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Abstract. In the uncapacitated asymmetric traveling salesman with
multiple stacks, we perform a hamiltonian circuit to pick up n items,
storing them in a vehicle with k stacks satisfying last-in-first-out con-
straints, and then we deliver every item by performing a hamiltonian
circuit. We are interested in the convex hull of the (arc-)incidence vec-
tors of such couples of hamiltonian circuits.
For the general case, we determine the dimension of this polytope, and
show that every facet of the asymmetric traveling salesman polytope de-
fines one of its facets. For the special case with two stacks, we provide
an integer linear programming formulation whose linear relaxation is
polynomial-time solvable, and we propose new families of valid inequal-
ities to reinforce this linear relaxation.

Keywords: uncapacitated asymmetric traveling salesman problem with
multiple stacks, polytope, facets, formulation, valid inequalities

Introduction

The Asymmetric Traveling Salesman Problem (ATSP) consists of finding a hamil-
tonian circuit of minimum cost in a digraph. This problem is emblematic of the
success of polyhedral approaches which consist in studying the convex hull of
the (arc-)incidence vectors of the solutions. Although ATSP is NP-complete, it
is possible to solve instances of quite large size [7] combining linear programming
based methods and structural results about the polytope.

Many variants and extensions of ATSP have been considered [7]. Here, we
are interested in the uncapacitated asymmetric traveling salesman with multiple
stacks. We are given a vehicle with k stacks of infinite capacity. Starting from its
depot, the vehicle has to pickup n items in a city, each one in a specific location,
and then to deliver them to specific locations in another city. We consider that
the two cities are far away from each other, hence the vehicle must do all the
pick ups before performing all the deliveries. Moreover, no rearrangement of the
content of the vehicle is allowed and the stacks satisfy a last-in-first-out policy.

More formally, the two cities are modeled by two cost vectors c1 and c2 on
the arcs of a complete digraph D = (V,A), where V = {0, . . . , n− 1}. The first
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one, c1, represents the travel costs within the town where all the pickups are
performed, and the latter one corresponds to the delivery town. The vertex 0
is the depot and the other vertices correspond to the locations of the items.
Without loss of generality, we suppose that the ith item is picked up at vertex i
and must be delivered to vertex i.

A solution of our problem is a couple of two hamiltonian circuits, say (C1, C2),
where C1 is a pickup hamiltonian circuit, that is a trip of the vehicle in order
to perform all the pickups, and C2 is a delivery hamiltonian circuit. Moreover,
there must exist a decomposition of the n items into k stacks in such a way that
C1 (C2, respectively) iteratively stores (picks, respectively) each item at the top
of a stack. Such a decomposition is called a loading plan, and two hamiltonian
circuits for which a loading plan exists are called k-consistent. The cost of a
solution is the sum of the travel costs associated with the arcs of both circuits,
and the goal is to find two k-consistent hamiltonian circuits such that the cost
is minimum.

Our problem is a relaxation of the capacitated traveling salesman with multi-
ple stacks recently introduced by Petersen et al. in [9], where, in addition, stacks
may not contain more than p items. They provided a mathematical formulation
and then developped a local search algorithm to heuristically solve the problem
on their set of instances. Since then, most published algorithms were tested on
these instances. Later on, Petersen et al. proposed and compared different ap-
proaches to solve the problem in [10]. One of their ideas especially gives good
results, and a similar approach if used by Alba et al. in [1] to derive a Branch-
and-Cut algorithm, which is currently the best available for the general case.
For the special case with two stacks, Carrabs et al. [5] designed an additive
Branch-and-Bound algorithm. It strongly relies on the specific structure with
two stacks and does not extend straightforwardly to the general case. A differ-
ent approach was adopted by Lusby et al. in [8], where they check whether there
are k-consistent hamiltonian circuits within the t best ones, for some t. Despite
the variety of available approaches, the largest instances solved to optimality
roughly have 25 items.

Incidentally, the work of Felipe et al. [6] is based on heuristic procedures
using neighborhood searches, whereas Toulouse [12] derived an approximation
scheme.

Furthermore, the problem yields a few captivating subproblems. For instance,
deciding whether two hamiltonian circuits are k-consistent is NP-complete even
if the capacity of each stack is a fixed number greater than 5, see [2]. It turns
out that it becomes tractable if the capacity condition is relaxed, see Calvo et
al. [3] and Casazza et al. [4]. In another direction, Bonomo et al. [2] proved that
it is also polynomial if the number of stacks is fixed.

As one could suspect for a problem combining routing and loading aspects,
the existing approaches tend to show that it is quite challenging to practically
solve instances of decent sizes. Yet, we are far from a good understanding of the
polyhedral structure of the problem, and it is reasonable to expect that results in
this direction would lead to better algorithms, especially for the branching ones.
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The main contribution of the present paper consists in a polyhedral study of the
uncapacitated asymmetric traveling salesman with multiple stacks. In particular,
we determine the dimension of the corresponding polytope and show that every
facet of the asymmetric traveling salesman polytope defines one of its facets.

The paper is organized as follows. In Section 1, we give the definitions used
throughout the paper. In Section 2, we reveal a close link between the asymmet-
ric traveling salesman polytope and the convex hull of couples of k-consistent
hamiltonian circuits. In Section 3, we focus on the special case with two stacks:
we provide an integer linear programming formulation whose linear relaxation
can be solved in polynomial time, as well as new families of valid inequalities.

1 Definitions

Throughout, D = (V,A) will denote a complete directed graph with vertex set
V = {0, . . . , n − 1}. Let a = (u, v) be an arc of A, u is the tail and v is the
head of a. We will also denote a by uv. Given X ⊆ V and Y ⊆ V , A[X,Y ] is
the set of arcs having their tail in X and their head in Y . Let A[X] = A[X,X],
δ+(X) = A[X,V \ X], δ−(X) = A[V \ X,X] and δ(X) = δ+(X) ∪ δ−(X). An
arc of δ+(X) (resp. δ−(X)) is leaving X (resp. entering X). A set B ⊆ A of
arcs is covering X if every vertex of X belongs to at least one arc of B. An
ij-path is a path whose first vertex is i and last vertex is j. For pairwise distinct
i, j, k ∈ V \{0}, P0

ij(D \{k}) denotes the set of ij-paths of D \{k} containing 0.

Given a hamiltonian circuit C and i 6= j ∈ V \ {0}, we will write i ≺C j if C
visits 0, i and j in this order. Given X,Y ⊂ V \{0}, X ≺C Y means that x ≺C y
for all x ∈ X and y ∈ Y . An increasing sequence of size k for C is a set of k
vertices v1, . . . , vk satisfying vj ≺C vj+1 for j = 1, 2, . . . , k − 1. Let Idn denote
the hamiltonian circuit 0, 1, . . . , n− 1 and Idn its reverse n− 1, n− 2, . . . , 0.

We now give another definition of consistency, equivalent to the one we saw
in the introduction. Given an integer k, two hamiltonian circuits C1 and C2 of
D are k-consistent if and only if there exists a partition {V1, . . . , Vk} of V \ {0}
and a linear order Sh on the vertices of Vh for h = 1, 2, . . . , k, such that for all
i 6= j in Vh, h = 1, 2, . . . , k, with i ≺Sh

j, we have i ≺C1 j and j ≺C2 i. We will
write consistent instead of 2-consistent.

Given a subset B ⊆ A of arcs, its incidence vector is a vector χB ∈ {0, 1}|A|
defined by χBa = 1 if a ∈ B, and χBa = 0 otherwise. Since there is a bijection
between subsets of arcs and subsets of {0, 1}|A|, we will often use the same
terminology for both. For instance, a hamiltonian circuit C might denote either
the subset of arcs or its incidence vector, depending on the context. Given B ⊆ A
and x ∈ R|A|, let x(B) =

∑
a∈B xa.

If C is a set of vectors, conv(C) denotes its convex hull. ATSPn will be
the convex hull of the hamiltonian circuits on n vertices, and, given an integer
k ≥ 2, let Pk,n be the convex hull of the vectors (χC

1

, χC
2

) where C1 and C2

are k-consistent hamiltonian circuits on n vertices. Note that if k ≥ n then
Pk,n = ATSPn ×ATSPn.
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2 General results

In this section, we first recall well-known results on the traveling salesman poly-
tope. Then, we characterize k-consistent hamiltonian circuits. To conclude, we
reveal a polyhedral connection between ATSPn and Pk,n, see Corollary 6 and
Theorem 7.

2.1 Asymmetric traveling salesman polytope

Here, we recall two well-known results on the asymmetric traveling salesman
polytope. We shall use them in the rest of the section.

Let x be a vector of R|A|. The inequalities (1)-(5) are clearly valid for ATSPn.

∑
j∈V \{i}

xij = 1 ∀ i ∈ V, (1)

∑
i∈V \{j}

xij = 1 ∀ j ∈ V, (2)

∑
a∈δ+(W )

xa ≥ 1 ∀ ∅ ⊂W ⊂ V, (3)

xa ≥ 0 ∀ a ∈ A, (4)

xa ≤ 1 ∀ a ∈ A, (5)

xa integer ∀ a ∈ A. (6)

Inequalities (1) and (2) are the outdegree constraints and indegree constraints,
they force an integral solution to enter and leave each vertex exactly once. The
subtour elimination constraints (3) ensure that an integral solution does not
contain any subtour. Inequalities (4) and (5) are the trivial constraints and in-
equalities (6) are the integrality constraints. These constraints are sufficient to
formulate the ATSP, as indicated in the following theorem.

Theorem 1 ([7]) A vector of R|A| satisfying (1)-(6) is the incidence vector of
a hamiltonian circuit.

Let dn denote the dimension of ATSPn.

Theorem 2 ([7]) dn = n(n− 3) + 1.

2.2 Consistency

The following result seems to be well-known, see [3] and [4]. Yet, our formulation
of the characterization seems simpler so we provide our own proof.

Lemma 3 Two hamiltonian circuits are k-consistent if and only if no k + 1
vertices form an increasing sequence for both circuits.
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Proof. The necessity comes from the pigeon hole principle. To see the sufficiency,
let C and C ′ be hamiltonian circuits and consider the permutation graph G
associated to C and C ′ defined by ij ∈ E if and only if i and j are visited in the
same order by C and C ′. Note that an increasing sequence of size k+ 1 for both
circuits is precisely a clique of size k + 1 in G. If no such sequence exists, then
the size of a clique in G is at most k. Since a permutation graph is a perfect
graph, we get χ(G) ≤ k, hence G is k-colorable. By definition of the permutation
graph, since a color class is a stable set, assigning a stack to each color shows
that C and C ′ are consistent. �

As observed in [3] and [4], since computing the chromatic number of a perfect
graph is polynomial [11], the above proof implies that deciding whether two
hamiltonian circuits are k-consistent is polynomial in the number of vertices.

2.3 Links with ATSPn

In this section, we determine the dimension of Pk,n and show that every facet
of ATSPn induces a facet of Pk,n. Recall that dn = dim(ATSPn).

Claim 4 Given k ≥ 2, let C be a hamiltonian circuit and C the set of hamilto-
nian circuits k-consistent with C. Then, dim(conv(C)) = dn.

Proof. Note that dim(conv(C)) ≤ dn. Hence, since P2,n ⊆ Pk,n for all k ≥ 2, it
is enough to find dn+1 affinely independent circuits consistent with C. Without
loss of generality, we may assume that C = Idn.

Clearly, if n ≤ 3, then two hamiltonian circuits are consistent. So the claim
holds for n = 3. Consider the case n = 4. The five hamiltonian circuits 0123,
0132, 0312, 0213 and 0231 are consistent with C = 0321 and are affinely inde-
pendant.

Suppose now that the claim holds for n ≥ 4 and let us show that it holds
for n + 1. By the induction hypothesis, there exist dn + 1 affinely independant
hamiltonian circuits consistent with Idn. Inserting the vertex n at the end of all
these circuits provides dn + 1 affinely independant hamiltonian circuits of n+ 1
vertices consistent with Idn+1, each of them containing the arc (n, 0). We now
complete the set C by inserting in sequence 2n−2 additional hamiltonian circuits
consistent with Idn+1. In order to ensure that C only contains independant
circuits, we add to C at each iteration a circuit Sij associated with an arc ij
which belong to Sij but not to any other circuit of C. The hamiltonian circuits
Sij are given below.

– S(n−1,0) = 0, 2, 3, . . . , n−2, n, 1, n−1. Since n ≥ 4, S(n−1,0) does not contain
the arc (0, n).

– S(i,0) = 0, i+ 1, i+ 2, . . . , n, 1, 2, . . . , i, for i = 1, 2, . . . , n− 2.
– S(0,n) = 0, n, 1, 2, . . . , n− 1.
– S(n,i) = 0, 1, . . . , i− 1, n, i+ 1, i+ 2, . . . , n− 1, for i = 2, 3, . . . , n− 1.

Since |C| = dn + 1 + 2n − 2 = n(n − 3) + 2 + 2(n − 1) = dn+1 + 1, the claim is
proved. �
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Lemma 5 Given k ≥ 2, if D = {D1, . . . , Dt} is a set of affinely independent
hamiltonian circuits, then there exists an affinely independent set {(Ci, C ′i) : i =
1, . . . , dn+ t} where Ci and C ′i are k-consistent hamiltonian circuits and Ci ∈ D
for i = 1, . . . , dn + t.

Proof. By Claim 4, there exist affinely independant hamiltonian circuits C ′1, . . . ,
C ′dn+1 that are k-consistent with Dt. Let C ′′i be a hamiltonian circuit that is
k-consistent with Di, for i = 1, . . . , t− 1. For j = 1, . . . , dn + 1, let Vj = (Dt, C

′
j)

and for j = 1, . . . , t− 1, let Vj+dn+1 = (Dj , C
′′
j ). By construction, V1, . . . , Vdn+t

are affinely independent. �

When k = 1, fixing the pickup hamiltonian circuit fixes the delivery one,
hence dim(P1,n) = dn. For k ≥ 2, the dimension of Pk,n immediately follows
from Lemma 5.

Corollary 6 Given k ≥ 2, dim(Pk,n) = 2dn.

In fact, Pk,n and ATSPn also share some polyhedral structure, as shown in
the following.

Theorem 7 Every facet of ATSPn defines a facet of Pk,n.

Proof. If k = 1, then the result is clear by the remark above Corollary 6. Suppose
that k ≥ 2. Let F = {x ∈ R|A| : cx = d} be a facet of ATSPn, there exists dn
affinely independent hamiltonian circuits that belong to F . Let C be a family of
2dn affinely independant vectors given by Lemma 5, and let F ′ = {(x1, x2) ∈
R|A| × R|A| : cx1 = d}. Note that every (C1, C2) ∈ C belongs to F ′, therefore,
by Corollary 6, F ′ defines a facet of Pk,n. �

3 Focus on two stacks

In this section, we focus on the special case of the uncapacitated asymmetric
traveling salesman problem with two stacks. First, we derive an integer linear
programming formulation for the problem. Then, we show that its linear re-
laxation is polynomial-time solvable. Finally, we propose three families of valid
inequalities for P2,n in order to reinforce the linear relaxation.

3.1 Formulation

Our formulation consists in gathering inequalities of two traveling salesman poly-
tope and the following consistency constraint, see Claim 9.

∑
h=1,2

∑
a∈Ph

xha ≤ |P 1|+ |P 2| − 1
∀ i 6= j 6= k 6= i ∈ V \ {0},
∀ P 1, P 2 ∈ P0

ij(D \ {k}).
(7)

Let P be the set of vectors (x1, x2) ∈ R|A|×R|A| such that xh satisfies (1)-(6)
for h = 1, 2 and (x1, x2) satisfies (7). Note that P is a set of integral vectors.
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Lemma 8 P2,n = conv(P).

Proof. Let us show that a vector (x1, x2) corresponds to the incidence vector of
a couple of consistent hamiltonian circuits if and only if (x1, x2) satisfies (7) and
xh satisfies (1)-(6) for h = 1, 2. The necessity follows from Theorem 1 and the
following claim.

Claim 9 Two hamiltonian circuits C1 and C2 are not consistent if and only if
there exist pairwise distinct vertices i, j, k ∈ V \ {0} such that the path Ph of Ch

from i to j contains 0 but not k, for h = 1, 2.

Proof. Note that Ph contains 0 if and only if j ≺Ch k ≺Ch i, hence the result
follows from Lemma 3. �

For the sufficiency, let (x1, x2) ∈ P. By Theorem 1, the arc set Ch = {a ∈
A : xha = 1} is a hamiltonian circuit for h = 1, 2. Note that (7) implies that C1

and C2 do not contain two ij-paths P 1 ⊂ C1 and P 2 ⊂ C2 covering 0 but not
k for all pairwise distinct vertices i, j, k ∈ V \ {0}. Claim 9 implies that C1 and
C2 are consistent, finishing the proof. �

By Lemma 8, the uncapacitated asymmetric traveling salesman problem with
two stacks can be formulated by:

F = min
(x1,x2)∈P

c1x1 + c2x2.

Lemma 10 The linear relaxation of F can be solved in polynomial time.

Proof. We just need to show that the separation problem associated with con-
straints (3) and (7) is polynomial for any vector (x̄1, x̄2) ∈ [0, 1]|A|× [0, 1]|A| such
that x̄h satisfies constraints (1) and (2) for h = 1, 2. The separation of the sub-
tour elimination constraints consists in the computation of a polynomial number
of minimum cuts. Therefore, it is polynomial-time solvable. Consider the sepa-
ration problem associated with the consistency constraints (7). Let x̃h = 1− x̄h
for h = 1, 2. Inequalities (7) can be rewritten as∑

h=1,2

∑
a∈Ph

x̃ha ≥ 1
∀ i 6= j 6= k 6= i ∈ V \ {0},
∀ P 1, P 2 ∈ P0

ij(D \ {k}).

Given three pairwise distinct vertices i, j, k of V \ {0}, the separation problem
associated with i, j and k then reduces to find P 1 and P 2 belonging to P0

ij(D \
{k}) such that the cost w = x̃1(P 1) + x̃2(P 2) is minimum. If w < 1, then
the inequality (7) associated with i, j, k, P 1 and P 2 is violated by (x̄1, x̄2).
Otherwise, this latter satisfies all the consistency inequalities associated with i,
j and k.

For h = 1, 2, let Phi0 and Ph0j be respectively an i0-path and a 0j-path of

D\{k} and set Ph = (Phi0, P
h
0j). If x̃h(Ph) < 1, then Ph belongs to P0

ij(D\{k}).
Indeed, otherwise, there would exist a vertex v ∈ V \ {i, j, 0} such that Ph
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contains two arcs a1 and a2 both leaving v or entering v. Since we have supposed
that x̃h(Ph) < 1, we have x̃ha1 + x̃ha2 < 1, which implies that x̄ha1 + x̄ha2 > 1.
Therefore, x̄h violates (1) or (2), a contradiction.

The separation problem of consistency inequalities (7) associated with i, j
and k then reduces to compute four minimum paths where the arc costs are given
by (x̄1, x̄2). As the costs are non-negative, the separation problem is polynomial-
time solvable. �

3.2 Valid inequalities

We propose three families of valid inequalities for P2,n. They are obtained by
deriving structures where, if one of the hamiltonian circuits is a path, then either
the other one cannot be a path, see Lemmas 11 and 14, or the other one cannot
be the disjoint union of two paths, see Lemma 13. For small instances, these
inequalities define facets of P2,n, we leave the question open whether it holds in
general.

In all the figures, a vertex set depicted in gray (white, respectively) represents
a complete subgraph (stable set, respectively).

P3-subgraph inequalities A subgraph H = (U,B) of D is a P3-subgraph
if U 6= V and there exists a partition U = {U1, U2, U3} of U such that B is
composed of A[Ui], i = 1, 2, 3 and every arc from U1 to U2 ∪ U3 and from U2 to
U3. The partition U is said associated with H. Figure 1 shows a P3-subgraph.

U1 U2 U3

Fig. 1. A P3-subgraph

Lemma 11 Given a P3-subgraph (U,B), the inequality

x1(B) + x2(B) ≤ 2(|U | − 1)− 1 (8)

is valid for P2,n.

Proof. Let U = {U1, U2, U3} be the partition associated with H and U4 = V \U .
Since U4 6= ∅, every hamiltonian circuit C satisfies χC(B) ≤ |U | − 1. If there is
equality, then C ∩B is a path covering U . Due to the structure of H, C contains
no arcs from U1 to U3. Since C is a hamiltonian circuit, it implies that C ∩A[Ui]
is a path covering Ui for i = 1, . . . 4, and C contains exactly one arc from Ui to
Ui+1 for i = 1, . . . , 4 (where U5 = U1). Let i ∈ {1, . . . , 4} be such that 0 ∈ Ui, and
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U ′ = {Uk, k 6= i}. Denote U ′ = {U ′1, U ′2, U ′3}. Let (U ′, B′) be the P3-subgraph
defined on U ′. Since C ∩B′ is a path covering U ′, we may suppose, without loss
of generality, that C contains no arc from U ′1 to U ′3. Now, since 0 /∈ U ′, we have
U ′1 ≺C U ′2 ≺C U ′3.

Now, if C1 and C2 were consistent hamiltonian circuits violating (8), we

would have χC
h

(B) = |U | − 1 for h = 1, 2. By the above observations, we would
have U ′1 ≺Ch U ′2 ≺Ch U ′3 for h = 1, 2, a contradiction to Lemma 3. �

P4-subgraph inequalities A subgraph H = (U,B) of D is a P4-subgraph
if there exists a partition U = {U0, U1, U2, U3} of U such that 0 ∈ U0, B is
composed of A[U0], A[U1 ∪ U2] and every arc from U0 to U1 and from U2 to U3,
and U satisfies |U1| = |U3| = 1 or |U2| = 1. We denote |U0|+ |U1|+ |U2| by `H .
The partition U is said associated with H. Figure 2 shows a P4-subgraph.

Claim 12 Let C be a hamiltonian circuit and H = (U,B) a P4-subgraph and
U = {U0, U1, U2, U3} its associated partition. If |C ∩ B| = `H − 1, then there
exists v1 ≺C v2 ≺C v3 with vi ∈ Ui for i = 1, 2, 3.

Proof. Note that, since |U2| = 1 or |U3| = 1, C contains at most one arc from
U2 to U3 because C is hamiltonian.

If C contains no such arc, then C ∩B is a path covering U0 ∪U1 ∪U2. Since
0 ∈ U0 and there are no arcs from U1 ∪ U2 to U0 in H, we have U1 ∪ U2 ≺C
V \(U0 ∪U1 ∪U2). Moreover, there are no arcs from U0 to U2, hence there exists
vi ∈ Ui, i = 1, 2, 3 such that v1 ≺C v2 ≺C v3.

If C contains an arc v2v3 for vi ∈ Ui, i = 2, 3, then C ∩ B = P ∪ P ′ where
P and P ′ are two disjoint paths satisfying P ∪ P ′ = U0 ∪ U1 ∪ U2 ∪ {v3}. We
may assume v2v3 ∈ P . Due to the structure of H, v2v3 is the last arc of P . If P
intersects U1, then there exists v1 ∈ U1 such that v1 ≺C v2 ≺C v3. Otherwise, we
have 0 ∈ P ′ and since there is no arc from U1 to U0 in H, there exists v1 ∈ U1∩P ′,
which implies that v1 ≺C P . In particular, we have v1 ≺C v2 ≺C v3. �

U0 U1 U2 U3

Fig. 2. A P4-subgraph

Lemma 13 Given a P4-subgraph H = (U,B), then the inequality

x1(B) + x2(B) ≤ 2(`H − 1) (9)

is valid for P2,n.
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Proof. Let U = {U0, U1, U2, U3} be the partition associated with H. Since in
H there are no arcs in U3 or leaving U3, if C is a hamiltonian circuit, then
χC(B) ≤ `H . Suppose that C1 and C2 are consistent hamiltonian circuits and

violate (9). We may assume that χC
1

(B) = `H , and there exists v3 ∈ U3 such
that C1 ∩B is a path covering U0 ∪U1 ∪U2 ∪ {v3}. Note that at least one of U1

and U2 is a singleton. Then, since 0 ∈ U0 and there are no arcs from U0 to U2,
we have U1 ≺C1 U2 ≺C1 U3.

If χC
2

(B) = `H , then every triplet vi ∈ Ui, i = 1, 2, 3 contradicts Lemma 3.

Therefore χC
2

(B) = `H−1 and Claim 12 applies to C2 and H. Then, there exist
vi ∈ Ui, i = 1, 3 such that v1 ≺C2 v2 ≺C2 v3, and Lemma 3 is contradicted. �

W5-subgraph inequalities A subgraph H = (U,B) of D is a W5-subgraph
if U 6= V and there exists a partition U = {0, i, j, U1, U2} of U such that B is
composed of A[U1 ∪ {0}], A[U2], ij, j0, every arc from U1 ∪ {j} to U2 ∪ {i} and
from U2 to {0, i}. The partition U is said associated with H. Figure 3 shows a
W5-subgraph.

0

ji

U2

U1

Fig. 3. A W5-subgraph

Lemma 14 Given a W5-subgraph (U,B), the inequality

x1(B) + x2(B) ≤ 2(|U | − 1)− 1 (10)

is valid for P2,n.

Proof. Let U = {0, i, j, U1, U2} be the partition associated with H.

Claim 15 Let C be a hamiltonian circuit. If |C ∩ B| = |U | − 1, then at least
one of the following holds.

(i) U1 ≺C i ≺C j,

(ii) there exist v1 ∈ U1 such that v1 ≺C i ≺C j ≺C V \ U .
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Proof. By contradiction, assume that C satisfies neither (i) nor (ii). Since |C ∩
B| = |U | − 1, C ∩ B is a path P1 covering U . Note that P2 = C \ P1 is a path
covering V \ U .

Suppose that (i, j) does not belong to C. Since no arc of B except (i, j) leaves
i and enters j, and there is no path from j to any vertex of U1 using only arcs of
B \ δ(0), P1 is a path starting from j, passing by 0 and then covering U1 before
reaching i. We then deduce that v ≺C i ≺C j for every vertex of U1, hence C
satisfies (i), a contradiction. Therefore, (i, j) belongs to C.

Suppose 0v1 ∈ C for some v1 ∈ U1. In this case, we have v1 ≺C i ≺C j.
Since C does not satisfy (i), there exists v2 ∈ U1 \ v1 such that j ≺C v2. Then,
C contains a jv2-path Q which does not cover 0. Thus Q contains P2 because in
B \ δ(0) there is no path from j to any vertex of U1. It implies that j ≺C V \U ,
hence C satisfies (ii), a contradiction. Therefore, C contains no arc from 0 to U1.

Therefore P1 is a path ending at 0. Moreover, since there is no arc of B \
A[0, U1] entering U1, we have v ≺C v′ for all v ∈ U1 and all v′ ∈ U2 ∪ {i, j}.
Since (i, j) ∈ C, C satisfies (i), a contradiction. �

Suppose that (C1, C2) are consistent hamiltonian circuits violating (10). Due

to the degree constraints, we have χC
h

(B) = |U | − 1 for h = 1, 2, and Claim 15
applies.

Since V \ U 6= ∅, if C1 and C2 both satisfy Claim 15 (ii), then i ≺C1 j ≺C1

V \ U contradicts Lemma 3. Hence we may assume that C1 satisfies Claim 15
(i). Since C2 satisfies either Claim 15 (i) or (ii), there exists v1 ∈ U1 such that
v1 ≺C2 i ≺C2 j. Moreover, we also have v1 ≺C1 i ≺C1 j and Lemma 3 contradicts
the compatibility of C1 and C2. �

4 Future work

In this paper, we gave preliminary results towards a better understanding of the
polyhedral structure of the uncapacitated asymmetric traveling salesman with
multiple stacks. One of our goals is to derive an efficient Branch and Bound
algorithm for the problem, and, at the moment, a key intermediary result would
be a polynomial separation algorithm for the inequalities we proposed.

Keeping in mind that our problem is a relaxation of the capacitated version,
we consider the above directions to be necessary steps before tackling the general
case.

References

1. Alba, M., Cordeau, J.-F., Dell’Amico, M., Iori, M.: A Branch-and-Cut Algorithm
for the Double Traveling Salesman Problem with Multiple Stacks, technical report,
CIRRELT-2011-13 (2011)

2. Bonomo, F., Mattia, S., Oriolo, G.: Bounded coloring of co-comparability graphs
and the pickup and delivery tour combination problem. Technical report n. 6 (2010)



12 Sylvie Borne, Roland Grappe and Mathieu Lacroix

3. Wolfler Calvo, R., Toulouse, S.: On the complexity of the Multiple Stack TSP,
kSTSP. In: Theory and Applications of Models of Computation 6th (TAMC), LNCS
5532, pp. 360–369 (2009)

4. Casazza, M., Ceselli, A., Nunkesser, M.: Efficient algorithms for the double traveling
salesman problem with multiple stacks. Computers & Operations Research 39, 1044–
1053 (2012)

5. Carrabs, F., Cerulli, R., Speranza, M.G.: A Branch-and-Bound Algorithm for the
Double TSP with Two Stacks. Technical report (2010)

6. Felipe, A., Ortuno, M.T., Tirado, G.: The Double Traveling Salesman Problem
with Multiple Stacks: A Variable Neighborhood Search Approach, Computers &
Operations Research 36, 2983–2993 (2009)

7. Gutan, G., Punnen, A.P.: The Traveling Salesman Problem and Its Variations.
Combinatorial Optimization 12, Kluwer Academic Publishers (2002)

8. Lusby, R.M., Larsen, J., Ehrgott, M., Ryan, D.: An exact method for the double
TSP with multiple stacks. International Transactions on Operations Research 17,
637–652 (2010)

9. Petersen, H.L., Madsen, O.B.G.: The double travelling salesman problem with mul-
tiple stacks - Formulation and heuristic solution approaches. European Journal of
Operation Research 198(1), 139–147 (2009)

10. Petersen, H.L., Archetti, C., Sperenza, M.G.: Exact Solutions to the Double Trav-
elling Salesman Problem with Multiple Stacks. Networks 56(4), 229–243 (2010)

11. Pnueli, A., Lempel, A., Even, S.: Transitive orientation of graphs and identification
of permutation graphs. Canadian Journal of Mathematics 23, 160–175 (1971)

12. Toulouse, S.: Approximability of the Multiple Stack TSP. In: International Sym-
posium on Combinatorial Optimization (ISCO), ENDM pp. 813-820 (2010)


