Heterodox Exponential Modalities in Linear Logic

Damiano Mazza CNRS, LIPN, Univesité Sorbonne Paris Nord

CIRM, 28 January 2022

The Perfect World (or, Linear Logic without Exponential Modalities)

classical

intuitionistic

$$\otimes$$
, 1, \Im , \bot

$$\&, \top, \oplus, 0$$

$$\otimes, 1, \multimap$$

$$\&, \top, \oplus, 0$$

*-autonomous categories with fin. products (e.g. \mathbf{Vect}_k)

symmetric closed mononidal cats with fin. prods and fin. coprods (e.g. CMon)

Everything is decidable:

- the space of proof search is finite;
- the size of proofs shrinks under cut-elimination (not quite in MALL...).

	provability	(untyped) cut-elimination
		(equality of normal forms)
MLL	NP-complete	P-complete
MALL	PSPACE-complete	coNP-complete

Imperfection (or, Orthodox Exponential Modalities)

cat with fin. prods $\mathbf{M} = \mathbf{L} = \mathbf{L}$ model of (I)M(A)LL lax symm. mon.

Examples:

• $(-)^* : \mathbf{Set} \rightleftharpoons \mathbf{CMon} : U$

• $U : \mathbf{Set} \rightleftharpoons \mathbf{Rel} : P$

Infinity steps in:

	provability	(untyped) cut-elimination
MELL	???	(undecidable) non-elementary
LL	undecidable	(undecidable) non-elementary

Not so "God-given":

- who had heard of LNL adjunctions before linear logic?
- Not determined by \otimes (consider $U:\mathbf{MRel}\rightleftarrows\mathbf{Rel}:M_{\mathrm{fin}}$)

An Alternative Presentation of Linear Logic

Sequents with an "exponential part": $\vdash \Theta$; Γ

(First considered by Andreoli for proof search).

The Polynomial Structure of Exponential Modalities

Decorate exponential part with $P_i \in \mathbb{N}[X]$: $\vdash P_1 \cdot A_1, \dots, P_n \cdot A_n$; Γ

$$\frac{\vdash \vec{P} \cdot \Theta; \Gamma, A^{\perp} \qquad \vdash \vec{Q} \cdot \Theta; \Delta, A}{\vdash \vec{P} \cdot \Theta; \Gamma, A} \qquad \frac{\vdash \vec{P} \cdot \Theta; \Gamma, A \qquad \vdash \vec{Q} \cdot \Theta; \Gamma, \Delta}{\vdash \vec{P} \cdot \Theta; \Gamma, A} \qquad \frac{\vdash \vec{P} \cdot \Theta; \Gamma, A \qquad \vdash \vec{Q} \cdot \Theta; \Delta, B}{\vdash \vec{P} + \vec{Q} \cdot \Theta; \Gamma, \Delta, A \otimes B} \qquad \frac{\vdash \Theta; \Gamma}{\vdash \Theta; \Gamma, \bot} \qquad \frac{\vdash \Theta; \Gamma, A, B}{\vdash \Theta; \Gamma, A \curvearrowright B}$$

$$\frac{\vdash \vec{P} \cdot \Theta; \Gamma, A \qquad \vdash \vec{Q} \cdot \Theta; \Gamma, B}{\vdash \vec{P} + \vec{Q} \cdot \Theta; \Gamma, A \otimes B} \qquad \frac{\vdash \Theta; \Gamma, A_i}{\vdash \Theta; \Gamma, A_1 \oplus A_2} i \in \{1, 2\}$$

$$\frac{\vdash \vec{P} \cdot \Theta; A}{\vdash X \vec{P} \cdot \Theta; !A} \qquad \frac{\vdash \Theta, P \cdot A; \Gamma, A}{\vdash \Theta, P + 1 \cdot A; \Gamma} \qquad \frac{\vdash \Theta, P \cdot A; \Gamma}{\vdash \Theta; \Gamma, ?A}$$

Making structure explicit yields graded modalities (bounded LL & co.).

A Family of Heterodox Exponential Modalities

We obtain a subsystem of LL by restricting the shape of P in

$$\frac{\vdash \Theta, P \cdot A; \Gamma}{\vdash \Theta; \Gamma, ?A}$$

Theorem. For every submonoid M of $(\mathbb{N}[X], \circ, X)$, the subsystem of LL defined by restricting the above rule to $P \in M$ enjoys η -expansion and cut-elimination (also, !(-) is always lax monoidal). Moreover, if we define

$$0(A) := 1$$
 $1(A) := A$
$$(P+Q)(A) := P(A) \otimes Q(A)$$

$$(PQ)(A) := P(Q(A))$$

$$X(A) := !A$$

then $P \in M$ implies $A \multimap P(A)$ provable in the subsystem.

Examples of Systems with Heterodox Modalities

Main Properties

- 4LL, TLL: [Danos, Joinet 2003]. Stream computation in 4LL [Dal Lago 2016].
- Light logics: enjoy untyped normalization.
 - ELL: [Girard 1998] [Danos, Joinet 2003] characterizes elementary time.
 - SLL: [Lafont 2004] characterizes polynomial time.
 - LLL: [Girard 1998] [Danos, Joinet 2003] characterizes polynomial time.
- PLL: [M. 2014] Turing-complete if untyped. With $!A \cong A \otimes !A$:
 - propositional: characterizes logspace [M. 2015];
 - linear 2nd order: characterizes polytime [M. and Terui 2015].
- Two different approaches to control complexity:
 - stratification (light logics) vs. local control (parsimony);
 - parsimony enables *non-uniform complexity* via approximations.

Characterizing Complexity Classes: What and How

Typical Theorem. For some types Str and Bool, terms of type Str → Bool

decide exactly the problems in the complexity class C.

TYPICAL PROOF.

Soundness: (decidable by a term implies in C)

Find a parameter d such that:

- terms of size s and parameter d normalize in O(f(d,s)) time/space;
- ullet terms of type Str have constant parameter d and size O(n) where n is the length of the represented string;
- ullet for constant k, the bound O(f(k,n)) ensures membership in C.

The proof may be combinatorial or semantic.

For light logics, d does not depend on the type of the term.

For logspace, use the GoI (normalization via traveling pointers).

Completeness: (in C implies decidable by a term)

A programming excercise (maybe non-trivial).

Approximations (or, Exponential Modalities are Limits)

Relation $t ext{ } ext{ }$

Such that

$$u$$
 $t \longrightarrow u$ \square iff \square $M \longrightarrow N$ M $c_1(\rho) = c_0(t)$

Conclusions

- Light logics are dead, long live heterodox exponentials!
- Categorical models?
- Limit constructions and approximations?
- Where do approximations come from?