but is less advisable in operations research, where adverse events such as low customer demand
do not produce the high-profile repercussions that engineering failures – such as a doomed satellite launch or a destroyed
unmanned robot – can have. Tomake the robust methodology appealing to business practitioners, robust optimization thus
focuses on obtaining a solution that will be feasible for any realization taken by the unknown coefficients within a smaller,
‘‘realistic’’ set, called the uncertainty set. The specific choice of the set plays an important role in ensuring computational
tractability of the robust problem and limiting deterioration of the objective at optimality, and must be thought through
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carefully by the decision maker (see for example [2]). In the approach proposed by Bertsimas and Sim [6,5] the assumption
is that only a subset of parameters should simultaneously reach their worst value. Thus, the uncertainty set is defined by
the cardinality Γ of this subset, given by the decision maker, and called the budget of uncertainty.

The second category is suited to themulti-stage context (or dynamic decision-making) where the information is revealed
in subsequent stages. Themulti-stage approach in robust optimizationwas first introduced by Ben-Tal et al. [3], and initially
focused on two-stage decision making on linear programs under an uncertain feasible set. The idea is to consider two sets
of variables, such that the first set must be determined before the disclosure of the uncertainty, and that the second one
can be computed after the uncertainty has been revealed. The second stage problem is known as the recourse problem.
The 2-stage robust methodology was inspired from stochastic optimization. In the latter case, the uncertainty is described
by probability laws, and one has to decide the ‘‘here-and-now’’ variables using an expected value of all possible recourse
decisions. The ‘‘wait-and-see’’ variables are decided after the uncertainty has been disclosed. This argument is extended to
robust optimization. Indeed, recalling that there are no probability estimations available on the uncertain parameters, one
has to decide on the first stage variables making possible a recourse decision for any possible realization of the uncertain
parameters in the uncertainty set.

In a recent paper, Bertsimas et al. [4] proposed a complete overview on the theory and the applications of robust opti-
mization. In the specific application considered in this paper, which is the problem of choosing the location of warehouses
and the transportation scheme from warehouses to customers, only the right hand side coefficients (representing the de-
mands) are uncertain. This particular context has been studied by Thiele et al. [16]. The authors describe a two-stage robust
approach to address general linear programs affected by an uncertain right hand side. The robust formulation they obtained
is not a linear but a convex problem, and they propose a cutting plane algorithm to exactly solve the problem. Indeed, at
each iteration, they have to solve an NP-hard recourse problem in an exact way, which is time-consuming.

In this paper, our objectives are to propose a robust version of the location transportation problem with uncertain
demands, using a 2-stage formulation, and to apply the algorithm proposed by Thiele et al. [16]. Here, we go further in
the analysis of the recourse problem of the location transportation problem. In particular, we define a tight bound for a
mixed-integer reformulation.

The paper is organized as follows: in Section 2, the location transportation problem is introduced along with its
corresponding 2-stage robust formulation. A mixed integer program is then proposed in Section 3 to solve the quadratic
recourse problem with a tight bound. Finally, in Section 4, the results of numerical experiments are discussed.

2. Robust location transportation problem

We consider the following location transportation problem: a commodity has to be transported from each ofm potential
sources to each of n destinations. The sources capacities are Ci, i = 1, . . . ,m and the demands at the destinations are
βj, j = 1, . . . , n. To guarantee feasibility, we assume that the total sum of the capacities at the sources is greater than or
equal to the sum of the demands at the destinations. The fixed and variable costs of supplying from source i = 1, . . . ,m
are fi and di, respectively. The cost of transporting one unit of the commodity from source i to destination j is µij. The goal
is to determine which sources to open (ri), the supply level yi and the amounts tij to be transported such that the total
cost is minimized. The mathematical formulation of the nominal location transportation problem is the following linear
program (T ):

(T )



min
m
i=1

diyi +
m
i=1

firi +
m
i=1

n
j=1

µijtij

s.t.
n

j=1

tij ≤ yi i = 1, . . . ,m

m
i=1

tij ≥ βj j = 1, . . . , n

yi ≤ Ciri i = 1, . . . ,m
ri ∈ {0, 1}, yi, tij ≥ 0 i = 1, . . . ,m, j = 1, . . . , n.

Furthermore, it should be noted that the decision maker has to decide in two steps: first, the warehouses have to be
located and filled, and after, once the demands are known, the routing of commodities is decided. According to this context,
the transportation part of the problem has a significant importance when deciding the location part.

In practice, the customers’ demands are often estimated at the stage of construction of the warehouses. To be realistic,
it is common to assume some uncertainty in these demands. We define the uncertainty set as being interval numbers for
each one of them. Formally, the jth customer demand βj belongs to [β j − β̂j, β j + β̂j], where β j ≥ 0 represents the nominal
value of βj and β̂j ≥ 0 its maximum deviation. Clearly, each demand βj can take on any value from the corresponding
interval, regardless of the values taken by other coefficients. We denote as (Tβ) the location transportation problem for a
given β ∈ [β − β̂, β + β̂], with a nonempty feasible set. Finally, we denote as opt(Tβ) the optimal value (bounded value)
of (Tβ) for a given β .
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Because of the context of our problem, we apply a 2-stage robust approach to the uncertain problem (Tβ). In fact, we
recall that the decisionmaker has to size the capacities before knowing the demands and, once these demands are revealed,
he has to satisfy them. Thus, according to this context, we define the ri and yi variables as first stage decisions, while the
tij variables represent the recourse variables or the second stage decisions. The total costs of all the decisions should be
minimized.

Furthermore, the decision maker wants to take decisions based on a realistic scenario and to avoid the worst case
demands. The model chosen to represent the uncertainty set is the one suggested by [1,16,9]. This model is a natural
adaptation of the original Bertsimas and Sim approach (see [6,5]), in which a parameter Γ , called the budget of uncertainty,
is defined. The value of Γ represents the maximum range of the uncertain demands that can simultaneously deviate from
their nominal values. As the uncertainty is on the right hand sides (demands), Γ belongs to [0, n]. For Γ = 0, every right
hand side is equal to its nominal value, while Γ = n leads to considering the problem with the greatest demands.

The aim of setting the parameter Γ in the robust formulation is to restrict the demands that are greater than the nominal
ones. Hence, according to its predictions, the decision maker is free to choose any value of Γ in the interval [0, n] and solve
the 2-stage robust problem. Then he can decide to open the sources and fill the warehouses, although the actual demands
are not known yet.

Nevertheless, when the demands are revealed, the decision maker must satisfy them, even if they are larger than those
expected. Thus, we assume the total recourse hypothesis: given a solution yi and ri, a solution for the transportation problem
exists whatever the demands are. This problemmay concern, for example, the installation of power plants, where the worst
demands must be handled.

Under all the assumptions above, the robust location transportation problem, denoted by Trob(Γ ), is to choose the sources
to open (with the ri variables) and the amounts to store (with the yi variables) such that theworst demand in the uncertainty
set is satisfied with minimum cost. The robust problem is the following:

Trob(Γ )



min
m
i=1

diyi +
m
i=1

firi + opt(R(y, Γ ))

s.t. yi ≤ Ciri i = 1, . . . ,m
m
i=1

yi ≥ B

yi ≥ 0, ri ∈ {0, 1} i = 1, . . . ,m

where

B =
n

j=1

(β j + β̂j) (1)

and opt(R(y, Γ )) represents the optimum value of the recourse problem:

R(y, Γ )


max

β∈U(Γ )
min

n
j=1

tij≤yi, i=1,...,m

m
i=1

tij≥βj, j=1,...,n

tij≥0, i=1,...,m, j=1,...,n

m
i=1

n
j=1

µijtij

where the uncertainty set U(Γ ) is defined by:

U(Γ ) =

β ∈ Rn

: βj = β j + zjβ̂j, j = 1, . . . , n, z ∈ Z(Γ )


(2)

and

Z(Γ ) =


z ∈ Rn

:

n
j=1

zj ≤ Γ , 0 ≤ zj ≤ 1, j = 1, . . . , n


. (3)

The constraint
m

i=1 yi ≥ B, where B is given by (1), is due to the total recourse considered in our formulation, and the
assumption of satisfaction of the greatest demands.

At optimality opt(R(y, Γ )) represents the transportation cost for a fixed capacity level y, and Γ worst deviations.
Considering (2) and (3) we rewrite the recourse problem R(y, Γ ) as:

R(y, Γ )


max
n

j=1
zj≤Γ

0≤zj≤1, j=1,...,n

min
n

j=1
tij≤yi, i=1,...,m

m
i=1

tij≥βj+β̂jzj, j=1,...,n

tij≥0, i=1,...,m, j=1,...,n

m
i=1

n
j=1

µijtij
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and then, by the strong duality theorem, one can replace the innerminimization problem by its dual in the recourse problem
(since the problem is feasible for all the demands):

Q (y, Γ )



max −

m
i=1

yiui +

n
j=1

β jvj +

n
j=1

β̂jvjzj

s.t. vj − ui ≤ µij i = 1, . . . ,m, j = 1, . . . , n
n

j=1

zj ≤ Γ

0 ≤ zj ≤ 1 j = 1, . . . , n
ui, vj ≥ 0 i = 1, . . . ,m, j = 1, . . . , n

where ui, vj are the dual variables. The recourse problem Q (y, Γ ) is now a maximization problem with quadratic objective
function. We describe a way to handle it in Section 3.

Now, the robust location transportation problem can be written as the following problem:

T ′rob(Γ )



min
m
i=1

diyi +
m
i=1

firi + opt(Q (y, Γ ))

s.t. yi ≤ Ciri i = 1, . . . ,m
m
i=1

yi ≥ B

yi ≥ 0, ri ∈ {0, 1} i = 1, . . . ,m

which is a minimization of a convex function under linear constraints (the convexity can easily be proved, see [16]). Using
Kelley’s algorithm [12] as in [16], we solve in Section 2.1 the problem T ′rob(Γ ).

2.1. Kelley’s algorithm for the location transportation problem

We first remark that the optimum solution of the recourse problem Q (y, Γ ) is given by an extreme point of its feasible
set. This allow us to rewrite the robust problem T ′rob(Γ ) as follows:

T ′′rob(Γ )



min
m
i=1

diyi +
m
i=1

firi + α

s.t. α ≥ −

m
i=1

yius
i +

n
j=1

β jv
s
j +

n
j=1

β̂jv
s
j z

s
j s = 1, . . . , S

m
i=1

yi ≥ B

yi ≤ Ciri i = 1, . . . ,m
α, yi ≥ 0, ri ∈ {0, 1} i = 1, . . . ,m

where (us
j , v

s
j , z

s
j ) with s ∈ S are the extreme points of the recourse problem Q (y, Γ ), for fixed y and Γ . In this formulation,

we observe that the objective function of T ′′rob(Γ ) is linear but the number of constraints is exponential.
The general idea of Kelley’s algorithm is to iteratively generate a new extreme point of S (or possibly many points) by

solving the recourse problem, and to add it (them) to the master problem until the optimal solution is found. Indeed, the
algorithm stops when a lower bound L, defined by a relaxation of the problem T ′′rob(Γ ), is equal to an upper bound U defined
by the value of a feasible solution. Formally, the algorithm is presented in Algorithm 1.

Clearly, opt(T ′′rob(Γ )k) is a lower bound for the optimum of the robust problem, since it contains a subset of constraints
of T ′′rob(Γ ). Thus, as constraints are added to the master problem, the value of L will be non decreasing. On the other side,
since the solution (yk, rk, uk, vk, zk) is feasible for T ′′rob(Γ ), at each iteration k, we assign to U the minimum solution value
over all generated solutions. Moreover, as the number of extreme points in S is bounded, the algorithm stops within a finite
number of iterations. For completeness, a proof of convergence can be found in [12].

The most computationally difficult part of the algorithm is to solve the recourse problem in step 2. Indeed, it is a bilinear
program subject to linear constraints, which is a class of convexmaximization problems provenNP-hard (see [8,17]). Several
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authors have been interested in solving bilinear problems. Early works are those of Falk [7] and Konno [13], who proposed
a cutting plane algorithm, improved by Sherali and Shetty in [14]. Instead of solving it in a direct way, we will reformulate
Q (y, Γ ) as a mixed integer program. We present this formulation in the next section.

Algorithm 1 Kelley’s algorithm for solving T ′′rob(Γ )

Step 0: Initialization
Define T ′′rob(Γ )1 containing one extreme point (u0, v0, z0) with u0

= v0
= z0 = 0.

Set L←−∞,U ←+∞ and k← 1. Go to Step 1.
Step 1
Solve the master problem

T ′′rob(Γ )k


min

m
i=1 diyi +

m
i=1 firi + α

s.t. α ≥ −
m

i=1 yiu
l
i +

n
j=1 β jv

l
j +

n
j=1 β̂jv

l
jz

l
j l = 0 . . . , k− 1m

i=1 yi ≥ B
yi ≤ Ciri i = 1, . . . ,m
yi ≥ 0, ri ∈ {0, 1} i = 1, . . . ,m

and denote (yk, rk, αk) its optimal solution.
Update L←

m
i=1 diy

k
i +

m
i=1 fkr

k
i + αk, and go to Step 2.

Step 2
For the fixed capacities yk, solve the recourse problem Q (yk, Γ ) and denote (uk, vk, zk) its optimal solution.
Set U ← min


U,

m
i=1 diy

k
i +

m
i=1 fir

k
i −

m
i=1 y

k
i u

k
i +

n
j=1 β jv

k
j +

n
j=1 β̂jv

k
j z

k
j


.

if U = L then
return (yk, rk, αk) as an optimal solution to the problem T ′′rob(Γ );

else
go to Step 3

end if
Step 3
Add the constraint

α ≥ −

m
i=1

yiuk
i +

n
j=1

β jv
k
j +

n
j=1

β̂jv
k
j z

k
j

to the master problem T ′′rob(Γ )k, k← k+ 1 and go to Step 1.

3. Mixed-integer program reformulation of the recourse problem

In the formulation of Trob(Γ ), the budget of uncertainty Γ can be naturally interpreted as the number of constraints
for which βj ≠ β j. Consequently, one can assume Γ to be integer. Moreover, with this assumption we can propose a MIP
formulation of the problem Q (y, Γ ). This MIP formulation is based on the following proposition.

Proposition 1. If Γ is an integer number then there exists an optimal solution (u∗, v∗, z∗) of Q (y, Γ ) such that z∗j ∈ {0, 1}, j =
1, . . . , n.

Proof. Let us define the following polyhedra Y =

(u, v) ∈ Rm

× Rn
: −ui + vj ≤ µij, u, v ≥ 0


and Z(Γ ) =

z ∈ Rn
:
n

j=1 zj ≤ Γ , 0 ≤ zj ≤ 1, j = 1, . . . , n

. AsQ (y, Γ ) is a bilinear problem,we know that if the problemhas a finite

optimal value (which is guaranteed here because both polyhedra are bounded, by assumption) then an optimal solution
(u∗, v∗, z∗) exists such that (u∗, v∗) is an extreme point of Y and z∗ is an extreme point of Z(Γ ) (see [11]). This implies that
when Γ is an integer number, z∗ are 0–1. �

From Proposition 1, and assuming that Γ ∈ N(Γ ≤ n), we deduce that, at optimality either βj is equal to its nominal
value, β j, or its worst value, β j + β̂j. This consideration is not too restrictive for the decision maker, since Γ represents the
number of worst demands among n.

Now, because of binary variables zj we are able to linearize the problem Q (y, Γ ) by replacing each product vjzj in the
objective functionwith a new variableωj and adding constraints that enforceωj to be equal to vj if zj = 1, and zero otherwise
(see [10]). The recourse problem becomes a mixed integer program:
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Q ′(y, Γ )



max −

m
i=1

yiui +

n
j=1

β jvj +

n
j=1

β̂jωj

s.t. vj − ui ≤ µij i = 1, . . . ,m, j = 1, . . . , n
n

j=1

zj ≤ Γ

ωj ≤ vj j = 1, . . . , n
ωj ≤ Mzj j = 1, . . . , n
zj ∈ {0, 1} j = 1, . . . , n
ui, vj, ωj ≥ 0 j = 1, . . . , n, i = 1, . . . ,m

whereM is a sufficiently large constant, representing the bounds on the vj variables.
For reducing the integrality gap,M needs to be as small as possible. The Corollary 1 sets a tight bound forM . First we prove
Proposition 2.

Proposition 2. The dual of the classical transportation problem can be written as follows:

(D∗)


max −

m
i=1

yiui +

n
j=1

βjvj

s.t. −ui + vj ≤ µij i = 1, . . . ,m, j = 1, . . . , n
ui, vj ≥ 0 i = 1, . . . ,m, j = 1, . . . , n.

We set (u∗, v∗) as the optimal solution of the problem (D∗).
Let us consider an instance of the transportation problem, such that the demand of the first customer is equal to β1 − β̂1 with

β̂1 > 0. The dual (D′) of such a problem is the following linear program:

(D′)


max −

m
i=1

yiui + (β1 − β̂1)v1 +

n
j=2

βjvj

s.t. −ui + vj ≤ µij i = 1, . . . ,m, j = 1, . . . , n
ui, vj ≥ 0 i = 1, . . . ,m, j = 1, . . . , n.

There exists an optimal solution (u′, v′) of (D′) such that u′ ≤ u∗ and v′ ≤ v∗.

Proof. In the simple casewhere (u∗, v∗) is also optimal for the problem (D′), then Proposition 2 is verified.We are interested
in the opposite case.We set (u′, v′) as the optimal solution of (D′)whichdoes not satisfy Proposition 2.Wedefine the solution
(u′′, v′′) as follows:

u′′i = min{u∗i , u
′

i} for all i = 1, . . . ,m
v′′j = min{v∗j , v

′

j} for all j = 1, . . . , n.

Let us prove that (u′′, v′′) is an optimal solution for the problem (D′).
First, we prove that (u′′, v′′) is feasible. By contradiction, suppose that there exists i1 and j1 such that−u′′i1 + v′′j1 > µi1j1 .

• If u′′i1 = u∗i1 then

u∗i1 < −µi1j1 + v′′j1 . (4)

Moreover, by definition v′′j1 ≤ v∗j1 , which implies that

− µi1j1 + v′′j1 < −µi1j1 + v∗j1 (5)

and from (4) and (5) we deduce that u∗i1 < −µi1j1 + v∗j1 , which contradicts the feasibility of the solution (u∗, v∗).
• If u′′i1 = u′i1 then

u′i1 < −µi1j1 + v′′j1 . (6)

By definition v′′j1 ≤ v′j1 and thus

− µi1j1 + v′′j1 < −µi1j1 + v′j1 (7)

and from (6) and (7) we deduce that u′i1 < −µi1j1 + v′j1 , which contradicts the feasibility of the solution (u′, v′).

Thus, the solution (u′′, v′′) is feasible.
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Let us denote now f ′(u, v) (respectively f ∗(u, v)) as the value of a feasible solution (u, v) for the problem (D′)
(respectively (D∗)).

Before proving that (u′′, v′′) is optimal for (D′), let us prove that v′′1 = v′1. By contradiction, suppose that v′′1 ≠ v′1 and
thus v′′1 = v∗1 and v∗1 < v′1. We have already supposed that (u∗, v∗) is not optimal for the problem (D′), then

f ′(u∗, v∗) < f ′(u′, v′). (8)

Furthermore, for each feasible solution (u, v) we have

f ′(u, v) = −

m
i=1

yiui +

n
j=1

βjvj − β̂1v1

f ∗(u, v) = −

m
i=1

yiui +

n
j=1

βjvj

which implies that

f ′(u, v) = f ∗(u, v)− β̂1v1 (9)

and from (8) and (9) we obtain

f ∗(u∗, v∗)− β̂1v
∗

1 < f ∗(u′, v′)− β̂1v
′

1 (10)

f ∗(u∗, v∗)− f ∗(u′, v′) < β̂1v
∗

1 − β̂1v
′

1. (11)

If we suppose that v∗1 < v′1, then β̂1v
∗

1 − β̂1v
′

1 < 0. Thus, from (11)

f ∗(u∗, v∗)− f ∗(u′, v′) < 0 (12)

which provides a contradiction to the fact that (u∗, v∗) is an optimal solution for (D∗). Thus, necessarily v∗1 ≥ v′1 and

v′′1 = v′1. (13)

Let us prove now that (u′′, v′′) is an optimal solution for (D′). The cost of such a solution is equal to

f ′(u′′, v′′) = −
m
i=1

yiu′′i + (β1 − β̂1)v
′′

1 +

n
j=2

βjv
′′

j . (14)

Let I ⊆ I be the subset of indices of I = 1 . . .m such that i ∈ I if u′′i = u′i , and thus u′i ≤ u∗i . And define J ⊆ J as being the
subset of indices of J = 1, . . . , n such that j ∈ J if v′′j = v′j , and thus v′j ≤ v∗j . The cost of the solution (u′′, v′′) is

f ′(u′′, v′′) = −

i∈I

yiu′i +


j∈J\{1}

βjv
′

j + (β1 − β̂1)v
′′

1 −

i∈I\I

yiu∗i +

j∈J\J

βjv
∗

j .

From (13) one can replace v′′1 by v′1 and thus

f ′(u′′, v′′) = −

i∈I

yiu′i + (β1 − β̂1)v
′

1 +


j∈J\{1}

βjv
′

j +

i∈I\I

yi(u′i − u∗i )−

j∈J\J

βj(v
′

j − v∗j )

= f ′(u′, v′)+

i∈I\I

yi(u′i − u∗)−

j∈J\J

βj(v
′

j − v∗j ).

Suppose now that (u′′, v′′) is not an optimal solution of (D′), then the amount

A =

i∈I\I

yi(u′i − u∗i )−

j∈J\J

βj(v
′

j − v∗j ) (15)

should be strictly negative. We define the solution (ũ, ṽ) as :

ũi = max{u∗i , u
′

i} for all i = 1, . . . ,m
ṽj = max{v∗j , v

′

j} for all j = 1, . . . , n.

One can easily prove that the solution (ũ, ṽ) is feasible (following the same reasoning as for (u′′, v′′)). The optimal value of
(ũ, ṽ) for the problem (D∗) is equal to

f ∗(ũ, ṽ) = −

m
i=1

yiũi +

n
j=1

βjṽj
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= −


i∈I

yiu∗i −

i∈I\I

yiu′i +

j∈J

βjv
∗

j +

j∈J\J

βjv
′

j

= −


i∈I

yiu∗i +

j∈J

βjv
∗

j −

i∈I\I

yi(u′i − u∗i )+

j∈J\J

βj(v
′

j − v∗j )

= f ∗(u∗, v∗)−

i∈I\I

yi(u′i − u∗i )+

j∈J\J

βj(v
′

j − v∗j )

= f ∗(u∗, v∗)− A.

Assuming A < 0 contradicts the optimality of the solution (u∗, v∗) for (D∗). Thus, A ≥ 0 and f ′(u′′, v′′) ≥ f ′(u′, v′). In fact,
A = 0 and the solution (ũ, ṽ) is optimal for (D∗). We conclude that the solution (u′′, v′′) is feasible and optimal for (D′) and
verifies Proposition 2. �

Now, we can state the following corollary to set the values ofM in the problem Q ′(y, Γ ).

Corollary 1. In the problem Q ′(y, Γ ), we can replace each constraint

wj ≤ Mzj

by the valid constraint

wj ≤ v∗j (n)zj

where v∗j (n), j = 1, . . . , n, is the optimal solution value of v variables in Q ′(y, n).

Proof. From Proposition 2, we deduce that the values of u∗i and v∗j for i = 1, . . . ,m, j = 1, . . . , n are upper bounds for
respectively ui and vj variables in all instances of the transportation problemwhere one ormany demands decrease. Indeed,
one can build a sequence of one by one decreasing demands and apply successively Proposition 2. In the problem Q ′(y, Γ ),
we recall thatwhenΓ = n then all demands j = 1, . . . , n are equal to their highest valuesβ j+β̂j. In this case, the problem is
equivalent to the dual of a classical transportation problem.WhenΓ decreases, some of the demandswill also be decreasing.
Thus, we deduce the bound v∗j (n) for the problem Q ′(y, Γ ). �

Remark 1. In Algorithm 2.1, the bounds values v∗(n) are computed at each iteration. Indeed, a new vector yk is generated
at each iteration k. Thus, the recourse problem is solved twice at Step 2:
• the first timewe solve the problemwithΓ = n, in order to compute v∗(n) values. This is done quickly, since the problem

Q ′(yk, n) is a linear program.
• the second time we solve Q ′(yk, Γ ) using the v∗(n) bounds.

In the next section, we are interested in numerical experiments, performed on the robust location transportation
problem.

4. Numerical experiments

Several series of tests were performed on the robust location transportation problem. The experimental results are
divided into two groups: first, we focus on the recourse problem and we explore the time limits of the tight bound defined
in Section 3. The second group of tests concerns the overall problem solution.

4.1. The recourse problem

The first series of tests were realized for various values of the parameters of the recourse problem Q ′(y, Γ ), namely the
number of sources, the number of demands, the amounts available at each source, the nominal and the greatest demands
at each destination and the transportation costs. To be closer to reality, we choose to set the number of demands greater
than the number of sources. All other numbers are randomly generated as follows: for all j = 1, . . . , n, the nominal demand
β j belongs to [10, 500], and the deviation β̂j = pjβ j, such that pj represents the percentage of maximum increase of each
demand j. We take pj in [0.1, 0.5], which ensures β̂j to be strictly positive. For these series of tests we assume that the
amounts yi at each source i = 1, . . . ,m are obtained by an equal distribution of the sum of the maximum demands. Finally,
the transportation costs are in the interval [1, 1000].

The problem Q ′(y, Γ ) was solved with CPLEX 11.2. For each (n,m), ten instances have been generated. Table 1 shows
the results: the average of the running time and the percentage of solved instances. The running time results of the bound
previously mentioned (see Section 3) and a large arbitrary constantM (we setM equal to opt(Q ′(y, n))) are compared such
that the computation was stopped after 35 min.

The results described in Table 1 show that the computing time obtained by settingM to the bound v∗(n) is significantly
lower than the arbitrary bound. Moreover, we remark that the running time increases for the value of Γ around n/2 (see
Fig. 1(a)). Fig. 1(b) illustrates the evolution of the objective value versus Γ for a sample m = 100 and n = 250. The curve
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Table 1
Running time results of the recourse problem.

n×m Γ (%) Running time (s) Solved instances
M v∗(n) M v∗(n)

250× 10
25 2.63 0.76 10/10 10/10
50 1178.14 14.05 5/10 10/10
75 215.24 0.97 9/10 10/10

250× 50
25 14.86 2.09 10/10 10/10
50 434.85 4.94 9/10 10/10
75 645.52 6.80 7/10 10/10

250× 100
25 8.57 1.82 10/10 10/10
50 18.93 2.69 10/10 10/10
75 46.05 12.66 10/10 10/10

500× 10
25 4.99 1.00 10/10 10/10
50 1051.82 1050.25 5/10 5/10
75 843.92 2.29 6/10 10/10

500× 50
25 10.49 1.60 10/10 10/10
50 223.63 5.52 9/10 10/10
75 612.10 11.94 8/10 10/10

500× 100
25 12.03 1.90 10/10 10/10
50 10.98 2.26 10/10 10/10
75 170.57 21.34 10/10 10/10

1000× 10
25 35.59 3.26 10/10 10/10
50 1472.13 1260.21 3/10 4/10
75 1530.47 10.42 3/10 10/10

a b

Fig. 1. A samplem = 100 and n = 250: (a) Running time vs. Γ . (b) Optimal value vs. Γ .

obtained is an increasing concave function, where opt(Q ′(y, Γ )) increases quickly with small values of Γ and slowly with
high values. This is due to the model itself, since whenever Γ increases, the most influential uncertain parameters will be
chosen.

Additional experiments have been performed on the uncertain transportation problem using the bound v∗(n), in order
to determine the limit size of the problem that can be solved within one hour of CPU time. Fig. 2(a) shows the numerical
results for the number of the demands set to n = 500. We observe that the running time increases with the number of
sources m. Indeed, for m = 10 the problem takes a few seconds to be solved. An average of 20 min is needed for instances
with m = 80 and Γ = 60% of total deviation, and one hour for those withm ∈ [300, 500] and Γ = 50%.

Fig. 3(a) shows the limit running time, such that for n = 1000 uncertain demands, all instances containing m = 10
sources are solved within one hour, whatever the value of Γ between 10% and 100%. For 100 ≤ m ≤ 500 the CPLEX solver
is not able to reach the optimum within this time for Γ = 50%, and for m ≥ 600 there are memory limits with the solver.

Finally, as v∗(n) is a very tight bound, one wants to know the behavior of the relaxation of the mixed-integer program.
Figs. 2(b) and 3(b) show the integrality gap for the instances corresponding to n = 500 and n = 1000 demands respectively.
We remark that this ratio is increasing with the number of sourcesm, reaching its maximumwhen Γ is around 20% of total
deviation. Furthermore, the extra cost generated by the linear relaxation varies between 0% and 13% (compared with the
exact solution). For instance, if the decision maker is interested in knowing the worst optimal value for 70% of the total
deviation from the nominal problem (which represents the most difficult instances), one can solve the linear relaxation in
a few seconds and have only 3% of extra cost at most. This represents a considerable saving of time.
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Table 2
Running time results of the robust location transportation problem.

n×m Γ (%) # iter. Time (s) Master(%) Recourse(%) Solved inst.

10× 10 10 8.6 0.05 10 90 10/10
20 9.2 0.06 8.8 91.2 10/10
30 10 0.06 8.8 91.2 10/10
40 10.1 0.06 7.0 93.0 10/10
50 10 0.05 5.0 95.0 10/10
60 10 0.06 4.2 95.8 10/10
70 10.3 0.04 6.0 94.0 10/10
80 9.4 0.04 7.1 92.9 10/10
90 9.9 0.03 10.1 89.9 10/10

100 8.8 0.02 50.0 50.0 10/10

70× 70 10 117.9 124.14 28.9 71.1 10/10
20 130.3 263.14 19.6 80.4 10/10
30 124.4 570.62 6.3 93.7 10/10
40 141.7 804.67 7.1 92.9 10/10
50 153.9 964.01 6.0 94.0 10/10
60 159.3 1085.50 7.1 92.9 10/10
70 170.4 702.98 10.3 89.7 10/10
80 184 351.58 26.3 73.7 10/10
90 163.5 141.07 49.6 50.4 10/10

100 146.4 57.67 84.1 15.9 10/10

100× 100 10 194.4 760.07 40.7 59.3 10/10
20 180.2 1359.50 37.1 62.9 10/10
30 208.1 1842.72 30.3 69.7 9/10
40 231.1 2837.36 23.0 77.0 9/10
50 235.9 4087.44 13.1 86.9 8/10
60 237.7 4285.29 6.6 93.4 7/10
70 228.1 3261.86 13.5 86.5 8/10
80 245.2 2890.07 27.0 73.0 7/10
90 265.6 1292.35 70.8 29.2 10/10

100 242.2 633.17 93.6 6.4 10/10

150× 150 10 261.7 2647 19.4 80.6 10/10
20 302.4 5499.08 12.8 87.2 8/10
30 298.4 6316.47 6.4 93.6 6/10
40 231 6375.56 3.6 96.4 6/10
50 181 6677.38 1.5 98.5 4/10
60 242 7042.79 2.5 97.5 3/10
70 – 7200 10.1 89.9 0/10
80 222.6 6216.67 22.6 77.4 5/10
90 286.1 3723.10 56.9 43.1 7/10

100 306.5 2374.98 93.4 6.6 7/10

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

a b

Fig. 2. Tests n = 500: (a) Running time vs. Γ . (b) Integrality gap vs. Γ .

4.2. The location transportation tests results

We now present the final tests performed on the 2-stage robust location transportation problem T ′′rob(Γ ). In addition
to the previous data interval generation (the nominal and greatest demands and the transportation costs), we include the
location part of the problem. Indeed, for each source i, i = 1, . . . ,m, the capacities Ci are generated in [200, 700]. The fixed
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.

.

.

.

.

.

.

.

.

.

.

.

a b

Fig. 3. Tests n = 1000: (a) Running time vs. Γ . (b) Integrality gap vs. Γ .

a b

Fig. 4. A sample n = m = 50: (a) Optimum value vs. Γ . (b) 1Opt
MaxOpt vs. Γ .

and variable costs are respectively in the intervals [100, 1000], [10, 100]. Kelley’s algorithm (Section 2.1) is applied to solve
the problem, and the computation is stopped after 2 h.

Fig. 4(a) shows the total costs versusΓ for one samplem = 50 and n = 50. The curve has the same shape as the total cost
of the recourse problem (see Fig. 1(b)). Indeed, as the value of Γ increases the total costs also increase. Fig. 4(b) illustrates,
for the same sample, the relative gap, in percentage, between the costs of the optimal solution of T ′′rob(Γ ) and the worst case
value (single stage problem with Γ = n) versus Γ . We remark that the decision maker can realize a significant profit up
to 18% on the transportation costs, while ensuring the feasibility of the problem for any demand, including the largest one.
This benefit is larger as Γ is smaller.

Running time results are summarized in Table 2 for different sizes of the problem. We set the number of sources equal
to the number of demands, fixed to n = m = 10, 70, 100 and 150. As expected, the running time, as well as the number
of iterations, increases when the problem becomes larger. For n = m = 10, 50 and 70 the problem requires less than
20 min to be solved. From n = m = 100 the running time is much greater. It is over two hours for a few values of Γ . When
n = m = 150, this time limit is reached for almost all samples for Γ ∈ [30%, 80%].

Moreover, we observe in column 5 and 6 the percentage of time shared by the master problem and by the recourse
problem respectively. Such results confirm that the most difficult part in Kelley’s algorithm concerns the recourse problem,
especially whenΓ is around n/2. Finally, whenΓ = 100% the recourse problem becomes easy (in fact, equivalent to a linear
program), which explains the result on these rows.

5. Conclusion

The aim of this paper is to solve a robust version of the location transportation problem. The 2-stage robust approach,
presented here, offersmore flexibility to the decisionmaker than the single-stage approach. Indeed, there are some recourse
variables to be decided once the uncertainty has been revealed. Furthermore, the uncertain set is less conservative than
the classical worst case approach since it considers a limited number of demands deviating from their nominal values.
Previously, the 2-stage formulation has been considered by [1,16]. Nevertheless, the limit size of solved instances was
performed for at most 50 uncertain parameters. Here, we present the first (to our knowledge) extensive computation
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analysis on a particular recourse problem of the location transportation problem. As shown, the recourse problem is the
most difficult part of the 2-stage robust optimization, and the tight boundwe propose allows us to solve large size instances.
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