An Introduction to
Differentiable Programming

Damiano Mazza
CNRS, LIPN, Université Sorbonne Paris Nord

FOPSS, Bertinoro, 13-14 February 2023

Remember derivatives?

f:R—=R

h—0 h

Thought of as an operator (—)": (R - R) - R — R

(af + Bg) (x) = af’

8

Remember gradients?

f:R"—=R

Gradient:

Vf:R" — R"

0if(xy,...,xy,) = lim

Why gradients?

Gradient descent!

Target function f : R™ — RP, fraining set X Cg, R™.
Parametric approximation g : R* ™™ — RP,

Want to find i, € R™ such that g(wept) ~ f.
Define

|leg F@:R" =R

reX
For initial wy € R™, sTep n<0,and: e N, setf

ZD¢+1 p— ?Ez -+ nV (1177,)

When ¢(w);) is close To zero, set Wy := ;.

Guaranteed to happen under convexity assumptions on e.

Automatic Differentiation (AD)

e In machine learning (ML), g is computed by a neural network
(NN).

e In their simplest form, these are layers of neurons

k
O(xy,...,xE) = a(Z wzxz> R > R
i=1

where o is some activation function.
e n = NUMber of weights in the net. (These days it can easily be 10% or 109).

AD = methods for automatically computing gradients of functions
specified by a computer Program (e.g. the loss function of a neural network).

Differentiable Programming

e In recent years (from 2015-2016), NN architectures used in ML
started becoming more and more complex.

e |l.e., gis computed by more and more sophisticated programs.

e Need programming languages with a built-in engine for
efficiently computing derivatives/gradients/Jacobians.

differentiable programming = programming languages + AD

Two wrong ideas

e Approximate the definifion:

fle+h) - f(z)

fl(x) = h

with A very small.

- How do we choose h?
- Contains two “deadly sins” of numerical computation.

e Symbolic computatfion (like in Mathematica).

- Good ideaq, but needs to be extended to programs.
- Inefficient, needs sharing.

Dual numbers

e The commutative ring of dual numlers is defined as

0 = (0,0)

(a,a’) + (b,0") = (a + b,a’ +)
1=(1,0)

(a,a")(b,b") = (ab,a’b + ab)

Dual numbers and derivatives

e If f: R — Ris differentiable, we extend it to f : R — R as follows:

P

f(a,a’) := (f(a), f'(a)a’)

e Using the chain rule, we have

Fogla,a’) = (f(g(a),d (f o 9)'(a)) = (f(g(a)), f'(9(a))g (a)a)

P

= [(9(a),¢'(a)a’) = f(G(a,a"))
id(a,d’) = (a,id'(a)d’) = (a,1-d') = (a,d)

e Furthermore, notice that

P

f(av 1) — (f(a)v f,(a))

Dual numbers and AD for unary straight-line programs

e The above suggests the following program transformation:

def df (x):
dx = 1
def iixi.fl(x) z1 = f1(x)
z2 = £2(z1) ~ dzt T dx v grieo
z2 = f2(z1)
dz2 = dzl * df2(z1)

return g(zn)

return dzn * dg (zn)
e Exact computation.

e Preserves the complexity (modulo a factor of 3).

Dual numbers and partial derivatives
o If f:R™ — R is differentiable, define f : R* — R as

flas,dl, .. an,al) = (f(a@), V(@) - @)

e We still have

—_— ~

fo(gla'”vgn):fo(g\la"'ag/;l)

e Furthermore, we have

AN

f(CLl?Ov'"aafia17"'7an70) — (f(&))?@zf(a:))

Dual numbers and AD for straight-line programs

The above transformation generalizes 1o
def f(x1,...,xn):

é.; g(wl,...,wk)

return y

AN
def df(i,x1,...,xn):
dx1,...,dxi,...,dxn = 0,...,1,...0
z = g(wl,...,wk)
dz = dwl * dg(l,wl,...,wk) + ... + dwk *x dg(k,wl,..

fééurn dy
e Still exact computation, still complexity-preserving.

e Covers the case of loss functions of NNs.,
e However, inefficient for gradients; requires n pAsses.

., Wk)

Dual numbers and AD for arbitrary programs

z = g(wl,...,wk)
{z = g(wl,...,wk)} — dz = dwl *x dg(l,wl,...,wk) + ...\
+ dwk * dg(k,wl,...,wk)
x <= 0: x <= 0:
<codel> {<codel1>}
<code2> {<code2>}
x <= 0: L x <= 0:
<code> T {<code>}
f(x1,...,xn):
<code>
f(x1,...,xn): y
<code> ~ df (i,x1,...,xn):
y dxt1,...,dxi,...,dxn = O0,...,1,...,0
{<code>}
dy

Theorem (Joss 1976). Taking a set of basic arithmetic functions as primitive,
[af (i)] = 0;[£f] almost everywhere.

PCF with real numbers
Types: A, B

Programes: M,N,P

Evaluation: (Af(x).M)N
i (M1, Mo

)
if(r <0;M,N)
)

f(ry,....r

Ll

%

R|IAxB|A— B

x| Af(x).M | MN | (M, N) | m;M
if(P<0;M,N)|r:R|f:RF>R

M[N/z][Af(z). M/ f]
M;

M ifr <0

N ifr>0

Ifl(r1,-- ., m0)

Every program z; : R,...,z, : RE M : R has a natural semantics
IM] : R" = R.
We write d(M) for the open subset of R™ where [M] is differentiable.

AD in PCF

D(R):=RxR D(AxB):= D(A)xD(B) D(A— B):=D(A)— D(B)

D(z: A) :=z: D(A) D(r) := (r,0)
D (A f(z).M) := Af(z).D (M) D(MN) := D(M)D (N)
IR <_D>(M),_D>(N)> D (7 M) := ;D (M)

D (if(P < 0; M, N)) := if(m D (P) < 0; D (M), D (N))

k
I_)>(f) = A\z. <f(7rlz>, Z(?‘(‘in) : 8if<771z)>

Lemma. M — N implies ﬁ(M) —* ﬁ(N)

Soundness for simple programs

Basic assumption: for every primitivef : RF - Randforalll < i < k,
we have [0;f] = 0;[f] on d(f).

letx1:R,...,z,: R M :Randlet

D (M) i= w2D (M) [{21,0) /1] - [(w5, 1) /2] -+« [0, 0) /]
We still have z, : R, ...z, : R Dy(M) : R,
Definition. D is sound on S Cd(M)if [[ﬁi(M)]] = 0;[M] In S.
Ideally, we would like D to be sound on d(M) for every M|

Definition. A PCF program is simple if it contains no if and no
recursive def.

Theorem. For every simple program t, D is sound on d(t).

Soundness for simple programs: proof idea

Two possibilities:

e Reduce fo correctness for straight-line progs (direct):

D
simple progs simple progs
Nf Nf
straight-line progs - straight-line progs

e Logical relafions.

Unsoundness

Let
sillyld := if(xz < 0;if(—z < 0;0,2), x).
We obviously have [sillyld]] = id. However

B1(Sillyld) = mo(if (m1 (@, 1) < 0;if(my (—z,—1) <0;(0,0),(z,1)), (z,1)))
~ if(x <0;if(—x <0;0,1),1)

hence

NB: may happen in practice! If ReLU(z) :=if(x < 0;0,z), then
[ReLU(x) — ReLU(—2x))] = id
has the same behavior as above.

Approximations and traces

On types:
ACA BrCB AlCcA ... A CA B'CB
RCR A'x B'C Ax B Al x---x A - B CA— B
On terms:
AiCA,..., A, CA p: A x--- XA, x=: A
=EpCxkFmpCax =FrCr =FfCf
EpCaxhHtC M =-FtcM EZEFruwvi CN ... EFu,C N
EFAptC .M 2 Huy, ..., un) T MN
=t C M, EFtC Af(x). M

ic€{1,2}

= F 7Ti<tz',tz'> I If(P < 0; My, MQ) =FtC)\f(ZIZ)M
where A\of(x). M := Xf(x).M and A\, 1f(x). M := (Af . M) (A f(x).M)

Onreductions: (t =" uw) C (M — N)ift = M,w C N and ¢ “simulates” M.
t L M if (reduction of ¢) C (reduction of M fo normal form).

Soundness on stable points

letx1:R,...,z,,: RHM:R.

Definition. A point r € R™ is stable for M if

there exist t — M and ¢ > 0 such that
Vr' e R", ||r' —r|| < e implies t[r'/x] L M[r'/x].

Theorem. For every M, D is sound on the stable points of d(M).

The proof is based on

Lemma. r sfable for M implies that there exists t — M such thaft
[M] = [t] on a neighborhood of r.

Lemma. Ift[r/x] & MIr/x| and u is the normal form of Bi(t)[r/x],
fhen ﬁi(M)[r/x] has a normal form N and u = N,

Quasivarieties and unsoundness

h:RF —~ Ris basic if it is in the clone generated by {[f]}+ primitive-
Additional assumption: for every basic function h.:

1. h is continuous on its domain;
2. if h # 0, then h=1(0) is of Lebesgue measure zero in R”,

For example, me may restrict to f’s such that [f] is analytic on its domain.
Definition. Quasivariety Z C R* if 3{h; : R* — R}, basic non-zero
z < | Jn 0
T<<w
Quasivarieties are negligible: they are of measure zero and are
stable under subsets and countable unions.

Theorem. The unsfable points of a program form a quasivariety.

Corollary. For every M, the set ir e d(M) | [[ﬁz-(M) (r) # 0;[M](r)}
is a quasivariety. In particular, D is sound on almost all of d(M).

Proof: logical predicates

U(M) := unstable converging pointsof M. I' :=x; : R, ..., z, : R.
Pr(R):={I'F M : R | U(M) is a quasivariety}
Pr(A— B)={'FM:A— B|VN € Pr(A4), MN € Pp(B)}
Pr(A; x Ag) :={'FM : Ax B|Vie{l1,2}, ;M € Pr(A;)}

Proof: logical predicates with quasicontinuity
U(M) := unstable converging pointsof M. I' :=x; : R, ..., z, : R.
Pr(R):={I'F M : R | U(M) is a quasivariety and [M] is cqc}
Pr(A— B)={T'tM:A— B|VN € Pr(A), MN € Pr(B)}
Pr(A; x Ag):={'EM: Ax B|Vie{l,2}, ;M € Pr(A;)}

Definition. Quasiopen set of R™ (U open and h basic):
Q.Q :==U|hr"0)] | QN
<w
Definition. f : R — R™ quasiconfinuous if € R™ quasiopen
implies f~1(Q) quasiopen. It is completely quasicontinuous (cqc)
if idpr x f IS quasicontinuous for all £ € N.

lemma. T,y @ Ay,...,ym : A B M : A and N; € Pr(A;) for all
1 <i < mimplies M[N1/yi]- - [Nm/ym] € Pr(A).

Back to derivatives

If f: A— B,its derivative (if it exists), is a function
Df:A— (A— B)
where A — B is the space of linear functions from A fo B.

Given x € A, one offen writes D, f for the function Df(z) : A — B.
With this notation, the chain rule becomes

If A=R", B=R"andx € R"”, Jyf := Dyf Is the Jacobian mafrix
(m x n), or gradient V. f if m = 1. Compaosition is maftrix product;

J1 J2 fp—l Ip
R"™2 ce. R"p—1

Rno Rnp

Jx(fpo o f1)= pr—l(---fl(x))fp - Jxfi

NB: when A = B = R, the Jacobian maftrix is just a scalar, hence the high school definition.

Computing gradients: from forward to reverse mode

Consider a straight-line programs P with p lines. The i-th line

zi = gi(yl,..., yk)
induces a function f; : R™"-1 — R™, with n,_; > k and n; equal fo
the number of variables (including zi) used by the lines > i.
Hence, [P] = f,o---o f; as above, and computfing V[P] means:
e computing each matrix Jy. ..) fi
e Mmultiply them together.
B may be adapted to compute V[P], starting from the right.
But matrix product is associative, so we may also start from the leff!
e Say thatng~n; ~ -+ =~ n,_1 =~ n, whereas n, = 1.

o Jxfi Jpfar i Jp o fix)) fp—1 Q€ 1 X N,
o pr_l(_”fl(x))fp IS A row vector of size n/!

We go from O(n?) scalar products to O(n)!

Reverse mode AD as transposition

Remember: if f: R” — R™ and x € R"
Jif : R" —o R™
Linear maps may be transposed:
JLf i R™ —o R™

Technically, this uses (—)*, but R+ = R,

The chain rule becomes

J1 f2 fp—l Ip

R0 R"> R7p-1

Je(fpo--ofi)=Jifio..odp (reonle

R"»

Reverse mode AD for straight-line programs

def f(x1,...,xn):
zl = gi(vl,...,vk)

zp = gp(wl,...,wh)
return zp

A
def grad_f(xl,...,xn):
zl = gli(vl,...,vk)
zp = gp(wl,...,wh)
reverse pass starts here
dx1,...,dxn,dzl,...,dz{p-1},dzp = 0,...,0,0,...
dwl += dgp(l,wl,...,wh) * dzp
dwh += dgp(h,wl,...,wh) * dzp
dvli += dgi(i,vl,...,vk) * dz1l
dvk += dgl(k,vl,...,vk) * dzl

return dx1,...,dxn

Backpropagators and derivatives

e For an arbitrary space E, let R+ : =R — E and R® := R x R+.
e An element of R+ is called backpropagator.

o If f:R — R is differentiable, we define f* : R* — R*® as follows:
fo(x,2%) = (f(2), Aa.z"(a f'(2)))

We h
PUETEE L e =rrog id* = id

e Furthermore, nofice that, taking £ = R,

fo(z, ha.a) = (f(x), Xa.a f'(z))

Backpropagators and gradients

e If f:R"™ — Ris differentiable, we define f*: R*" — R*® as follows:
felry,xy, ... xn,x)) = (f(a?), Aa. Zajﬁ'{(a &f(a_:’)))
=1
e We still have

(fo(917°'°7gn)).:f.o(giv“wg;,)

e Furthermore, nofice that, taking £ = R”,
f.(x17 [/17 c e 73371/7 [/n) — (f(f)7)\a"a’vf(f)>

where ¢; : R — R"™ is the i-th injection.

Reverse mode AD in PCF with linear negation

e Types: A B:=R|AXB|A—-B|R—A
e Same programs. Typing judgments I on.iin; Ain B M @ A 1o track linearity.
e Linear factoringrule: if z* : R — A,

M+ N — az*(M—i—N)

e Reverse mode AD has source PCF and target PCF with linear negation.

e Foranytype E, we let 5E(R) := R X (R — E). Homomorphic on the rest.
e On programs, homomorphic everywhere except

1=1

k
SE(z) := (r, Aa.0) ﬁE(f) = A\z. <f(71'1z>, Aa. 2(71'22'2-)(0, 87;f(71'1z>)>

Lemma. M — N implies ﬁ(M) —" E(N)

Soundness for reverse mode AD

We work under the same assumptions about the f’s as above.
letz1:R,..., 2, : RF M :Randlet (using Rt = R — R")

grad(M) = (maD (M)[(z1,11) /21] - - [{n, 1) /7))
We have z; : R,... .z, : RFgrad(M) : R™.

Definition. D is sound on S Cd(M)if [grad(M)] = V[M] In S.
The soundness proof may be adapted to reverse mode:
Theorem. For every M, D is sound on the stable points of d(M).

Corollary. For all M, the sef {r € d(M) | [grad(M)]|(r) # V[M](r)} is
Q quasivariety. In particular, ﬁ is sound on almost all of d(M).

Soundness and efficiency for simple programs

simple progs b simple progs
l O(m) (by 2-funcftoriality)
m simple progs
. l linear factoring

(_
stfraight-line progs —— straight-line progs ~ straight-line progs

Without linear factoring, execution is inefficient. Consider
M := (Az.zsin z) N

S(M) —* (M(z,2").(zsin z, Aa.z*(asin z) + z*(az cos 2))) (r, \b.B)

Duplicating Ab.B is inefficient, need to apply factoring before.
This brings up the question of how to implementat all this.

A personal, partial bibliography

1964
1976
1980
2008
2016
2017
2018
2019
2020

2021

2022

2023

Wengert: reverse mode AD

Joss (PhD Thesis): forward mode AD as a fransformation on (Turing-complete) straight-line programs
Speelpenning (PhD Thesis): backprop on straight-line programs

Pearimutter and Siskind: backprop is higher order! Differentiable programnming ante litteram

Abadi et al.: TensorFlow

Paszke et al.; PyTorch

Elliott (ICFP): AD is functorial!

Wang, Zheng, Decker, Wu, Essertel, Rompf (ICFP): backprop as typed transformation, fully general, HO
Abadi and Plotkin (POPL): first-order, “internal” AD

Barthe, Crubillé, Dal Lago, Gavazzo (ESOP): correctness by logical relations

Brunel, Mazza, Pagani (POPL): reverse mode AD with linear negation, simply-typed A-calculus
Huot, Staton, Vakar (FoSSaCs): correctness proofs by logical relations with diffeclogies

Mak, Ong (Arxiv): reverse mode AD base on differential forms

Kerjean and Pédrot (unpublished): AD and Dialectica (related to Pearimutter and Siskind?)

Mazza and Pagani (POPL): (un)soundness of AD in PCF

Sherman, Michel, Carbin (POPL): semantics for AD

Vakar (ESOP): homomorphic AD

Krawiec, Jones, Krishnaswami, Ellis, Eisenberg, Fitzgiblbon (POPL): reverse mode AD in Haskell

Vakar, Smeding (TOPLAS): categorically-grounded AD (related to Pearimutter and Siskind?)
Alvarez-Picallo, Ghica, Sprunger, Zanasi (CSL): reverse mode AD in string diagrams

Lew, Huot, Mansinghka, ??7? (unpublished): semantic proof of our POPL 2021 results, via wPAP functions
Radul, Paszke, Frostig, Johnson, Maclaurin (POPL): how JAX works

Smeding, Vakar (POPL): implementation of our POPL 2020 paper

Challenge: “internal” AD

Differentiation as a programming primitive, not a fransformation
(like [Pearimutter and Siskind 2008], [Abadi and Plotkin 2020], or the differential A-calculus).

M,N =z | .M |MN|...| Dpr M 21 : Dp(Cy),s ... an: Dp(Cp) - Dp M : Dp(A)

“True” differentiable programming (with higher-order derivatives).
Naive idea: turn the transformation defn info rewriting rules.
But the target language must be the same as the source. ..
NB: with if-then-else, internal AD breaks the std semantics:

[Az.x] = [Ax.ReLU(xz) — ReLU(—x)]
IDr(z.2)] # [Dr(Az.ReLU(z) — ReLU(—2))]

Question: the benefit of compositionality?

Remember the two routes:

[Rn — R] compositional backprop N
arbitrary progs [D(R) — D(R)]
exec exec
R" — R]

. [R"“ — R1+”} ~ |ID(R)” — D(R)]
sfraight-line progs packprop
Question:

are there examples (NN architectures...) where the HO route is
substantially beftter (faster, more convenient...) than the FO route?

Current implementations do not seem to provide an answer.

Challenge: almost-everywhere correctness?

e The set of inputs on which AD is incorrect has measure zero.
e [he set of representable reals has measure zero (it's actually finite).

e Smartfass. Ok, look, in PCF. , it’s actually of this form:

Fail C || P7'(0)

<w
where the P, are polynomials (not identically zero, not necessarily distinct).

e In fact, the P, come from “cusps” of if-then-else statements.

e s it possible to automatically infer an upper bound on Fail?

Question: AD in the differential \-calculus?

The diff A-calculus computes derivatives with respect to numbers
which are nof the ones that programs have direct access fo.

e In the differential A\-calculus:
- Type = topological R-vector space
- program A — B = smooth function A — B
- derivative = smooth function of type A — (A — B)
- unit type = R, Booleans = R?, reals = R(uncountable basis).
-05-2405-4=3#05-24+0.5-4.
e Different behavior at higher types. Below, f : R — R:

DxR f(fx)) = AaNa(fz) + f/(fx) - (ax) witha:R—R
DR f(f2)) = AXR . F(FX) with F : R? = R?

e Thereis no differential PCF! (Recently fixed by Ehrhard’s coherent differentiation).

