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Abstract

We present a survey about the maximum integral multiflow and minimum multicut problems and their subproblems,

such as the multiterminal cut and the unsplittable flow problems. We consider neither continuous multiflow nor

minimum cost multiflow. Most of the results are very recent and some are new. We recall the dual relationship between

both problems, give complexity results and algorithms, firstly in unrestricted graphs and secondly in several special

graphs: trees, bipartite or planar graphs. A table summarizes the most important results.
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1. Introduction

This paper deals, on the one hand, with the

minimization of multicuts and some special cases

as the well-known multiterminal (or multiway) cut,

and on the other hand, with the maximization of
integral multiflows and some special cases as un-

splittable flows. Consider a n-vertex, m-edge con-

nected graph G ¼ ðV ;EÞ with a positive value ue
on each edge e of E and a list of K pairs of terminal

vertices fsk; tkg, k 2 f1; . . . ;Kg. Then, consider the
values ue as capacities and associate a commodity

with each terminal pair fsk; tkg. The integer mul-

ticommodity flow problem, IMFP, consists in
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maximizing the sum of the integral flows Fk of each
commodity (from sk to tk) subject to capacity and

flow conservation requirements. Now, consider ue
as the weight of the edge e, the sk � tk multicut

problem, IMCP, is to find a minimum weight set

of edges whose removal separates each pair fsk; tkg
of the list. Such problems have got many appli-

cations as in telecommunication, routing and

railroad transportation. See, for example, the

telephone call congestion problem [6], and the

parallel query optimization in databases [31].

For K ¼ 1 the problems are the ordinary max

flow-min cut problems solvable in polynomial time

but both integer multiflow and multicut problems
are known to be NP-hard and Max SNP-hard for

KP 3 [18,27]. In spite of the difficulty of the

problems, several parameters, as the type of the

considered graph or the number of terminals, can

make them easier. We distinguish directed graphs
ed.
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from undirected graphs: it is not possible to
transform an undirected problem in a directed one

by replacing each edge by two opposite arcs, be-

cause the value of an edge would bundle both

associated arcs. Note that, in a directed graph, if

there is no directed path linking two terminals,

they are considered as separated and no flow can

be routed from one to the other.

We present numerous recent results: complexity
results concerning the approximability and the

NP-hardness of the basic problems in unrestricted

graphs, and polynomial results for the basic

problems in directed trees and for the multitermi-

nal problems in trees. We also quote the few pro-

posed methods to solve exactly the basic problems.

In addition, we propose some new results. We

show that the multiterminal cut problem is poly-
nomial in acyclic graphs, and that IMFP is NP-

hard in bipartite graphs. We also prove that IMFP

with demands, when one seeks to maximize the

number of satisfied demands, is as difficult to

approximate as the maximum independent set

problem. Finally, we propose a test to detect some

polynomially solvable instances of IMFP and

IMCP in undirected trees.
The paper is organized as follows. In Section 2,

we present the problems, we recall the dual rela-

tionship of their continuous relaxations by using

very simple mathematical models and we classify

the subproblems. We study the case of unrestricted

graphs in Section 3, before considering several

special graphs as trees or planar graphs, in Section

4. In each one of these two sections, firstly we deal
with the basic minimum multicut and maximum

integral multiflow problems, denoted by IMCP

and IMFP, and secondly we deal with the sub-

problems. Finally we conclude with a table which

summarizes the most important results.

The reader can find very complete surveys

concerning the continuous multicommodity flow

problem in [1,29] so we do not go back over that.
Moreover, we do not deal with the minimum cost

integral multiflow problem for which the reader is

refered, for example, to [3,13,16], or [46]. We nei-

ther get on to the concurrent flow or sparsest cut

problems which have also been widely studied

[42,61]. Consider a multiflow in which one wish to

send dk units from the source vertex sk to its sink
vertex tk, k 2 f1; . . . ;Kg. The objective of the
concurrent flow problem is to satisfy all demands

by the same maximum proportional amount. The

sparsest cut problem is to find a cut that minimizes

the ratio capacity of the cut to the demand across

the cut. However, if one is only interested to know

if all demands can be satisfied or to maximize the

flow bounded by these demands, then the problem

appears to be a basic IMFP. Simply, add to the
graph K vertices v0k, and K edges (or arcs in di-

graphs) (tk, v0k) with capacities equal to dk,
k 2 f1; . . . ;Kg, and then move the sink tk from its

initial vertex to the free endpoint of the new edge:

all the demands are satisfied if and only if all the

added edges are saturated by a maximum multi-

flow. Conversely, IMFP can be reduced to a

maximum multiflow bounded by demands: just
consider on each sink tk, k 2 f1; . . . ;Kg, a demand

dk equal to the sum of the capacities of the edges

(or of the ingoing arcs in a digraph) adjacent to tk.
2. The multicut and multiflow problems

In this section, we first give formulations of
both problems by integer linear programs which

allow to underscore their dual relationship. The

duality helps to get many further results. Second,

we pass in review the special cases.

There is no loss of generality to consider positive

values on the edges. Clearly, this restriction is im-

posed by the definition of a capacity in IMFP. For

IMCP, all the edges with negative weights belong
to any minimummulticut, and an edge with a value

equal to zero do not increase the cut value.

Therefore, edges with nonpositive values can be

added to the cut and removed from the graph.

Moreover, IMFP and IMCP with nonintegral, but

rational, values on the edges can be reduced to

equivalent problems with integral values. For

IMFP, replace the nonintegral values by their
lower integer part. For IMCP, multiply the rational

values by the product of their lowest common

denominator. But, note that the transformation

given for one problem cannot be applied to the

other. All the results given in this paper are valid

for integral values on the edges: in the following,

we assume that ue 2 N� for all e 2 E.
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2.1. Two continuous dual problems

Garg et al. [26] showed the duality of the con-

tinuous relaxed multicut and multiflow problems,

by using an arc flow model of the multiflow

problem in general graphs [1]. The variables rep-

resent the values of each flow on each edge, and

the model involves two kinds of constraints: a
capacity constraint on each edge and a flow con-

servation constraint at each vertex. However they

use a path flow model when they study the prob-

lem in trees [27]. As in [61], we propose to use a

path flow model that allows a simpler view of

the duality. Let G ¼ ðV ;EÞ be some capacited

graph and K pairs of terminal vertices fsk; tkg,
k 2 f1; . . . ;Kg. For each edge e of E, denote by ue
the capacity of the edge e (ue is assumed to be

positive and integral). Let Pk be the set of all the

elementary paths from sk to tk, P ¼
S

k2f1;...;Kg P
k

and let M be the cardinality of P.

Denoting by fi the flow on the ith path pi,
i 2 f1; . . . ;Mg, the integer maximum multiflow

problem, IMFP, is to maximize the sum of the fi
while satisfying the capacity constraints. It can be
formulated as

ðIMFPÞ
max

PM
i¼1 fi;

s:t:
P

i s:t: e2pi fi 6 ue 8e 2 E;

fi 2 N 8i 2 f1; . . . ;Mg:

�������
ð1Þ

The multicut problem IMCP is to find a minimum

weight set of edges whose removal separates each

pair fsk; tkg, that implies to select at least one edge

on each path pi. It can be formulated as

ðIMCPÞ
min

P
e2E uece;

s:t:
P

e2pi ce P 1 8i 2 f1; . . . ;Mg;
ce 2 f0; 1g 8e 2 E;

�������
ð2Þ
where ce ¼ 1 if and only if the edge e belongs to the

cut.

Note that the number of variables implemented

in (IMFP) is potentially exponential, whereas the

arc-flow model involves only mK variables. Nev-

ertheless, the path flow model is the one which is
the most often used to obtain the results presented

in this paper.
Proposition 1. (Garg et al. [26]) The continuous
relaxation of the minimum multicut program is the
linear dual of a continuous maximum multicom-
modity flow program.

Proof. (sketch) Consider the continuous relaxation
of (IMFP) and associate a dual variable ce to each

constraint (1); the obtained dual program is the
continuous relaxation of (IMCP); just note that

the constraints (ce 6 18e 2 E) can be omitted in

the continuous program. h

Let f � and c� be optimal solutions of (IMFP)

and (IMCP). The complementary slackness con-

ditions of optimality in linear programming are

given by:

8i 2 f1; . . . ;Mg f �
i > 0 )

X
e2pi

c�e ¼ 1; ð3Þ

8e 2 E c�e > 0 )
X

i s:t: e2pi
f �
i ¼ ue: ð4Þ

The conditions (3) mean that, in any optimal

solution, either the flow on a path pi is equal to 0
or the associated constraint (2) is saturated. If the

variables c�e are integer then there is exactly one

edge of pi in the multicut for all i such that f �
i > 0.

The conditions (4) mean that, in any optimal

solution, if the edge e is not saturated by the flow

then c�e ¼ 0. If the variables are integer then all the

edges in the cut are saturated edges, i.e. edges with

residual capacities equal to zero. These conditions
are useful to study several special cases (see Sec-

tion 4.2).

Note that the duality results presented above

are valid in directed or undirected graphs. In the

case of a single commodity (K ¼ 1) the vertices of

the primal and dual polyhedrons are integral and

the max flow-min cut theorem is a direct conse-

quence of this integrality. But this property is not
true in general and that explains the difficulty of

the problems [26]. The general cut condition

originally given in [47] is also a direct consequence

of the Proposition 1. It must be verified by any

multiflow F :

ðCut conditionÞ for all X � V ;X
e2q1ðX Þ

ue P
X

k2q2ðX Þ
Fk;
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where q1ðX Þ is the set of edges with exactly one

endpoint in X and q2ðX Þ is the set of those

k 2 f1; . . . ;Kg for which exactly one of sk and tk
belongs to X . For a given instance, the value of

any feasible multiflow is at most the value of any

multicut.

2.2. The subproblems

2.2.1. The multiterminal cut and flow problems

One well known subproblem is the MULTI-MULTI-

TERMINALTERMINAL (or MULTIWAYMULTIWAY) CUTCUT problem where

the cut must separate each pair of vertices

belonging to a given set of terminals, X � V . De-

note by jX j the number of terminals. The MUL-MUL-

TITERMINAL CUTTITERMINAL CUT problem is the special case of
IMCP where the K pairs to separate are the
1
2
jX jðjX j � 1Þ pairs of terminals. We also consider

the MULTITERMINAL FLOWMULTITERMINAL FLOW problem which is the

maximum integral multiflow associated by duality

with the MULTITERMINAL CUTMULTITERMINAL CUT problem: the

objective is to maximize the total amount of flow

routed between any pair of terminals in X . Both
problems can be stated as (IMFP) and (IMCP).

2.2.2. The K-cut problem

A more particular case of the multicut problem

is the K-CUTK-CUT problem. Recall that in this problem,

one seeks to partition the n vertices of a graph into

K nonempty sets. For a fixed K, it is a particular

case of the MULTITERMINAL CUTMULTITERMINAL CUT problem: one

can consider all subsets of K vertices, then solve all
the corresponding MULTITERMINAL CUTMULTITERMINAL CUT in-

stances, and finally keep the best cut found. By this

way, we obtain an optimal solution of K-CUTK-CUT since

at least K vertices have to be in different sets.

2.2.3. The unsplittable flow problem

Generally the total flow of the commodity k, Fk,
is split up between several paths of Pk, i.e. several
paths linking sk to tk in the graph. Sometimes it

occurs that each flow Fk is unsplittable: Fk must be

routed on only one path of Pk. The UNSPLITFLOWUNSPLITFLOW

problem is to select K paths, one in each set Pk, to

route K flows verifying the capacity constraints, so

as to maximize their sum. To get the associated

program, we can add the following constraints

to (IMFP):
fifj ¼ 0; 8pi 6¼ pj 2 Pk; 8k 2 f1; . . . ;Kg: ð5Þ
If the graph is a tree, there is at most one path
between two vertices, the constraints (5) therefore

no longer apply and the MAX UNSPLITFLOWMAX UNSPLITFLOW

problem is equivalent to IMFP.

2.2.4. The maximum multipath problem

The MAX CAPPATHMAX CAPPATH problem is to maximize the

total number of paths linking two paired terminal

vertices, such as the number of paths an edge be-
longs to is not greater than the capacity of this

edge. To get the associated program we have just

to replace the constraints fi 2 N of (IMFP) by the

following constraints:

fi 2 f0; 1g 8i 2 f1; . . . ;Mg: ð6Þ

2.2.5. The maximum edge disjoint paths problem

Let us consider IMFP with all the capacities on

the edges equal to 1: ue ¼ 1, for all e 2 E. We get a
MAX EDGEDISJPATHMAX EDGEDISJPATH problem which is to maxi-

mize the total number of paths linking K paired

terminal vertices such as an edge belongs to at

most one path. Several paths are allowed between

one terminal pair. All the flows fi are then equal to

0 or 1 and the problem is also a special case of

MAX CAPPATH.MAX CAPPATH.
3. Multiflow and multicut in unrestricted graphs

In this section, we give the main complexity

results for the integer multiflow and multicut

problems and their subproblems in unrestricted

graphs. We also present some exact and approxi-

mation algorithms.

3.1. Solving IMFP

Contrary to the minimum cost integer multiflow

problem for which several practical results have

been published [3,16,46] there are few attempts

solving IMFP and IMCP. Nevertheless Brunetta

et al. proposed in [6] a branch-and-cut algorithm
based on a polyhedral approach. They describe

several classes of inequalities, and lifting proce-

dures. In particular, they present a new class of

valid constraints: the multihandle comb inequalities.
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They prove that some of these inequalities define
facets.

They solve instances of IMFP with unit capac-

ities on the edges, i.e. MAX EDGEDISJPATH,MAX EDGEDISJPATH, up to

100 vertices, 495 edges and 5 commodities. They

also apply their algorithm to a real-world problem

having 8 vertices and 28 edges, integer capacity on

each edge, and up to 13 commodities. In fact, it

seems that one can only hope to solve exactly small
instances in unrestricted graphs. The main reason

can be found in the study of the complexity of

these problems.

3.2. Complexity of IMCP and IMFP

First, recall that both problems are Max SNP-

hard even in several particular cases [18,27,52].
This result implies that no polynomial time ap-

proximation scheme can exist for these problems

unless P¼NP. Karp [35] proved that IMFP is

strongly NP-hard in directed and undirected

graphs. The simple cases of IMFP where K ¼ 2

remains NP-hard in undirected graphs [21], and in

directed graphs even when all edge capacities are

set to 1 [22] (one seeks to solve an instance of the
MAX EDGEDISJPATHMAX EDGEDISJPATH problem with K ¼ 2).

Nevertheless, Hu [32] proved that IMFP in an

undirected graph with K ¼ 2 is polynomial if the

capacities are even. This result was extended by

Rajagopalan [54] to the case where the sum of the

capacities of all the edges incident on each vertex is

even. The proposed algorithm calculates a biflow

by combination of two simple flows. These results
can be achieved because the continuous solutions

of (IMCP) and (IMFP) when K ¼ 2 are semi-

integral, i.e. variables are multiple of 1
2
[24,33,60].

In fact, as we are going to see in the next sec-

tion, IMFP is not only strongly NP-hard but

finding an approximate solution within a fixed

performance ratio for it is still an NP-hard prob-

lem. For IMCP, complexity results are also nega-
tive although some particular subproblems can be

well approximated (see Section 3.4 for details).

3.3. Approximation of IMFP and IMCP

Since IMFP and IMCP are NP-hard, one can

only hope to obtain polynomial-time approxima-
tion algorithms to solve them. On the positive side,
in undirected graphs, Garg et al. proposed in [26]

an OðlogðKÞÞ-approximate algorithm where K is

the number of commodities. Their algorithm pro-

vides solutions to both IMFP and IMCP. To

achieve this remarkable result, the authors use a

linear programming relaxation based on the arc-

flow model of IMFP. By solving the dual of this

linear program, they define a new graph with dis-
tance labels on the edges. Then, using the comple-

mentary slackness conditions and starting from

each terminal (source or sink) they build several

cuts separating the initial vertex from its mate.

Finally, they obtain a feasible multicut considering

the union of all these cuts. Moreover, it is proved in

the same paper that the analysis of the worst case

is tight (an example achieving the bound is given).
In the directed case, both problems seem more

difficult. For IMCP, Cheriyan et al. [9] proposed a

polynomial-time algorithm which finds a multicut

whose value C satisfies C6 108F �3, where F � is the

value of a maximum multiflow. They also proved

that one can find in polynomial-time a multicut

whose value C satisfies C6 39 lnðK þ 1ÞF �2. This

result must be compared with the one obtained in
undirected graphs [26]: C ¼ OðF � logðF �ÞÞ.

The best negative result about the approxima-

bility of IMFP in directed graphs says that, unless

P¼NP, no polynomial time algorithm can provide

a better performance ratio than m
1
2
�e for any e > 0

[30]. In the same paper, authors propose a greedy

Oð
ffiffiffiffiffiffiffiffiffiffiffiffi
mdmax

p
log2 mÞ-approximate algorithm for the

integer maxflow problem where one seeks to
maximize the number of satisfied demands (here

dmax is the maximal demand value). Now, we give

another negative result about the approximability

of this particular problem. We built the proof from

an idea suggested in [30].

Proposition 2. Unless P¼NP, there is no polyno-
mial-time approximation algorithm with a fixed
performance guarantee for the integer maximum
multiflow problem with the aim of satisfying a
maximal number of demands in an undirected graph.

Proof. We use a polynomial reduction from the

MAXIMUM INDEPENDENT SETMAXIMUM INDEPENDENT SET problem that pre-

serves the strong negative approximation results
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known for this problem. Consider an instance

G ¼ ðV ;EÞ of the MAXIMUM INDEPENDENT SETMAXIMUM INDEPENDENT SET

problem, with V ¼ fv1; . . . ; vng. We build

G0 ¼ ðV 0;E0Þ in the following way: we add n new

vertices v0i (i 2 f1; . . . ; ng) to V and we add an edge

between vi and v0j if and only if ðvi; vjÞ 2 E. Now,

we consider n commodities and assign a source si
to each vertex v0i and a sink ti to each vertex vi
(i 2 f1; . . . ; ng). At each sink ti we set a commodity

demand equal to the degree of vi. Finally, we set

the capacity of each edge of G0 to one.

We claim that the maximal number of demands

which can be satisfied is equal to the cardinality of

a maximum independent set in G, i.e. to aðGÞ: let vi
be a vertex of G such that the demand at ti is

satisfied; all edges incident to vi are saturated by
the flow Fi and thus, the demands at tj such that

ðvi; vjÞ 2 E cannot be satisfied. Finally, the set of

the vertices whose demands are totally satisfied is

an independent set of G. Hence, the maximum

number of satisfied demands is equal to aðGÞ
(Fig. 1). h

3.4. Complexity and approximation of the subprob-

lems

Here, we give several complexity results about

particular cases of IMFP and IMCP in unre-

stricted graphs.

3.4.1. Multiterminal cut and flow problems

As said in Section 2.2.1, the MULTITERMINALMULTITERMINAL

CUTCUT problem is a particular case of IMCP. In this

section, K denotes jX j. Dalhaus et al. proved in
G

v1

v2

v3

v4

v1’

v3’

v4’

v2’

Fig. 1. IMFP with demands and INDEPENDENT SETINDEPENDENT SET problems.
[18] that the MULTITERMINAL CUTMULTITERMINAL CUT problem in
undirected graphs is NP-hard for KP 3 even

in planar graphs, and is Max SNP-hard for KP 3

in unrestricted graphs. This last result has been

used in [25] to prove that the MULTITERMINALMULTITERMINAL

CUTCUT problem is MAX SNP-hard in directed

graphs even for K ¼ 2. This also implies that no

polynomial approximation scheme can exists un-

less P¼NP [2]. Nevertheless, in [18], there is a
positive result about the approximation of this

problem in undirected graphs: there exists a poly-

nomial time (2� 2
K)-approximation algorithm for

the MULTITERMINAL CUTMULTITERMINAL CUT problem in unre-

stricted graphs. The main idea of this algorithm is

to build a feasible solution by doing K ‘‘isolating’’

cuts for each terminal vertex. This last result has

been improved: first, Calinescu et al. [7] used a new
geometric relaxation and obtained a ð3

2
� 1

KÞ-
approximation algorithm. Their relaxation uses

the K-simplex SK which has K vertices; the ith
vertex is the point x in SK with xi ¼ 1 (and all other

coordinates equal 0). The relaxation is as follows:

map the vertices of the graph to points in SK such

that terminal i is mapped to the ith vertex of SK .
Each edge is mapped to the straight line between
its endpoints. Then, in [34], Karger et al. improved

the ratio of this approximate algorithm by study-

ing the previous geometric relaxation and have

obtained a 1.3438-approximate algorithm for any

K, and a 12
11
-approximate algorithm for K ¼ 3.

Polyhedral results are given in [5,10,17].

Recall that a more particular case of IMCP is

the K -CUT-CUT problem (see Section 2.2.2 for defini-
tion). This problem is polynomial for fixed K but

NP-hard for a nonfixed K [28]: one can actually

prove that the CLIQUECLIQUE problem polynomially re-

duces to it. Levine [45] has recently improved

Goldschmidt and Hochbaum�s results [28] by

proposing a polynomial time algorithm running in

OðmnK�2log3nÞ when K 6 6. Note that all these

results only hold in undirected graphs.
In directed graphs, all the multicut problems

seem harder to approximate. Nevertheless, the

MULTITERMINAL CUTMULTITERMINAL CUT problem can be approxi-

mated within a ratio equal to 2 logK [25]. The

algorithm contains logK phases, and at each step

it removes edges having capacity at most twice the

value of the maximum multiflow on the considered
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edge. Moreover, Naor and Zosin have improved
the OðlogðKÞ)-approximate algorithm of Garg

et al. [26] by proposing a 2-approximation algo-

rithm for the symmetric multicut problem [50].

This approximate algorithm uses a particular lin-

ear program where the integrality gap is at most 2.

Recall that a symmetric multicut means a set of

arcs whose removal disconnects either sk from tk or
tk from sk, for every symmetric pair of commodi-
ties. Unfortunately, there is no relation between

this problem and IMCP in directed graphs.

To our knowledge, there are no results about

the MULTITERMINAL FLOWMULTITERMINAL FLOW problem in unre-

stricted graphs. We can just make the following

remark: expect an optimum solution f � containing

a subflow f , routed from a terminal t1 to a ter-

minal t3 along a path containing a terminal t2.
Contradicting the optimality of f �, we could im-

prove the value of f � by f . Simply, replace f by

two independent subflows f1 and f2 equal to f , one
from t1 to t2 and the other from t2 to t3. Therefore,
no optimal solution admits a subflow ‘‘crossing’’ a

terminal vertex.

3.4.2. Edge disjoint paths and unsplittable flows

problems

On the positive side, some special cases of

IMFP and IMCP are less difficult problems: the

MAX UNSPLITFLOWMAX UNSPLITFLOW and the MAX EDGEDISJPATHMAX EDGEDISJPATH

problems admits an Oð ffiffiffiffi
m

p Þ-approximate algo-

rithm (see [4,36,39]). This is the best guarantee that

can be achieved by a polynomial algorithm for

these two last problems in directed graphs, since
these problems are NP-Hard to approximate

in directed graphs with a factor m
1
2
�e for any e > 0

[30]. Furthermore, the MAX EDGEDISJPATHMAX EDGEDISJPATH

problem is NP-hard for K ¼ 2 in directed graphs

[22]. This is in contrast with the undirected case,

where Robertson and Seymour [55] showed that,

for any fixed K, the MAX EDGEDISJPATHMAX EDGEDISJPATH problem

is solvable in polynomial time. As the authors re-
mark their algorithm is out of the range of prac-

tical usability when KP 3. For K ¼ 2, if the degree

of each nonterminal vertex is even, the optimum

values of the MAX EDGEDISJPATHMAX EDGEDISJPATH problem and of

the associated multicut are equal [56].

For directed and undirected graphs, the MAXMAX

EDGEDISJPATHEDGEDISJPATH problem is NP-hard if we do not
fix K ([22,49]). Furthermore, many results about
disjoint paths problems were presented by Frank

[23] and Schrijver [58].
4. Special graphs

This section deals with the study of the different

problems in special graphs as trees, bipartite
graphs, planar graphs and rings. Before presenting

the problems in trees, we show how to solve the

MULTITERMINAL CUTMULTITERMINAL CUT and FLOWFLOW problems in

directed acyclic graphs.
4.1. Acyclic graphs

We have seen that the MULTITERMINAL CUTMULTITERMINAL CUT

problem is NP-hard in directed graphs, neverthe-

less if the graph does not admit directed cycle, we

prove the following result:

Proposition 3. The multiterminal cut and integer
flow problems are solvable in polynomial time in an
acyclic directed graph by using a simple flow algo-
rithm.

Proof. Let G ¼ ðV ;EÞ be an acyclic digraph. De-

note by dþðvÞ (resp. d�ðvÞ) the outgoing (resp.

ingoing) degree of v 2 V and recall that, in any
optimal solution, no flow is routed ‘‘through’’ a

terminal vertex (see the end of Section 3.4.1).

Without making any assumption on the maximum

multiterminal flow, we can split up each terminal

vertex tk such that dþðtkÞ 6¼ 0 and d�ðtkÞ 6¼ 0 into

two terminal vertices, t0k and t00k . t
0
k (resp t00k ) is the

final (resp. initial) endpoint of each arc having tk as
final (resp. initial) endpoint (see Fig. 2). Let us
add, to the graph so obtained, an ingoing vertex v0
and an outgoing vertex vnþ1, and add an arc from

v0 to each terminal vertex tk such that d�ðtkÞ ¼ 0,

and an arc from each terminal tk such that

dþðtkÞ ¼ 0 to vnþ1. All these arcs are valued with a

sufficiently large number D. We denote this new

graph by bG. Finding an optimal multiterminal

flow in G is equivalent to finding a simple maxi-
mum flow from v0 to vnþ1 in bG since the added arcs

do not limit the flow. Moreover, the associated



Fig. 2. A graph G and its associated graph bG.
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minimum cut in bG is the minimum multiterminal

cut in G, because the added arcs have got values D
and cannot belong to a minimum cut in bG. h

Note that, if the graph G is not acyclic, a

solution in bG can contain a flow routed from t00k to

t0k, that does not define a flow in G.
Furthermore, the decision problem ‘‘are there K

pairwise disjoint paths?’’ is polynomial for fixed K
in acyclic digraphs [22]. The total number of

disjoint paths is bounded by m in any graph.
Therefore, the MAX EDGEDISJPATHMAX EDGEDISJPATH problem is

polynomial for fixed K in acyclic digraphs.

4.2. Trees

In trees, there exists only one path between the

source and the sink. This property is useful to

solve in polynomial time the problems in directed
trees but, unfortunately, it does not imply the

polynomiality of the different problems in undi-

rected trees. Note that, when considering the

MULTITERMINAL CUTMULTITERMINAL CUT and FLOWFLOW problems on

trees, we can assume without loss of generality that

there is a bijection between the set of leaves and

the set of terminals, otherwise the problem is

decomposed in independent subproblems by
splitting up nonleaf teminal vertices [15].

4.2.1. Directed trees

The results given in Section 4.1 hold here, but

stronger results can be obtained in directed trees.

Costa et al. [14] proved that IMFP and IMCP are

polynomial in directed trees. To obtain this result,
they noticed that the constraint matrix of (IMFP)

and (IMCP) in a directed tree is totally unimodu-

lar [8] (see Fig. 3). As a consequence, IMFP and
IMCP can be solved by linear programming.

Note that IMFP in a directed tree can be

transformed in a circulation problem [14], which

can be polynomially solved [51]. Thus, in addition

to the MULTITERMINAL CUTMULTITERMINAL CUT and FLOWFLOW prob-

lems, the MAX UNSPLITFLOWMAX UNSPLITFLOW, the MAX CAPPATHMAX CAPPATH

and the MAX EDGEDISJPATHMAX EDGEDISJPATH problems are also

polynomial in directed trees.

4.2.2. Rooted trees

Costa et al. proposed an OðminðKn; n2ÞÞ greedy
algorithm to solve both multiflow and multicut

problems in a rooted tree [14]. This result is

achieved by using duality results. First, a multiflow

is computed by routing maximum flows from each

source, in a well choosing order. Second, a cut
verifying the complementary slackness conditions

(see Section 2.1) is obtained. Unfortunately, the

algorithm cannot be adapted to any directed tree.

The MULTITERMINAL CUTMULTITERMINAL CUT and FLOWFLOW prob-

lems, in a rooted tree with L leaves, can be reduced

to IMCP and IMFP with L sources located at the

root and L sinks, one at each leaf. The MULTI-MULTI-

TERMINAL CUTTERMINAL CUT problem is then solved in OðnÞ
and the MULTITERMINAL FLOWMULTITERMINAL FLOW problem in

OðLhÞ where h is the height of the tree [15].

4.2.3. Bidirected trees

A bidirected tree is the directed graph obtained

from an undirected tree by replacing each edge by

two directed opposite and independent arcs. Erle-
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Fig. 3. Easy and difficult instances in undirected trees.
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bach and Jansen [20] proved that the MAX EDGE-MAX EDGE-

DISJPATHDISJPATH problem is Max SNP-hard in bidirected

trees of any degree. They gave a linear reduction
from the bounded variant of the three-DIMEN-DIMEN-

SIONAL MATCHINGSIONAL MATCHING problem. They also proposed

a (5
3
þ e)-approximation algorithm for the MAXMAX

EDGEDISJPATHEDGEDISJPATH problem in bidirected trees. Nev-

ertheless, the MAX EDGEDISJPATHMAX EDGEDISJPATH problem can

be solved optimally in polynomial time if the input

is restricted:

(a) if the maximum degree of the tree is bounded

by a constant then the optimal solution can

be obtained using dynamic programming.

(b) if the bidirected tree is a star, i.e. it contains

only one vertex with outgoing degree greater

than one, the MAX EDGEDISJPATHMAX EDGEDISJPATH problem

can be reduced to a maximum matching prob-

lem in a bipartite graph which is polynomially
solvable. This latter result also applies to spi-

ders: a spider is a bidirected tree in which

at most one vertex (the center) has outgoing

degree greater than two.

4.2.4. Undirected trees

Garg et al. [27] shown that both IMCP and

IMFP are Max SNP-hard in an undirected tree.
They use a linear reduction from the three-

DIMENSIONAL MATCHINGDIMENSIONAL MATCHING problem for IMFP,

and one from the VERTEX COVERVERTEX COVER problem for
IMCP. Srivastav and Stangier [62] extended the

Max SNP-hardness of IMFP to trees with large

capacities.
Nevertheless, when trying to solve an instance

of IMFP or IMCP in an undirected tree, one can

verify if it is possible to orient the edges to get

an equivalent directed problem. For all k in

f1; . . . ;Kg, there must be a directed path either

from sk to tk or from tk to sk in the obtained di-

rected tree. In this case, the instance is polynomi-

ally solvable (see Section 4.2.1). This test can be
done in OðmÞ. First, orient the edges of p1 from s1
towards t1; then, consider the paths pk one by one,

beginning with the paths having an edge already

oriented; while it is compatible with the previous

orientations, orient the edges of pk, either from sk
towards tk or from tk towards sk (in that last case,

interchange sk and tk). If none of these orientations
is compatible the process stops (see Fig. 3).

The authors of [27] also present an efficient

algorithm for IMCP and IMFP such that the

weight of the multicut is at most twice the value of

the flow, i.e. a 2-approximation algorithm for

IMCP and an 1
2
-approximation algorithm for

IMFP on trees. Their algorithm follows a primal–

dual approach and is guided by the complemen-

tary slackness conditions (see Section 2.1). They
begin by rooting the tree at an arbitrary vertex and

the algorithm makes two steps over the tree. In the

first step, they move up the tree, routing flows as
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they go along and picking some saturated edges. In
the second step, they move down the tree dropping

redundant edges they have picked. They proved

that the set of edges obtained at the end of the

algorithm is a multicut and that this multicut in-

cludes at most two edges of any flowpath. There-

fore, the capacity of the multicut is at most twice

the value of the multiflow.

In trees of height one (stars), IMCP remains
NP-hard even with unit capacities (considering the

linear reduction from VERTEX COVERVERTEX COVER), although

IMFP can be solved in polynomial time, because it

is equivalent to the maximum B-MATCHINGB-MATCHING

problem on general graphs [27]. Moreover, IMFP

in a tree with unit capacities on the edges is a MAXMAX

EDGEDISJPATHEDGEDISJPATH problem which is polynomially

solvable [27]: roughly speaking, the algorithm
consists in routing flows on subtrees of height 1,

with two passes on the tree, first from the leaves,

and second back to the leaves.

Nevertheless, contrary to the basic problems,

both MULTITERMINAL CUTMULTITERMINAL CUT and MULTITERMI-MULTITERMI-

NAL FLOWNAL FLOW problems are polynomial if the graph is

an undirected tree. Erdos and Szekely [19] pro-

posed an Oðn2Þ algorithm to solve MULTITERMI-MULTITERMI-

NAL CUTNAL CUT in trees: in fact, their algorithm solves a

more general problem which is to separate r dis-

joint subsets of vertices. Costa [15] gave algorithms

in OðnÞ for the MULTITERMINAL CUTMULTITERMINAL CUT and in

Oðn2Þ for the MULTITERMINAL FLOWMULTITERMINAL FLOW problems

and showed that most often it exists a duality gap
Fig. 4. Matrix reconstruction
between the optimal integral multicut and multi-
flow values. Both algorithms are independent but

their general schemes are similar, beginning with

stars connected to the tree by an only edge,

reducing the tree and reiterating the process.

4.3. Bipartite graphs

Here, we consider augmented bipartite graphs,
i.e. bipartite graphs to which we add K sources and

K sinks (see Fig. 4): the ‘‘supply’’ graph is bipar-

tite.

Proposition 4. IMFP in an augmented bipartite
digraph is NP-hard if KP 3.

Proof. The proof uses the discrete tomography
problem ‘‘recovering polyatomic structure from

discrete X-rays’’ [11], i.e. the reconstruction of

colored (a; b)-matrices from the colors projections

(see, for example, [53]). Given K colors and the

numbers Aki (resp. Bkj), k 2 f1; . . . ;Kg, of each

color on each row i, i 2 f1; . . . ; ag (resp. column j,
j 2 f1; . . . ; bg), is there a coloration of the matrix

according to the projections? To each term (i; j) is
associated a colored (or empty) ‘‘space’’ (i; j). This
problem is known to be NP-hard for KP 3 [11].

We assume that
Pa

i¼1 Aki ¼
Pb

j¼1 Bkj, for all

k 2 f1; . . . ;Kg, otherwise there is no solution. We

associate to the matrix a complete bipartite di-

graph G ¼ ðX ; Y ;EÞ such that jX j ¼ a, jY j ¼ b,
and bipartite multiflow.
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E ¼ fðxi; yjÞ s:t: xi 2 X and yj 2 Y g and the

capacity of an arc of E is 1. Now, let us add K
sources, sk, k 2 f1; . . . ;Kg, to the graph and Ka
arcs, an arc with capacity Aki from each source sk
to each vertex xi of X , and then let us add K sinks

tk, k 2 f1; . . . ;Kg, and Kb arcs, an arc with

capacity Bkj from each vertex yj of Y to each sink tk
(see Fig. 4). We get an augmented bipartite capa-
cited graph bG such that the matrix admits a col-

oration if and only if a maximum integer multiflow

is equal to
Pa

i¼1 Aki, i.e. all the arcs with an end-

point or in a source or in a sink are saturated; the

color k is assigned to the matrix space (i; j) if and
only if fk ¼ 1 on the arc (xi; yj). h

If K ¼ 2 the complexity of IMFP in an aug-
mented bipartite digraph is still open. Neverthe-

less, let us recall that, if K ¼ 2, the problem is

polynomially solvable in an undirected graph with

even capacities (see Section 3.2).

Contrary to IMFP, the MULTITERMINALMULTITERMINAL

FLOWFLOW problem (and the MULTITERMINAL CUTMULTITERMINAL CUT

problem) is polynomial in a directed bipartite

graph, with sources in X and sink in Y , or in a
directed augmented bipartite graph defined as in

Fig. 4 (see Section 4.1).

4.4. Planar graphs

In a planar graph G the MAX EDGEDISJPATHMAX EDGEDISJPATH

problem is NP-hard [48,49], therefore IMFP is

NP-hard too. Furthermore, authors often consider
augmented graphs, obtained by adding to G all the

edges fsk; tkg, k 2 f1; . . . ;Kg. When the augmented

graph is planar, Sebo [59] proved that, for fixed K,
IMFP is polynomial, and Korach and Penn [40]

gave an Oðn
ffiffiffiffiffiffiffiffiffiffi
log n

p
Þ algorithm for K ¼ 2. They

transform the graph in a dual graph, they calculate

shortest paths, and then they solve a set of linear

equations and inequalities for finding a maximum
integral two flow.

IMCP and the MULTITERMINAL CUTMULTITERMINAL CUT problem

in planar graphs have been proved to be NP-hard

in [18]: the reduction is made from planar 3-SAT.

The ratio of the values of the minimum multicut

and the maximum multiflow in planar graphs is at

most Oð1Þ, and there is a constant factor approx-

imation algorithm for IMCP. These latter results
have been obtained by Tardos and Vazirani [63].
They use a decomposition algorithm and then they

solve the dual linear program corresponding to the

multicommodity flow problem by finding shortest

paths.

The MAX EDGEDISJPATHMAX EDGEDISJPATH problem is NP-hard

because its associated decision problem is NP-

complete [48,49]. Note that the necessary cut

condition given in the introduction (Section 1) has
been revised by Frank [23] when the graph is a

rectilinear grid: this revised condition becomes

sufficient for the existence of K disjoint paths, if it

applies to every row and column of the grid. The

gap between the maximum integral flow value and

the maximum fractional multiflow value for grid

graphs can be as high as K
2
[27]. The result given for

MAX EDGEDISJPATHMAX EDGEDISJPATH implies that MAX CAPPATHMAX CAPPATH

and MAX UNSPLITFLOWMAX UNSPLITFLOW problems are NP-hard in

planar graphs. Kleinberg and Tardos [37,38] gave

an Oðlog nÞ-approximation algorithm for the MAXMAX

EDGEDISJPATHEDGEDISJPATH problem in special planar graphs

(nearly-Eulerian and uniformly high-diameter),

which include planar interconnection networks.

4.5. Rings

A ring is a connected graph where all vertices

have degree 2. Thus, all the results given for planar

graphs are valid. Such a structure is often used in

telecommunication networks [12]. Several simpli-

fications can be made before solving IMCP and

IMFP in rings. The main one is that a path with-

out terminals, except for its endpoints, may be
reduced to a single edge, which is the lowest

weighted edge of the path. Moreover problems in

bidirectional rings can be transformed in equiva-

lent problems in directed rings by doubling the

number of commodities. In fact, without loss of

generality, one can assume that there is a source

and/or a sink located at each vertex [43]. In this

last paper, a polynomial algorithm in Oðn3Þ is
proposed to solve IMCP in ring networks. The

algorithm is based on the enumeration of several

minimum cuts associated with an arbitrary path

pk� , each one containing one different edge of the

path; these cuts are obtained by using the algo-

rithm given for rooted trees (see Section 4.2.2).

There is often a gap between the cut and integral



Table 1

Main results for IMFP, IMCP and their subproblems

IMFP IMCP UnSplitFlow CapPath EdgeDisjPath Multiterminal

cut

Multiterminal

flow

Undirected

graphs

Max SNP-hard [27]

NP-hard to approx.

within m
1
2
�e [30]

Max SNP-hard [18]

OðlogKÞ-approx. algo.
[26] OðF � logðF �ÞÞ-
approx. algo. [26]

NP-hard [49]

Oð ffiffiffiffi
m

p Þ-approx.
algo. [4]

NP-hard

[49]Oð ffiffiffiffi
m

p Þ-
approx. algo. [4]

NP-hard [49]

Oð ffiffiffiffi
m

p Þ-approx.
algo. [4] Polyn.

for fixed K [55]

Max SNP-hard

[18] 1.3438-

approx. algo.

[34]

Directed

graphs

Max SNP-hard [27]

NP-hard to approx.

within m
1
2
�e [30]

Max SNP-hard [18]

C�
6 108F �3 and

C�
6 39lnðK þ 1ÞF �2 [9]

NP-hard [22]

Oð
ffiffiffiffi
m

p
Þ-approx.

algo. [4] NP-

hard to approx.

within m
1
2
�e [30]

NP-hard [22]

Oð
ffiffiffiffi
m

p
Þ-approx.

algo. [4] NP-

hard to approx.

within m
1
2
�e [30]

NP-hard [22]

Oð
ffiffiffiffi
m

p
Þ-approx.

algo. [4] NP-

hard to approx.

within m
1
2
�e [30]

Max SNP-hard

[18] 2 logK-
approx. algo.

[25] Polyn. if

acyclic Oðn3Þ

Polyn. if acy-

clic Oðn3Þ

Directed

trees

Polyn. OðmaxðK2 log

n; n2 log2 nÞÞ [14]
Polyn. [14] Polyn. [14] Polyn. [14] Polyn. [14] Polyn. Polyn.

Rooted

trees

Polyn. OðminðKn; n2ÞÞ
[14]

Polyn. OðminðKn; n2ÞÞ
[14]

Polyn.

OðminðKn; n2ÞÞ
[14]

Polyn.

OðminðKn; n2ÞÞ
[14]

Polyn.

OðminðKn; n2ÞÞ
[14]

Polyn. OðnÞ Polyn.OðKhÞ
h¼height(T)

Bidirected

trees

Max SNP-hard [20] Max SNP-hard

[20]

Max SNP-hard

[20]

Max SNP-hard

(5/3+e)-approx.
algo. [20]

Undirected

trees

Max SNP-hard 1/2-

approx. algo. [27]

Max SNP-hard

2-approx. algo. [27]

Max SNP-hard

1/2-approx. algo.

[27]

Polyn. [27] Polyn. OðnÞ [15] Polyn. Oðn2Þ
[15]

Augmented

bipartite

graphs

NP-hard for KP 3.

Open for K ¼ 2

Planar graphs NP-hard [49] NP-hard [18] Constant

factor approx. algo. [63]

NP-hard [49] NP-hard [49] NP-hard [49] NP-hard [18]

Rings Polyn. Oðn3Þif
demands and

uniform capacities

[41]

Polyn. OðminðKn2; n3ÞÞ
[43]

NP-hard if de-

mands [12]

Polyn. [23] Polyn. [43] Polyn. [43]
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flow values in rings. An example is given by a di-
rected ring with 3 vertices v1, v2, v3, 3 edges of

value 5 and 3 pairs fsk; tkg, such that s1 ¼ t2 ¼ v1,
s2 ¼ t3 ¼ v2 and s3 ¼ t1 ¼ v3: we get vðC�Þ ¼ 10

and vðU�Þ ¼ 7.

Now, let us consider the subproblems. THETHE

MULTITERMINAL FLOWMULTITERMINAL FLOW and CUTCUT problems are

trivially solved in OðnÞ: both optimum values are

equal to the sum of the values of the edges
remaining in the ring after simplifications. The

MAX EDGEDISJPATHMAX EDGEDISJPATH problem is polynomial in

rings [23].

We want also to present two variants of IMFP

in ring networks. Kubat et al. [41] proposed an

Oðn3Þ algorithm for finding an integer multiflow

with demands on bidirectional rings with uniform

capacities. The second variant is the UNSPLIT-UNSPLIT-

FLOWFLOW problem in ring networks, where each

demand must be routed entirely in a clockwise or

a counterclockwise direction; this problem was

shown to be NP-hard by Cosares and Saniee in

[12]. Note that the problems with demands cannot

be reduced to the corresponding maximization

problems (as proposed at the end of Section 1)

without loosing the ring structure.
5. Conclusion

The first concluding remark to be made is the

difficulty to solve efficiently max multiflow and min

multicut problems except for special cases or small

instances. In fact, bounds provided by linear pro-
gramming are not enough tight to be used suc-

cessfully in a Branch and Bound algorithm. The

semidefinite programming (SDP) may be a good

attempt to provide a bound good enough, al-

though its computing cost is high. Actually, L�eto-
cart and Roupin proposed in [44] such an approach

for the multicut problem in trees using the algo-

rithm proposed in [57]: numerical results showed
that SDP improve substantially the bound pro-

vided by linear programming; it can be used with

LP in order to solve larger instances. This ap-

proach could be extended to unrestricted graphs.

It is interesting to note that the complexity and

approximability of the multicut and integral mul-

tiflow problems, and of their subproblems, is often
affected by choosing directed or undirected graphs,
but not always in the same way. In some cases,

problems are easier to solve in directed graphs: for

instance the multicut and multiflow problems are

polynomial in directed trees but Max SNP-hard in

undirected trees. In other cases they are harder:

approximate the multiterminal cut problem in a

directed graph seems more difficult than in an

undirected one; in the same way, the max edge
disjoint path problem is NP-hard for K ¼ 2 in

directed graphs but is polynomial for any fixed K
in undirected graphs.

Beside the difficult general problems, several

special but important cases are polynomial. Let us

quote the edge disjoint path problem and the

multiterminal cut and flow problems when the

graph is an undirected tree, the two flow problem
in planar graphs, the multiterminal cut and inte-

gral flow problems in acyclic graphs and the

multicut and integral flow problems in directed

trees.

Finally, we would like to point out that there

are still some interesting opened questions: what is

the complexity of the two flow problem in directed

bipartite graphs? Is it possible to approximate
within a constant ratio the minimum multicut

problem in unrestricted graphs?

To conclude this survey, we give Table 1 which

summarizes the most significant results.
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