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1. Introduction and motivations

Given a commutative (associative) ring R with a unit, a Lie R-algebra (or just a Lie 
algebra) is a pair (g, [−, −]) where g is a R-module and [−, −]: g× g → g is a Lie bracket
(or just a bracket), i.e., a R-bilinear map which is

• alternating: this means that [x, x] = 0 for every x ∈ g,
• and satisfies the Jacobi identity: for every x, y, z ∈ g,

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

A Lie algebra is said to be commutative when its bracket is the zero bracket, i.e., [x, y] = 0
for every x, y. Thus it is essentially only a R-module.

Lie algebras are very common in the context of associative algebras since any (say 
unital) associative R-algebra (A, ∗) may be turned into a Lie algebra when it is equipped 
with the so-called commutator bracket

[x, y] = x ∗ y − y ∗ x,

x, y ∈ A. The Lie algebra (A, [−, −]) is then referred to as the underlying Lie algebra
of (A, ∗). Because any algebra homomorphism induces a homomorphism of Lie algebras 
between the underlying Lie algebras, this correspondence between (unital) associative 
algebras and Lie algebras is actually functorial. Furthermore this functor is well-known 
to admit a left adjoint, namely the universal enveloping algebra U(g, [−, −]) of a Lie 
algebra (g, [−, −]). It is given by U(g, [−, −]) = T(g)/I where I is the two-sided ideal of 
the tensor R-algebra T(g) on the R-module g generated by x ⊗ y− y⊗x − [x, y], x, y ∈ g

(for more details see e.g. [6]).
This algebra is universal among all (unital) algebras with a Lie map from (g, [−, −])

to its underlying Lie algebra. By this is meant the following. Let jg be the composite 
R-linear map g ↪→ T(g) π−→ U(g, [−, −]), where the first arrow is the canonical inclusion 
from the R-module g into its tensor algebra, and π is the canonical projection. The linear 
map jg happens to be a homomorphism of Lie algebras from (g, [−, −]) to the underlying 
Lie algebra of U(g, [−, −]). Now, given any other associative algebra (B, ∗) with a unit 
and a homomorphism φ: (g, [−, −]) → (B, [−, −]) of Lie algebras, then φ uniquely factors 
through jg, i.e., there exists a unique homomorphism of algebras φ̂: (A, ∗) → (B, ∗) such 
that the following diagram commutes (in the category of Lie algebras).

(g, [−,−])
φ

jg

B

U(g, [−,−])
φ̂

(1)
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This relation makes possible the study of Lie algebras within the realm of associative al-
gebras. In this situation one may ask for the conditions under which a Lie algebra embeds 
into (the underlying Lie algebra of) its universal enveloping algebra; more precisely when 
is the canonical map jg one-to-one? An answer, known as the Poincaré–Birkhoff–Witt 
Theorem (see again [6]), is as follows.

Theorem 1 (Poincaré–Birkhoff–Witt Theorem). (See [23,4,30].) If the underlying 
R-module g of a Lie algebra g is free, then jg is one-to-one.

Actually in its more general form this theorem tells us more: it provides a R-basis of 
the universal enveloping algebra U(g, [−, −]), obtained from a R-basis of the module g. 
Other more elaborate results exist (e.g. [10]).

There are obvious counterparts of associative and Lie algebras in the differential set-
ting, namely the same structures with an additional derivation. Hence one may wonder 
whether there is a way to extend also the notion of universal enveloping algebra in the 
differential setting.

The answer is affirmative as it is explained in this paper. And there are even (at 
least) two different ways to proceed. In the first one, one lifts the constructions and re-
sults from the classical situation to the differential setting. This is possible because any 
derivation on an algebra is also a derivation for its commutator bracket, and, moreover, 
the usual universal enveloping algebra on a Lie algebra g which admits a derivation may 
be equipped with a derivation that extends the derivation of g. It follows at once that the 
Poincaré–Birkhoff–Witt Theorem remains unchanged. The second way to treat the rela-
tions between differential Lie algebras and differential algebras, also discussed hereafter, 
is quite different since based on the “Wronskian bracket”, instead of the commutator 
bracket. Thus it depends on the derivation in an essential way. A sketch of this approach 
is presented now for the reader’s convenience and to motivate subsequent developments.

Let us give a differential commutative algebra ((A, ∗), d). Its Wronskian bracket is 
defined as

W (x, y) = x ∗ d(y) − d(x) ∗ y, x, y ∈ A

and it turns A into a differential Lie algebra. Similarly to the commutator bracket, this 
defines a functor from differential algebras to differential Lie algebras. Therefore one can 
ask a few questions:

1. Does this functor admit a left adjoint? In other terms, is there a corresponding 
universal enveloping differential commutative algebra? The answer is positive and 
follows from a general theorem from universal algebra.

2. Under which conditions on the Lie algebra and on the base ring is the canonical map 
from a differential Lie algebra to its differential enveloping algebra one-to-one? This 
question is still open.
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Only the first of the above two questions is addressed in this paper. Nevertheless I provide 
an example and a counter-example illustrating the fact that the second question seems 
to be more difficult than the same problem in a non-differential context, which already 
has an answer given by the Poincaré–Birkhoff–Witt Theorem.

The presentation of the two approaches for the universal enveloping algebra con-
struction on a differential Lie algebra is not the unique subject of this contribution. 
I also provide a uniform and general treatment of functorial constructions (e.g., ten-
sor or symmetric algebras) between categories of differential algebras of several kinds, 
that I call “universal differential algebra” in order to focus on the use of techniques 
from universal algebra. Hence it is also both a continuation of, and a complement to, 
the article [25]. Furthermore, I point out an application to the fragment, developed 
here, of universal differential algebra to Rota–Baxter (Lie) algebras, whose main merit 
is to show the usefulness of the contribution in another branch than differential alge-
bra.

A large part of the content of this paper has been presented during a talk, with the 
same title as this contribution, given in the special session “Algebraic and Algorithmic 
aspects of Differential and Integral Operators” AADIOS 2014 at the conference ACA 
2014 held at New York in July 2014.

Finally I mention a remark by the referee of the paper. There already exists a notion 
of differential algebraic Lie algebras [8]. These objects are rather different from mine be-
cause of the absence of a derivation, in general, in the Lie algebras. Differential algebraic 
Lie algebras may be better seen as the differential counterpart of affine algebraic group 
schemes, thus merely as the solution spaces of some systems of differential equations. 
Moreover, the referee pointed out that the Wronskian bracket already appeared for in-
stance in [26] as the antisymmetrization of the second-degree terms of a one-dimensional 
formal differential group known as the “substitution group”. The connections between 
both notions of differential Lie algebras are not studied in this contribution.

Organization of the paper
In Section 2 and in Section 3 are recalled some notions from category theory and 

from universal algebra which are frequently used hereafter. Section 4 contains an ex-
plicit description of a left adjoint of an algebraic functor (between equational varieties 
of algebras or concrete categories concretely isomorphic to varieties) which makes pos-
sible to treat many functorial constructions in a uniform way, and which is applied in 
Section 5, where are also introduced some basic concepts of “universal differential alge-
bra”, whose objective consists in dealing with equational varieties of differential algebras 
of several kinds. In particular, the tensor, symmetric and group algebra constructions 
are detailed in the differential algebra setting. The two approaches for the universal en-
veloping algebra construction for differential Lie algebras – namely by lifting the usual 
construction and by using the “Wronskian” bracket instead of the commutator bracket – 
are developed in Section 6. A similar construction for Rota–Baxter (Lie) algebras is given 
in Section 7.
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2. Basic notions from category theory

In this section are summarized some notions from category theory that will be needed 
for the rest of this contribution and that, for the essential part, concern left adjoint 
functors (free constructions) and concrete categories. Our main reference is [21].

For a category C, it is always assumed – in this contribution – that the class of all 
morphisms from an object c to another one c′ forms a set, which is denoted by C(c, c′). 
(Some authors refer to as locally small for this kind of categories.) By a C-object is 
meant an “object of C”, and similarly for morphisms (the term “map” will also be used 
a few times for “morphism”).

Let C be a category, and let E be any sub-class of objects of C. This characterizes a 
particular category CE, the full sub-category spanned by E: for each e, e′ ∈ E, one has 
CE(e, e′) = C(e, e′), and the composition is that of C. More generally a full sub-category
of a category C is a category of the form CE for some E.

The identity functor on a category C is the functor which is the identity map both 
on objects and on arrows. A functor F : C1 → C2 is called an isomorphism, and the two 
categories are said to be isomorphic, when there exists a functor G: C2 → C1 such that 
F ◦ G is the identity functor on C2 and G ◦ F is the identity functor on C1. One also 
says that C1 may be identified with C2.

Let C and D be two categories, and let U : D → C be a functor. A left adjoint of U
is a functor F : C → D such that there exists a set-theoretic bijection τc,d: C(c, U(d)) �
D(F (c), d), natural in c and in d (where c is a “variable” object of C while d is a “variable” 
object of D), i.e., for every h ∈ C(c′, c) and f ∈ D(d, d′), the following diagram commutes 
(in the category Set of sets).

C(c, U(d))
τc,d

g�→

U(f)◦g◦h

D(F (c), d)
g�→

f◦g◦F (h)

C(c′, U(d′))
τc′,d′

D(F (c′), d′)

(2)

Remark 2. The notion of a right adjoint is obtained by dualizing (i.e., reversing the 
direction of all arrows) the definition of a left adjoint: F is a left adjoint of U , if, and 
only if, U is a right adjoint of F .

For each C-object c, F (c) may be referred to as the free D-object generated by c
and the canonical C-morphism jc := τ−1

c,F (c)(idF (c)) ∈ C(c, U(F (c))) is sometimes called 
the insertion of generators by analogy with the free object constructions in universal 
algebra, see Section 3 below (even if it is not, in general, a monomorphism) or also 
the unit of the adjunction. Also, if d is an object of D, U(d) may be referred to as 
the underlying C-object of d. Unfolding the previous definition the following universal 
property is satisfied by F (c): for every C-morphism φ: c → U(d), where d is any D-object, 
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there is a unique D-morphism φ̂: F (c) → d such that the following triangle commutes 
in C.

c
φ

jc

U(d)

U(F (c))
U(φ̂)

(3)

From this universal property, the action of F on arrows is recovered as F (f) = ̂(jc′ ◦ f) ∈
D(F (c), F (c′)) for f ∈ C(c, c′) (hence U(F (f)) ◦ jc = jc′ ◦ f). In conclusion, a universal 
property satisfied by a functor and its values on objects suffice to determine its values 
on arrows.

Example 3. Let R be a commutative ring with a unit. Let RMod be the category of all 
R-modules, and let U : RMod → Set be the functor that forgets the modules structure 
and so assigns its carrier set to a module. The well-known free module construction 
provides a left adjoint of U (see e.g. [7]).

A pair (C, U), where C is a category and U is a functor from C to some category B, is 
called a category concrete over B (or simply a concrete category when B = Set). Given 
two concrete categories (Ci, Ui), i = 1, 2, over B, a functor F : C1 → C2 is said to be a 
concrete functor if the following triangle commutes.

C1
F

U1

C2

U2

B

(4)

In case F is an isomorphism, one says that (C1, U1) and (C2, U2) are concretely iso-
morphic, and F is said to be a concrete isomorphism. (One observes that the in-
verse G of the concrete isomorphism F is also concrete since U2 ◦ F = U1 implies 
U2 = U2 ◦ F ◦G = U1 ◦G.)

Finally, a functor F : C → D is said to be faithful if for all C-objects c, c′, given 
two C-morphisms f, g ∈ C(c, c′), then F (f) = F (g) implies that f = g. The functor 
F : C → D is said to be full if for all C-objects c, c′, and for each g ∈ D(F (c), F (c′)), 
there exists a C-morphism f ∈ C(c, c′) such that F (f) = g.

Example 4. The category of monoids is concrete (over Set) using the obvious forgetful 
functor, which is faithful (as it is the case for any variety of algebras; see Section 3), that 
consists in forgetting the multiplication and the identity element of a monoid.
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3. A glance at universal algebra

Concrete categories play a fundamental role in universal algebra because each variety 
of algebras may be seen as a concrete category (over Set) with its obvious forgetful 
functor, which sends an algebra to its carrier set.

Let me briefly recall some concepts from universal algebra first informally and then 
more formally (see [11] for more details). Roughly speaking an “algebra” is a set A
equipped with a number, finite or not, of distinguished “basic” operations on it, i.e., 
mappings from An to A for various n, called “n-ary” operations. For instance a monoid 
(M, ∗, e) may be described as a set M with two operations, its multiplication ∗: M2 → M , 
and its identity element (seen as an operation from M0 to M).

Given two “similar” algebras A, B, i.e., algebras with, for each n, the same number 
of n-ary operations, a homomorphism of algebras is defined to be a set-theoretic map 
φ: A → B that “commutes” with the operations: if f is an n-ary operation of A, and if 
g is the corresponding operation on B, then for each a1, . . . , an ∈ A, φ(f(a1, . . . , an)) =
g(φ(a1), . . . , φ(an)). For instance homomorphisms of monoids are required to commute 
with the multiplications, φ(a1 ∗ a2) = φ(a1) ∗ φ(a2) and with the identity elements, 
φ(e) = e.

But operations are not sufficient to do algebra since one also needs equations. A set 
of basic operations generates, under “superposition” new operations, called “derived op-
erations”. For instance the commutator [−, −]: A2 → A, defined by (a1, a2) �→ [a1, a2] =
a1a2 − a2a1, is a derived operation of any (usual) associative algebra A. In universal 
algebra, an equation thus is a pair of derived operations. For instance, the associativity 
relation in an algebra (M, ∗), with a unique binary operation ∗, may be described as 
the equation (g, d), where g, d: M3 → M are defined by g(a1, a2, a3) = (a1 ∗ a2) ∗ a3, 
and d(a1, a2, a3) = a1 ∗ (a2 ∗ a3). Such an equation holds in an algebra whenever the two 
members of the equation define the same map. Hence, in any semigroup, the associativity 
relation holds.

The class of algebras characterized by a certain set of basic operations and the mem-
bers of which satisfy some given (finite or not) set of equations forms an “equational 
variety”. From a category-theoretic point of view, these varieties have nice properties. 
For instance, they admit all (small) categorical products and coproducts. A more impor-
tant result, at least for this contribution, to be stressed is that any carrier set preserving 
functors between varieties have a left adjoint. This is an essential property recalled in 
detail in this section and used in this contribution.

I now continue with a more formal approach to universal algebra. Of course a drawback 
of such a description is perhaps a cumbersome symbolism but I believe that such a 
rigorous treatment is required to provide formal proofs.

A (one-sorted or homogeneous and finitary) signature is a collection of sets (Σ(n))n∈N. 
(Observe that Σ(n) may be empty for some n and these sets are not assumed to be 
pairwise distinct.) A member f of Σ(n) is referred to as a function symbol of arity n. 
A Σ-algebra is a pair (A, F ) where A is a set and F = (Fn)n∈N is a collection of maps 
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Fn: Σ(n) → AAn for each n; so F assigns an operation of n variables on A to a function 
symbol of arity n. In practice the subscript n on Fn, and even F itself, are omitted.

Given two Σ-algebras (A, F ) and (B, G), a homomorphism of Σ-algebras φ: (A, F ) →
(B, G) is a set-theoretic map φ: A → B such that φ(Fn(f)(a1, . . . , an)) = Gn(f)(φ(a1),
. . . , φ(an)) for each n ∈ N and each f ∈ Σ(n), a1, . . . , an ∈ A. With the usual compo-
sition of maps, one gets a category of all Σ-algebras. One observes that this category 
is a concrete category (U : (A, F ) �→ A defines, at the level of objects, a functor from 
Σ-algebras to sets). This functor admits a left adjoint, known as the free Σ-algebra con-
struction: for a set X, Σ[X] then denotes the free Σ-algebra on X, also called the term 
algebra because its members are usually referred to as terms.

Remark 5. With a notation such as “Σ[X]”, the Σ-algebra structure is not specified, 
so that the algebra and, by this abuse of notation, its carrier set are identified, i.e., 
Σ[X] = U(Σ[X]). This is legitimate by the following. The members of Σ[X], seen as a 
sub-set of the free semigroup on X 	{( } 	{ )} 		n∈N Σ(n), may be defined recursively 
as follows: jX(x) ∈ Σ[X] for every x ∈ X (where jX is the canonical injection from 
X	{( } 	{ )} 		n∈N Σ(n) to the free semigroup), and for each f ∈ Σ(n), t1, . . . , tn ∈ Σ[X]
implies that f(t1, . . . , tn) ∈ Σ[X]. This representation, used in [1], differs from that in [11]
by the use of parentheses. Within this representation, the Σ-algebra structure on Σ[X]
is defined by Fn(f)(t1, . . . , tn) = f(t1, . . . , tn) ∈ Σ[X] for each f ∈ Σ(n) (observe that 
in this equality the parentheses that occur in the right hand-side are just symbols as 
is, for instance, f , since the right hand-side is itself a word obtained by concatenation), 
t1, . . . , tn ∈ Σ[X]. This is because it is so transparent that F is usually omitted.

The free algebra thus satisfies the following (see Section 2): given any Σ-algebra (A, F ), 
and any set-theoretic map φ: X → A, there is a unique homomorphism of Σ-algebras 
φ̂: Σ[X] → (A, F ) such that the following diagram commutes, where as in Section 2, 
jX : X → Σ[X] denotes the insertion of generators (which, in this case, is injective).

X
φ

jX

A

Σ[X]
U(φ̂)

(5)

Definition 6. By a congruence on a Σ-algebra (A, F ) is meant an equivalence relation 
on the set A, closed under F , i.e., if (a1, . . . , an) and (b1, . . . , bn) are equivalent, then 
for each f ∈ Σ(n), Fn(f)(a1, . . . , an) and Fn(f)(b1, . . . , bn) also are equivalent. Moreover 
a congruence is fully invariant if it is closed under endomorphisms, i.e., if φ: (A, F ) →
(A, F ) is a homomorphism, hence an “endomorphism”, and a, b are equivalent, then φ(a), 
φ(b) are also equivalent. Any sub-set E of a Σ-algebra (A, F ) generates a congruence 
(respectively, a fully invariant congruence) namely the intersection of all (fully invariant) 
congruences of (A, F ) that contain E.
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A law or equation is a pair (u, v) ∈ Σ[N]2. Given a Σ-algebra (A, F ), an equation 
(u, v) is said to be satisfied or valid in (A, F ), or that (A, F ) satisfies (u, v), whenever 
for every map φ: N → A, φ̂(u) = φ̂(v). In practice a law (u, v) is denoted by an equality 
u = v. A(n equational) variety of Σ-algebras is defined as a class of Σ-algebras that 
satisfy some fixed set E of laws (for instance E = ∅ for the variety of all Σ-algebras).

Several sets of laws may define the same variety, and any such a set is referred to 
as a set of defining equations for the variety. Nevertheless any of such a set of defining 
equations for a given variety generates the same fully invariant congruence on Σ[N], which 
is the least fully invariant congruence on Σ[N] that contains the set of defining equations 
(see Definition 6), and actually, there is a one–one correspondence between varieties of 
Σ-algebras and fully invariant congruences on Σ[N] (see [11, Chap. IV] for the details). 
The celebrated Birkhoff’s HSP Theorem [11] provides a “semantic” characterization of 
varieties: a class of Σ-algebras is an equational variety if, and only if, it is closed under 
homomorphic images (H), sub-algebras (S) and products (P).

Remark 7. In the above paragraph, the set N is just a canonical choice and may be 
replaced by any infinite countable set such as for instance {xi: i ∈ N}, with xi �= xj

for all i �= j. The only important feature is the possibility to introduce as many new 
variables as desired.

In what follows a variety V is always identified with the full sub-category of all 
Σ-algebras spanned by the members of the variety. Within this identification, a variety 
is even a concrete category (with the restriction V of the forgetful functor U of the 
category of all Σ-algebras). It is easily checked that the forgetful functor V of a variety 
V is a faithful functor. I thus often identify a homomorphism φ: (A, F ) → (B, G) of 
Σ-algebras in the variety V with its underlying set-theoretic map V (φ): A → B.

Remark 8. The quotient of a Σ-algebra, in some variety V, by a congruence inherits 
a structure of a Σ-algebra in the same variety, and the canonical projection becomes 
a homomorphism of Σ-algebras. Moreover the kernel kerφ of a homomorphism φ of 
algebras (i.e., the equalizer {(x, y): φ(x) = φ(y)} of φ with itself) is a congruence, and 
all congruences arise as kernels.

A concrete functor between varieties (not necessarily on the same signature) is called 
an algebraic functor (see [20]). Hence an algebraic functor is just a functor between 
varieties of algebras (possibly over different signatures) that makes commute a triangle 
as in Diagram (4). One of the great achievement of universal algebra is the following 
fundamental result.

Theorem 9. (See [3, Corollary 8.17, p. 28].) Each algebraic functor admits a left adjoint.

Remark 10. The existence of a free Σ-algebra follows at once from Theorem 9 since the 
forgetful functor U is itself an algebraic functor (the category of sets may be considered 
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as the variety of Σ-algebras, where Σ is the empty signature, i.e., Σ(n) = ∅ for each 
n ∈ N). Similarly, for every variety V of Σ-algebras, due to the existence of a left adjoint 
of the forgetful functor V of the variety, a free construction is available. This reads as 
follows. Let X be any set. One denotes by V[X] the free Σ-algebra in the variety V
generated by X (the carrier set and the algebra structure are once again identified). 
Let (A, F ) be an object of V, and let φ: X → A be any set-theoretic map. Then, there 
exists a unique homomorphism of Σ-algebras φ̂: V[X] → (A, F ) such that the following 
diagram commutes (in the category of sets), where jX is the insertion of generators.

X

jX

φ
A

V[X]
V (φ̂)

(6)

A last observation: jX is one-to-one if, and only if, V is a non-trivial variety (a trivial 
variety is a variety without algebras with more than one element). For instance a basis 
for a free group may be identified with a sub-set within the free group.

Remark 11. If X ⊆ Y are sets, then Σ[X] may be canonically identified with a sub-algebra 

of Σ[Y ] using the homomorphism ̂(jY ◦ incl): Σ[X] → Σ[Y ] given by the following com-
mutative diagram (with the same notations as in Diagram (5)), where incl: X ↪→ Y

denotes the canonical inclusion.

Σ[X]
U ̂(jY ◦incl)

Σ[Y ]

X

jX

incl
Y

jY (7)

More generally let φ: X → Y be a one-to-one map, and let r: Y → X be a retraction 
of φ, i.e., r ◦ φ = idX . One has ĵX ◦ r ◦ ĵY ◦ φ = idΣ[X], hence ĵY ◦ φ is also one-to-one, 
because ĵX ◦ r ◦ ĵY ◦ φ ◦ jX = ĵX ◦ r ◦ jY ◦φ = jX ◦ r ◦φ = jX , idΣ[X] ◦ jX = jX and the 
universal property (see Section 2) satisfied by Σ[X].

A concrete category concretely isomorphic to a variety of algebras is not necessarily 
itself a variety (e.g., consider the category of monoids the members of which are invertible; 
it is a concrete category, a full sub-category of the variety of all monoids, and it is 
concretely isomorphic to the variety of groups, but it is not a variety since it is not 
closed under sub-algebras: for instance the sub-monoid N of Z). According to Lemma 12
below, there is no danger to identify a concrete category with a concretely isomorphic 
variety (if any) as soon as the identification concerns free objects or a left adjoint of a 
forgetful functor. For other properties of varieties one should be more cautious.
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Lemma 12. Let V be a variety of say Σ-algebras and let (C, U) be a concrete category over 
Set. Let us assume that (C, U) and (V, V ) are concretely isomorphic. Then, U admits 
a left adjoint.

Proof. Let us consider a concrete isomorphism Φ: (C, U) → (V, V ). Of course, its inverse 
Φ−1 also is a concrete isomorphism. Let X be any set. Let c be a C-object and let φ: X →
U(c) = V (Φ(c)) be a set-theoretic map. There is a unique homomorphism of Σ-algebras 
φ̂: V[X] → Φ(c) such that V (φ̂) ◦ jX = φ, where jX : X → V (V[X]) = U(Φ−1(V[X]))
is the insertion of generators. Let us consider the C-morphism Φ−1(φ̂): Φ−1(V[X]) → c. 
One has U(Φ−1(φ̂)) ◦ jX = V (φ̂) ◦ jX = φ. Let us assume that there exists another 
C-morphism ψ: Φ−1(V[X]) → c with U(ψ) ◦ jX = φ. Then, V (Φ(ψ)) ◦ jX = φ, hence by 
uniqueness of φ̂ it follows that φ̂ = Φ(ψ). �
Example 13. Let us again consider the category of monoids the members of which are in-
vertible, which is concretely isomorphic to the variety of all groups. Then, the free object 
in the former category generated by a set X is, according to (the proof of) Lemma 12, 
the underlying monoid of the free group on X.

The following more general result than Lemma 12 is of a fundamental interest for 
the rest of this paper, and shows that there is no danger to replace – what will be done 
without any further ado – a variety by a concretely isomorphic category as soon as it 
concerns left adjoints of algebraic functors of the following particular kind. In particular 
one can talk about algebraic functors between concrete categories concretely isomorphic 
to varieties, and these functors also admit a left adjoint.

Lemma 14. Let (U, U), (V, V ) be varieties of algebras, and let (U′, U ′), (V′, V ′) be con-
crete categories which are concretely isomorphic with respectively (U, U) and (V, V ) by 
concrete isomorphisms Ψ and Φ. Let W : (U, U) → (V, V ) be an algebraic functor. Then, 
the functor W ′ = Φ−1 ◦W ◦ Ψ: U′ → V′ is a concrete functor, and it also admits a left 
adjoint.

Proof. The situation stated in this lemma is represented by the following commutative 
diagram of functors.

U′

U ′

Ψ

W ′

V′

Φ

V ′

U

U

W V

V

Set

(8)
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I claim that Ψ−1 ◦ L ◦ Φ: V′ → U′ is a left adjoint of W ′, where L: V → U is a left 
adjoint of W (which exists because W is an algebraic functor). This follows from the 
obvious bijections, natural in the V′-object v and in the U′-object u.

V′(v,W ′u) = V′(v,Φ−1(W (Ψ(u))))

� V(Φ(v),W (Ψ(u)))

(because any functor preserves isomorphisms)

� U(L(Φ(v)),Ψ(u))

(since L is a left adjoint of W )

� U′(Ψ−1(L(Φ(v))), u). � (9)

4. A general construction of a left adjoint of an algebraic functor

Let Σ, Ω be two finitary homogeneous signatures. Let U (respectively, V) be a variety 
of Σ-algebras (respectively, Ω-algebras). Let us assume that there is an algebraic functor 
W : U → V, i.e., the following diagram of functors commutes (where U and V are the 
obvious forgetful functors).

U W

U

V

V

Set

(10)

Thus the underlying sets of an object B of the domain category U and of the object 
W (B) are the same. According to [29, Theorem 1.4], this is equivalent to the fact that 
V is representable in U. By this is meant that for each n and for each f ∈ Ω(n), there 
exists a n-ary term f̄ ∈ Σ[N] (i.e., f̄ is a term in Σ[{0, . . . , n − 1}], seen as a sub-set of 
Σ[N]; see Remark 11) such that if e is a defining equation of the variety V, then the 
equation ē, obtained from e by replacing each occurrence of f by the corresponding f̄ , is a 
consequence of the defining equations of the variety U (i.e., ē belongs to the fully invariant 
congruence of Σ[N] that corresponds to the variety U). The collection of maps (f ∈
Ω(n) �→ f̄ ∈ Σ[{0, . . . , n − 1}])n satisfying the above properties is called a representation 
of V in U.

Remark 15. Let (A, F ) be a Σ-algebra. Any term t in the free Σ-algebra Σ[{0, . . . ,
n −1}] defines a map [t]: An → A by [t](a1, . . . , an) = π̂a1,...,an

(t), where πa1,...,an
: {0, . . . ,

n −1} → A is given by π(i −1) = ai, i = 1, . . . , n (using the notation from Diagram (5)). 
The substitution of the occurrences of a function symbol f by f̄ in a term t ∈ Σ[N], 
abovementioned to define an equation ē, is then possible because Σ[N] is equipped with 
a structure of an Ω-algebra given by Fn(f) = [f̄ ]: Σ[N]n → Σ[N] for each f ∈ Ω(n).
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Example 16. The variety of all Lie algebras on a ring R is representable in the variety 
of all associative R-algebras. Indeed, the Lie bracket [−, −], which is a basic operation 
in the signature of Lie algebras, corresponds to the derived operation [−,−](x0, x1) =
(x0 ∗ x1) − (x1 ∗ x0), the usual commutator bracket. From the Jacobi identity, given for 
instance has an equation e = ([x0, [x1, x2]], [[x0, x1], x2] + [x1, [x0, x2]]), one gets the new 
equation ē given by

x0 ∗ ((x1 ∗ x2) − (x2 ∗ x1)) − ((x1 ∗ x2) − (x2 ∗ x1)) ∗ x0

= ((x0 ∗ x1) − (x1 ∗ x0)) ∗ x2 − x2 ∗ ((x0 ∗ x1) − (x1 ∗ x0))

+ x1 ∗ ((x0 ∗ x2) − (x2 ∗ x0)) − ((x0 ∗ x2) − (x2 ∗ x0)) ∗ x1 (11)

(after replacement in e of the Lie brackets by the commutator brackets). This equation ē
holds in any associative algebra since it is a consequence of the defining axioms. Similarly, 
the equation for alternativity f = ([x0, x0], 0) gives f̄ = (x0 ∗ x0 − x0 ∗ x0, 0).

So let us get back to the situation where the Diagram (10) commutes. Given any 
Σ-algebra (B, G) in U, then the Ω-algebra W (B, G) in V is given as follows. First of 
all, its carrier set is B because V (W (B, G)) = U(B, G) = B. Now, for each f ∈ Ω(n) is 
defined [f̄ ]: Bn → B as in Remark 15. This provides a map Gn: Ω(n) → BBn , for each n, 
that turns B into a Ω-algebra in V (each defining equation e of V holds in W (B, G)
since ē is a consequence of the defining equations of U).

Since W is an algebraic functor, it admits a left adjoint. Let us make explicit the 
description of such a left adjoint. Let (A, F ) be an Ω-algebra in V. Let U[V (A, F )] =
U[A] be the free Σ-algebra in the variety U generated by the set V (A, F ) = A. Let 
jA = jV (A,F ): V (A, F ) → U(U[V (A, F )]) be, as usual, the “insertion of generators”. Let 
us consider the least congruence ≡ on U[V (A, F )] = U[A] generated by the pairs

(jA(f(a1, . . . , an)), [f̄ ](jA(a1), . . . , jA(an)))

for all n, f ∈ Ω(n), a1, · · · , an ∈ A, where [f̄ ] is as in Remark 15 (in particular, with 
f ∈ Σ(0), then it reduces to (jA(f), [f̄ ])). Finally, let π: U[V (A, F )] → U[V (A, F )]/≡ be 
the natural epimorphism, which is a homomorphism of Σ-algebras, where U[V (A, F )]/≡
is given the quotient Σ-algebra structure Fn(f)(π(t1), . . . , π(tn)) = π(f(t1, . . . , tn)) for 
f ∈ Σ(n) and t1, . . . , tn ∈ U[V (A, F )].

Lemma 17. The composite i(A,F ) = A = V (A, F ) jA−−→ U(U[V (A, F )]) U(π)−−−−→
U(U[V (A, F )]/≡) is actually a homomorphism, again denoted by i(A,F ) (and thus 
V (i(A,F )) = U(π) ◦ jA), of Ω-algebras from (A, F ) to W (U[V (A, F )]/≡).

Proof. It suffices to check that i(A,F )(f(a1, . . . , an)) = [f̄ ](i(A,F )(a1), . . . , i(A,F )(an)) for 
each f ∈ Ω(n), a1, . . . , an ∈ A. One has
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π(jA(f(a1, . . . , an))) = π([f̄ ](jA(a1), . . . , jA(an)))

(by definition of ≡)

= [f̄ ](π(jA(a1)), . . . , π(jA(an)))

(by definition of the quotient Σ-algebra). � (12)

Now I claim that U[V (A, F )]/≡ is the free Σ-algebra in U generated by the Ω-algebra 
(A, F ) in V. To check this, let (B, G) be a Σ-algebra in U, and let φ: (A, F ) → W (B, G)
be a homomorphism of Ω-algebras. Then, V (φ): A = V (A, F ) → V (W (B, G)) =
U(B, G) = B is a set-theoretic map. Thus there is a unique homomorphism of Σ-algebras 
ψ: U[V (A, F )] → (B, G) such that U(ψ) ◦ jA = V (φ). For each f ∈ Ω(n), a1, . . . , an ∈ A, 
one has

U(ψ)(jA(f(a1, . . . , an))) = V (φ)(f(a1, . . . , an))

= [f̄ ](V (φ)(a1), . . . , V (φ)(an))

(since φ is a homomorphism of Ω-algebras)

= [f̄ ](U(ψ)(jA(a1)), . . . , U(ψ)(jA(an)))

= U(ψ)([f̄ ](jA(a1), . . . , jA(an)))

(because ψ is a homomorphism of Σ-algebras). (13)

Hence ≡ is contained into kerψ. Thus, there exists a unique homomorphism of Σ-algebras 
ψ̃: U[V (A, F )]/≡ → B such that ψ̃ ◦ π = ψ. In particular, V (W (ψ̃) ◦ i(A,F )) = U(ψ̃) ◦
V (i(A,F )) = U(ψ̃) ◦ U(π) ◦ jA = U(ψ̃ ◦ π) ◦ jA = U(ψ) ◦ jA = V (φ). But as a forgetful 
functor from a variety to the category of sets, V is faithful, hence W (ψ̃) ◦ iA = φ as 
expected. Uniqueness is obvious.

Whence the following is proved.

Theorem 18. The notations and assumptions are as above. Let (A, F ) be an Ω-algebra in 
the variety V. Then, U[V (A, F )]/≡ is the free Σ-algebra in the variety U generated by 
(A, F ), and the insertion of generators is given by i(A,F ): (A, F ) → W (U[V (A, F )]/≡).

Remark 19. It is now easily seen that a left adjoint L: V → U of W is then given 
by L(A, F ) = U[V (A, F )]/≡ on objects, and given a homomorphism of Ω-algebras, 
in V, φ: (A, F ) → (B, G), then L(φ): U[V (A, F )]/≡ → U[V (B, G)]/≡ is the unique 
homomorphism of Σ-algebras in U such that L(φ) ◦ i(A,F ) = i(B,G) ◦ φ. The details are 
left to the reader.

In what follows the free object U[V (A, F )]/≡ in U, generated by (A, F ) in V, is 
denoted by U[A, F ].
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Remark 20. The reader could be confused by the use of the “polymorphic” notation 
U[−] for U[A, F ] and for the free object U[A] in U generated by the set A. But the 
arguments for both occurrences of U[−] are not of the same type (an algebra for the 
former, and just a set for the latter). In what follows, to distinguish both notations, 
I follow a common practice from universal algebra: I use different calligraphies to denote 
an algebra and its carrier set. For instance, a typeface such as A will denote an algebra 
in some equational variety, while A will denote its carrier set, i.e., A = (A, F ). Also g
will denote a Lie algebra, and g will be its carrier set.

Example 21.

1. Let Grp be the variety of all groups, and Mon be the variety of all monoids. Then, 
the Grothendieck group completion of a monoid (M, ∗, e) (see, e.g., [27]) may be 
given as the free group Grp[M ] factored out by the normal subgroup generated by 
jM (x)jM (y)jM (x ∗ y)−1, x, y ∈ M , and by jM (e).

2. Let R be a commutative ring with a unit, and RAss1 be the variety of all unital 
(associative) R-algebras. Then, the monoid algebra of (M, ∗, 1) may be described 
as the free associative algebra RAss1[M ] on the set M (which is more commonly 
denoted by R〈M〉) divided out by the two-sided ideal generated by jM (x ∗ y) −
jM (x)jM (y), jM (1) − 1, x, y ∈ M . This differs (but leads to isomorphic objects) 
from the usual way to define the monoid algebra as the free R-module on M with a 
multiplication inherited from that of the monoid by distributivity.

3. Now, let RLie be the variety of all Lie R-algebras. The algebraic functor from RAss1
to RLie, that consists in considering any algebra as a Lie algebra under the commu-
tator bracket, corresponds to the representation of RLie in RAss1 (see Example 16). 
Then, with Theorem 18, one gets a somewhat unusual construction for the univer-
sal enveloping algebra U(g) of the Lie algebra g (with carrier set g) as the quotient 
algebra of RAss1[g] by the two-sided ideal generated by

jg(x + y) − jg(x) − jg(y), jg(αx) − αjg(x), jg(0),

jg([x, y]) − jg(x)jg(y) + jg(y)jg(x)

x, y ∈ g, α ∈ R.

Remark 22. The notations and assumptions are as above. Let (U′, U ′) (respectively, 
(V′, V ′)) be a concrete category concretely isomorphic to U (respectively, V) by a 
concrete isomorphism Ψ: (U′, U ′) → (U, U) (respectively, Φ: (V′, V ′) → (V, V )). Ac-
cording to Lemma 14 the (concrete) functor W ′: U′ → V′ given by Φ−1 ◦ W ◦ Ψ, 
admits a left adjoint. One can equally well apply Theorem 18 to W ′. Given a V′-object 
v, the free U′-object U′[v] generated by v is given by Ψ−1(U[V (Φ(v))]/≡), and the 
corresponding insertion of generators jv: v → W ′(U′[v]) is given by Φ−1(iΦ(v)): v →
Φ−1(W (U[V (φ(v))]/≡)) = W ′(Ψ−1(U[V (φ(v))]/≡)) = W ′(U′[v]). Once again in the 
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rest of the paper I apply Theorem 18 in the case of concrete categories concretely iso-
morphic to varieties without further ado since we are on the safe side (the constructions 
are the same up to conjugation by isomorphisms).

5. Applications to “universal differential algebra”

In this section are applied the results from Section 4 in the realm of what I called 
“universal differential algebra”. The goal is here to provide general functorial construc-
tions in categories of differential algebras, some of them being already introduced in [25], 
in a uniform way. Of particular interest are the left adjoints of the functors occurring, 
as unnamed arrows, in the following (non-commutative) diagram (the denotations for 
the categories are introduced hereafter). For instance a left adjoint of the vertical arrow 
corresponds to the tensor algebra construction in differential algebra.

(R,∂)DiffAss1 RAss1

(R,∂)DiffMod1 RMod

(14)

5.1. Varieties of differential algebras

Let R be a commutative ring with a unit. (In what follows the base ring R will always 
be assumed associative, commutative and unital.) An R-algebra is a triple ((A, +, 0, ·), ∗)
where (A, +, 0, ·) is a R-module, and ∗: A ×A → A is a R-bilinear map. Hence associativ-
ity for the multiplication is not assumed. This defines a variety RAlg (with the obvious 
homomorphisms of algebras). In more detail, one can consider the signature ΣR, which 
depends on the ring R, with ΣR(0) = {0}, ΣR(1) = {−} ∪ {ρα: α ∈ R}, ΣR(2) = {+, ∗}, 
and the following (somewhat redundant) axioms (where α, β belong to R)

(x + y) + z = x + (y + z),

x + y = y + x,

x + 0 = x = 0 + x,

x + (−x) = 0 = (−x) + x,

ρα(0) = 0,

ρα(x + y) = ρα(x) + ρα(y),

ρα(−x) = −ρα(x),

ρα+β(x) = ρα(x) + ρβ(x),

ρ−α(x) = −ρα(x),

ρ0(x) = 0,
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ρ1(x) = x,

x ∗ (y + z) = (x ∗ y) + (x ∗ z),

(x + y) ∗ z = (x ∗ y) + (x ∗ z),

ρα(x ∗ y) = (ρα(x)) ∗ y = x ∗ (ρα(y)). (15)

The variety of ΣR-algebras satisfying the above axioms, seen as a category, is con-
cretely isomorphic to the category of (not necessarily associative) usual R-algebras, and 
furthermore the latter is closed under homomorphic images, (cartesian) products and 
sub-algebras.

Similarly, one defines a unital R-algebra as an algebra over the signature Σ1
R which is 

obtained from ΣR by adding a new function symbol 1 in ΣR(0) and which satisfies the 
additional equations x ∗ 1 = x = 1 ∗ x. This gives rise to the variety RAlg1 (the homo-
morphisms are required to preserve the unit 1). By a variety of R-algebras (respectively, 
unital R-algebras) is meant a sub-variety of RAlg (respectively, RAlg1). In details: the 
objects of a variety of R-algebras are R-algebras that satisfy some given extra axioms. 
For instance, associative algebras RAss, associative commutative algebras RAssc, Lie al-
gebras RLie are varieties of R-algebras, while associative and unital algebras RAss1, and 
associative, commutative and unital algebras RAssc,1 are varieties of unital R-algebras.

From these varieties of algebras, one immediately obtains corresponding varieties of 
differential R-algebras, i.e., their counterparts in the differential algebra setting, as fol-
lows.

A part of the following material may be found in [16] (see also [18,19] in which dif-
ferential rings usually come equipped with several commuting derivations instead of just 
one as in this contribution). A differential ring is a pair (R, ∂) where R is a unital ring 
and ∂ is a derivation, i.e., ∂: R → R is a group endomorphism of the underlying additive 
group of R, and it satisfies Leibniz rule ∂(αβ) = ∂(α)β + α∂(β), a, b ∈ R. In particular, 
∂(1) = 0.

Remark 23. Every ring R admits the zero map a ∈ R �→ 0 as a derivation, known as the 
trivial (or zero) derivation. This is the unique derivation on Z.

Let us consider a commutative differential ring (R, ∂), i.e., a differential ring which is 
commutative as a ring. Let RV (respectively, RV1) be a variety of R-algebras (respec-
tively, unital R-algebras). One defines the variety (R,∂)DiffV (respectively, (R,∂)DiffV1) 
of (R, ∂)-differential (unital) algebras in RV (respectively, RV1). Its objects are pairs 
(A, d) where A = ((A, +, 0, ·), ∗) (respectively, A = ((A, +, 0, ·), ∗, 1)) is a R-algebra 
in RV (respectively, in RV1), and d: (A, +, 0) → (A, +, 0) is (R, ∂)-derivation, i.e., an 
additive map that satisfies the Leibniz rule

d(x ∗ y) = d(x) ∗ y + x ∗ d(y)
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and also the equation d(α · x) = ∂(α) · x + α · d(x), α ∈ R, x, y ∈ A. (One observes that 
if RV1 is a variety of R-algebras with a unit, then d(1) = 0 because d(1) = d(1 ∗ 1) =
d(1) ∗1 +1 ∗d(1) = d(1) +d(1).) If ∂ is the zero derivation on R, then any (R, 0)-derivation 
is a R-linear map which satisfies Leibniz rule. A homomorphism of differential algebras is 
just a homomorphism of algebras that commutes with the derivations (and that preserves 
the units if any.)

Remark 24. The category RMod of R-modules may be identified with a variety of 
R-algebras, namely the variety RTriv of R-algebras with the zero multiplication (for all x, 
y, x ∗y = 0). Hence one can consider (R,∂)DiffMod, identified with (R,∂)DiffTriv, as the 
variety of differential R-modules. Its objects are just usual R-modules M together with a 
group endomorphism d (for their underlying additive group structure) such that d(α·x) =
∂(α) · d(x) + α · d(x), α ∈ R, x ∈ M . In particular, if ∂ is the zero derivation on R, then 
the objects of (R,0)DiffMod are just modules together with a module endomorphism.

For an algebra A = ((A, +, 0, ·), ∗) (respectively, unital algebra A = ((A, +, 0, ·), ∗, 1)) 
in a variety RV (respectively, RV1) of R-algebras (respectively, unital R-algebras) a 
(two-sided) ideal is a R-sub-module I such that for each x ∈ A, y ∈ I, x ∗ y, y ∗ x ∈ I. 
The notion of the ideal generated by a sub-set E ⊆ A is obvious. Given an ideal I, A/I

inherits from A a structure of a R-algebra which is denoted by A/I, and the canonical 
epimorphism π: A → A/I becomes a homomorphism of R-algebras. Moreover, the alge-
bra A/I belongs to the variety RV (respectively, RV1). This is clear because there is 
a one–one correspondence between ideals and congruences (see Definition 6), and any 
variety is closed under quotients (by a congruence).

Indeed, to any congruence on an algebra is associated its equivalence class of zero, 
that turns to be a two-sided ideal (because if x is congruent to 0, then, by definition of 
a congruence and because by bilinearity of the multiplication 0 is a two-sided absorbing 
element, for every y, x ∗ y is congruent to 0 = 0 ∗ y, y ∗ x is congruent to 0 = y ∗ 0), 
and, conversely, any two-sided ideal I defines a congruence by setting that x and y are 
equivalent whenever x − y ∈ I (this of course defines an equivalence relation, which 
furthermore is a congruence since x − y ∈ I and x′ − y′ ∈ I leads to x ∗ x′ − y ∗ y′ ∈ I). 
Of course, the (usual) kernel of a homomorphism of algebras provides an ideal, and all 
ideals are obtained in this way. It may also be noticed that the notion of kernel from 
universal algebra (see Remark 8) coincides with the usual one since, for a linear map φ, 
φ(x) = φ(y) if, and only if, φ(x − y) = 0.

In the same way for a differential algebra (A, d) in (R,∂)DiffV (or in (R,∂)DiffV1) one 
can also talk about a (two-sided) differential ideal as a usual ideal I of the R-algebra A
such that d(I) ⊆ I. Given a set E ⊆ A, the differential ideal 〈E〉 generated by E is just 
the (algebraic) two-sided ideal generated by {dn(x): x ∈ I, n ≥ 0}. Again A/I becomes 
a (R, ∂)-differential algebra in (R,∂)DiffV (or in (R,∂)DiffV1), with the (R, ∂)-derivation 
d̄(x + I) = d(x) + I, and the canonical epimorphism commutes with the derivations, 
whence is a homomorphism of differential algebras in (R,∂)DiffV (or in (R,∂)DiffV1).
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There is an obvious forgetful functor dV : (R,∂)DiffV → RV (and, respectively, from 

(R,∂)DiffV1 to RV1).

Remark 25. dV is a faithful functor.

The functor dV makes commute a diagram such as Diagram (10). Hence the construc-
tion from Section 4 may be applied here, so that dV admits a left adjoint, or alternatively, 
for any algebra in RV there exists a free object in (R,∂)DiffV generated by the algebra 
(a corresponding result of course holds for RV1 instead of RV). Let A = ((A, +, 0, ·), ∗)
be a R-algebra in RV. Then, by Theorem 18, (R,∂)DiffV[A] = (R,∂)DiffV[A]/I where

I = 〈jA(x + y) − jA(x) − jA(y), jA(0), jA(α · x) − α · jA(x),

jA(x ∗ y) − JA(x) ∗ jA(y):x, y ∈ A, α ∈ R〉

(in case of a variety RV1 of unital algebras, one adds jA(1)−1 as a generator for the 
ideal), where jA: A → (R,∂)DiffV[A] is the insertion of generators, and (R,∂)DiffV[X]
is the free differential algebra in the variety V generated by a set X, which exists since 

(R,∂)DiffV is an equational variety of algebras (see Section 3).

Example 26.

1. Let us consider the variety RLie of all Lie R-algebras. Hence (R,∂)DiffLie is 
the variety of all (R, ∂)-differential Lie algebras, i.e., pairs ((g, [−, −]), d) where 
(g, [−, −]) is a Lie R-algebra, and d: g → g is an abelian group morphism such 
that d([x, y]) = [d(x), y] + [x, d(y)] and d(α · x) = ∂(α) · x + α · d(x). It follows that 
the free (R, ∂)-differential Lie algebra generated by the Lie algebra (g, [−, −]), with 
underlying set g, is given by (R,∂)DiffLie[g, [−, −]] = (R,∂)DiffLie[g]/I where

I = 〈jg(x + y) − jg(x) − jg(y), jg(0), jg(α · x) − α · jg(x),

jg([x, y]) − [Jg(x), jg(y)]:x, y ∈ g, α ∈ R〉

(recall here that g denotes the underlying set of the module g; see Remark 20), 
according to Theorem 18.

2. Similarly, let us consider RAss1 (respectively, RAssc,1) the variety of all unital and 
associative (and, respectively, commutative) R-algebras. Given a unital and associa-
tive (and, respectively, commutative) algebra A, with underlying set A, one gets the 
free (R, ∂)-differential unital and associative (and, respectively, commutative) alge-
bra as the quotient algebra (R,∂)DiffAss1[A]/I (respectively, (R,∂)DiffAssc,1[A]/I), 
where I is the two-sided differential ideal generated by

jA(x + y) − jA(x) − jA(y), jA(αx) − αjA(x), jA(0), jA(1) − 1, jA(xy) − jA(x)jA(y)

for x, y ∈ A, α ∈ R. This is called the differential envelope of A in [25].
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3. A differential ideal in (R,∂)DiffMod (see Remark 24) turns to be a sub-module closed 
under the derivation, i.e., a differential sub-module. Hence one can also consider the 
free (R, ∂)-differential module (R,∂)DiffMod[M] generated by a R-module M =
(M, +, 0, ·) as (R,∂)DiffMod[M] = (R,∂)DiffMod[M ]/N where N is the differential 
sub-module generated by

jM (x + y) − jM (x) − jM (y), jM (0) jM (α · x) − αjM (x)

x, y ∈ M , α ∈ R. In Subsection 5.2 is provided a different construction for this 
object.

In the particular case of a variety of differential algebras in which the derivation on 
the ground ring R is zero, one may also consider differential algebras in which d = 0. 
More precisely if (R, ∂) = (R, 0), then there is an obvious (R, 0)-derivation for each 
algebra in RV, namely the zero derivation. This means that there exists also an obvious 
inclusion functor J : RV → (R,0)DiffV given at the level of objects by J(A) = (A, 0)
since 0 is a (R, 0)-derivation, and for a homomorphism φ, one has J(φ) = φ since any 
homomorphism of algebras maps 0 to 0. This is a full embedding (i.e., a full and faithful 
functor, and injective on objects). One observes that J is an algebraic functor (since 
it commutes with the forgetful functors), hence it admits a left adjoint, i.e., RV is a 
reflective sub-category of (R,0)DiffV (see [21]).

The construction of a left adjoint of J goes as follows: let (A, d) be an object of 
(R,0)DiffV (hence A = ((A, +, 0, ·), ∗) is an object of RV). Let Id be the (algebraic) 
two-sided ideal generated by im(d) (where d is seen as a R-linear map) in A. Hence, 
A/Id is a member of RV and the natural projection π: A → A/Id is a homomorphism of 
algebras. Let B be an algebra in RV, and let φ: (A, d) → (B, 0) be a homomorphism of 
(R, 0)-differential algebras in RV. Because φ ◦ d = 0, it follows that φ factors uniquely 
through π as a homomorphism of algebras φ̂: A/Id → B such that φ̂ ◦π = φ. Finally one 
gets:

Proposition 27. For every (R, 0)-differential algebra (A, d) in (R,0)DiffV, there exists a 
free R-algebra in RV generated by (A, d), namely A/Id, where Id is as above.

Remark 28. A proposition corresponding to Proposition 27 of course holds for RV1
instead of RV.

The inclusion functor J also admits a right adjoint, which merely is the usual “ring 
of constants” construction. Indeed, let us consider an object (A, d) in (R,0)DiffV, and 
let us define Const(A, d) = ker(d). Then, Const(A, d) is a sub-R-algebra of A, whence 
also a member of (R,0)DiffV, and the canonical inclusion incl: Const(A, d) ↪→ A is a 
homomorphism of algebras. Now, let B be an algebra in RV, and let φ: (B, 0) → (A, d) be 
a homomorphism of (R, 0)-differential algebras. Since d ◦ φ = 0, im(φ) ⊆ Const(A, d), 
therefore there exists a unique algebra map φ̄: B → Const(A, d) such that incl ◦ φ̄ = φ.
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Proposition 29. For every (R, 0)-differential algebra (A, d) in (R,0)DiffV, there exists a 
cofree R-algebra in RV cogenerated by (A, d), namely Const(A, d) as above.

Remark 30. A proposition corresponding to Proposition 29 of course holds for RV1
instead of RV.

From a category-theoretic perspective, Propositions 27 and 29 mean that RV is both 
a reflective and coreflective sub-category of (R,0)DiffV.

One finally mentions a last construction – from [14] – also in the case where (R, ∂) =
(R, 0) that plays no role in the sequel but which is given for the sake of completeness. 
Let A be an associative R-algebra with a unit (with underlying set A). The abelian 
group AN (under point-wise addition) admits a ring structure given by

(fg)(n) =
n∑

k=0

(
n

k

)
f(n− k)g(k)

f, g ∈ AN, n ∈ N. Using the ring map R → AN sending 1 to δ0 (δ0(n) = 0 if n �= 0, and 
δ0(0) = 1), one obtains a structure of an associative R-algebra with a unit called the 
R-algebra of Hurwitz series over A (see [17]) denoted by AN. It admits a (R, 0)-derivation 
given by (d(f))(n) = f(n + 1), f ∈ AN.

Proposition 31. (See [14, Proposition 2.8].) (AN, d) is the cofree (R, 0)-differential al-
gebra on A, i.e., for every (R, 0)-differential algebra (B, e) and every homomorphism 
of R-algebras φ: B → A, there is a unique homomorphism of (R, 0)-differential algebras 
φ̂: (B, e) → (AN, d) such that εA◦DiffAss1(φ̂) = φ, where εA(f) = f(0). This equivalently 
means that the obvious forgetful functor DiffAss1: (R,0)DiffAss1 → RAss1 admits a right 
adjoint.

Proof. Let us define φ̂(b)(n) = φ(en(b)), b ∈ B, n ∈ N. One has φ̂(e(b))(n) =
φ(en(e(b))) = φ(en+1(b)) = φ̂(b)(n + 1) = d(φ̂(b))(n). The fact that φ̂ is a R-algebra 
map is easily checked, as is proved uniqueness. �
5.2. The free differential module generated by a module

One can form the free (R, ∂)-differential module on a set X as follows: as a R-module 
it is just R ⊗Z (ZX × N) (where RX denotes the free R-module on a set X for any 
commutative ring R, thus ZX × N is the free abelian group on the set X × N) with 
R-action given by α · (β ⊗ (x, i)) = (αβ) ⊗ (x, i), and with the derivation given by 
d(α⊗ (x, i)) = ∂(α) ⊗ (x, i) + α⊗ (x, i + 1). One has

d(α · (β ⊗ (x, i))) = d((αβ) ⊗ (x, i))

= ∂((αβ) ⊗ (x, i)) + (αβ) ⊗ (x, i + 1)

= (∂(α)β) ⊗ (x, i) + (α∂(β)) ⊗ (x, i) + (αβ) ⊗ (x, i + 1)
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= ∂(α) · (β ⊗ (x, i)) + α · (∂(β) ⊗ (x, i) + β ⊗ (x, i + 1))

= ∂(α) · (β ⊗ (x, i)) + α · d(β ⊗ (x, i)). (16)

Let us check freeness of this construction.

Lemma 32. The R-module R⊗Z (ZX × N), with the (R, ∂)-derivation d as above, is the 
free (R, ∂)-differential module generated by the set X.

Proof. Let (M, e) be a (R, ∂)-differential module, with M = (M, +, 0, ·), and let φ: X →
M be a set-theoretic map. By recurrence one defines φ1: X ×N → M by φ1(x, 0) = φ(x)
and φ1(x, i + 1) = e(φ1(x, i)), i ≥ 0. Hence φ1(x, i) = ei(φ(x)). Let φ2: ZX × N →
(M, +, 0) be the unique Z-module map that extends φ1. Let φ3: R×(ZX×N) → (M, +, 0)
be the bi-additive (i.e., Z-bilinear) map given by φ3(α, (x, i)) = αφ2(x, i). Hence it 
induces a unique abelian group homomorphism φ4: R ⊗Z (ZX × N) → (M, +, 0) by 
φ4(α⊗ (x, i)) = φ3(α, (x, i)). It is actually R-linear. Indeed,

φ4(α · (β ⊗ (x, i))) = φ4((αβ) ⊗ (x, i))

= (αβ)φ2(x, i)

= α(βφ2(x, i))

= αφ4(β ⊗ (x, i)). (17)

This map commutes with the derivations. Indeed,

φ4(d(α⊗ (x, i))) = φ4(∂(α) ⊗ (x, i)) + φ4(α⊗ (x, i + 1))

= ∂(α)di(φ(x)) + αei+1(φ(x))

= e(αei(φ(x)))

= e(φ4(α⊗ (x, i))). (18)

This map satisfies φ4 ◦ jX = φ, where jX : X → R ⊗Z (ZX × N) is given by jX(x) =
1 ⊗ (x, 0). Let ψ: (R⊗Z (ZX ×N), d) → (M, e) be a homomorphism of (R, ∂)-differential 
modules such that ψ(jX(x)) = φ(x). Then,

ψ(α⊗ (x, i)) = ψ(α(1 ⊗ (x, i)))

= αψ(1 ⊗ (x, i))

= αψ(di(1 ⊗ (x, 0)))

= αei(ψ(1 ⊗ (x, 0)))

= αeiφ(x)

= φ4(α⊗ (x, i)). (19)

Hence φ4 is uniquely determined by φ and by its defining property. �
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Remark 33. Of course for any set X, as R-modules, R ⊗Z ZX � RX by x �→ 1 ⊗ x, 
x ∈ X. Under such an isomorphism, the free (R, ∂)-differential module generated by a 
set X is RX × N together with the derivation d(α(x, i)) = ∂(α)(x, i) + α(x, i + 1).

Remark 34. Likewise one can construct the free (R, ∂)-differential commutative and uni-
tal algebra (R,∂)DiffAssc,1[X] generated by a set X as R⊗ZZ[X×N] � R[X×N] (where 
R[X] is the polynomial algebra in the variables in X) with the derivation d(α(x, i)) =
∂(α)(x, i) + α(x, i + 1). Of course, one recovers the usual differential polynomial alge-
bra R{X} with (commutative) variables in X. Moreover, the free (R, ∂)-differential ideal 
generated by the set X may be identified with those linear polynomials in R{X} without 
constant terms.

Using Lemma 32 (and its proof) and Theorem 18 one can form the free (R, ∂)-differen-
tial module generated by a R-module M = (M, +, 0, ·) as follows: (R,∂)DiffMod[M] :=
((R⊗Z (ZM ×N), d)/〈1 ⊗ (x + y, 0)− 1 ⊗ (x, 0) − 1 ⊗ (y, 0), 1 ⊗ (0, 0), 1 ⊗ (αx, 0) −α⊗
(x, 0): x, y ∈ M, α ∈ R〉 where 〈X〉 denotes the (R, ∂)-differential sub-module generated 
by X, i.e., the usual R-sub-module generated by dn(t) for all t ∈ X, n ≥ 0.

5.3. Tensor and symmetric (differential) algebra functors

The obvious forgetful functor W : (R,∂)DiffAss1 → (R,∂)DiffMod satisfies the as-
sumptions from Section 4, hence it admits a left adjoint that may be described by its 
action on objects as (R,∂)DiffAss1[M ]/I where

I = 〈jM (x + y) − jM (x) − jM (y), jM (αx) − αjM (x), jM (0),

jM (d(x)) − (jM (x))′:x, y ∈ M,α ∈ R〉

for (M, d) = ((M, +, 0, ·), d) an (R, ∂)-differential module (and by t′ is denoted the 
derivative of t in (R,∂)DiffAss1[M ]). This left adjoint corresponds, in the category of 
differential algebras, to the usual tensor algebra functor in the category of non-differential 
algebras. Some related constructions are provided in [9,13,15].

There is another way, more accurate, to define it, that makes possible to directly 
relate it with the usual tensor algebra construction. But in order to describe it one first 
needs some notations. First of all, one denotes by |M| the underlying abelian group of 
a R-module M. Secondly, the generators of A ⊗Z B (respectively, M ⊗R N ) for abelian 
groups A, B (respectively, R-modules M, N ) are denoted by x ⊗Zy (respectively, x ⊗Ry) 
to avoid any confusion. These notations are extended in an obvious way for n-fold tensor 
products (not only 2-fold ones).

Finally, one recalls that for Mi, i = 1, . . . , n, R-modules, the underlying abelian group 
|M1 ⊗R · · · ⊗R Mn| of the R-module M1 ⊗R · · · ⊗R Mn is given by the quotient of the 
abelian group |M1| ⊗Z · · · ⊗Z |Mn| by the subgroup generated by
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x1 ⊗Z · · · ⊗Z (αxi) ⊗Z · · ·Z ⊗Z xn − x1 ⊗Z · · · ⊗Z (αxj) ⊗Z · · · ⊗Z xn

for all xk ∈ |Mk|, k = 1, . . . , n, for all 1 ≤ i �= j ≤ n, and for all α ∈ R (see e.g. [7, 
Chap. II]). One denotes by can the associated canonical epimorphism.

Let (M, d) be a (R, ∂)-differential module. Let v1, . . . , vn ∈ M , and let us consider the 
map D(v1, . . . , vn) = d(v1) ⊗Zv2⊗Z· · ·⊗Zvn+v1⊗Zd(v2) ⊗Z· · ·⊗Zvn+· · ·+v1⊗Zv2⊗Z· · ·⊗Z

d(vn). It is a Z-multilinear map hence gives rise to an endomorphism, again denoted by D, 
of the abelian group |M| ⊗Z · · · ⊗Z |M|︸ ︷︷ ︸

n factors

. It is of course a (Z, 0)-derivation. One observes 

easily that D(x1⊗Z · · ·⊗Z (αxi) ⊗Z · · ·⊗Zxn) = D(x1⊗Z · · ·⊗Z (αxj) ⊗Z · · ·⊗Zxn), hence 
there is a unique endomorphism D̃ of the underlying abelian group of M⊗R · · · ⊗R M︸ ︷︷ ︸

n factors

such that D̃ ◦ can = can ◦ D. One also extends D̃ on R by setting D̃(α) = ∂(α). It 
follows that one obtains a homomorphism of the underlying abelian group of the tensor 
algebra T(M) on M (this is due to the fact: |M1| ⊕ · · · ⊕ |Mn| � |M1 ⊕ · · · ⊕Mn| for 
all R-modules Mi, i = 1, . . . , n), again denoted by D̃. It remains to make sure that D̃ is 
a (R, ∂)-derivation. Actually it is easy to see that D̃ is a (Z, 0)-derivation of the carrier 
abelian group |T(M)| of T(M) and the fact that D̃(αw) = ∂(α)w+αD̃(w) follows from 
the definition of D̃.

Remark 35. Let j: M → T(M) be the canonical injection. Then, j commutes with the 
derivations (since D̃(j(x)) = D(j(x)) = j(d(x))), hence defines a homomorphism of 
differential modules from (M, d) to (T(M), D̃).

My claim is that (T(M), D̃) is the free (R, ∂)-differential associative and unital algebra 
generated by (M, d), called the tensor (R, ∂)-differential algebra on (M, d).

Proposition 36. The free (R, ∂)-differential (associative and unital) algebra
(R,∂)DiffAss1[M, d] generated by a (R, ∂)-differential module (M, d) is (T(M), D̃).

Proof. Let φ: (M, d) → W (A, e) be a homomorphism of differential modules (hence just 
a R-linear map that commutes with the derivations). Let φ̂: T(M) → A be the unique 
algebra map that extends φ. One has

φ̂(D̃(x1 ⊗R · · · ⊗R xn)) = φ̂(d(x1) ⊗R · · · ⊗R xn) + · · · + φ̂(x1 ⊗R · · · ⊗R d(xn))

= φ(d(x1)) · · ·φ(xn) + · · · + φ(x1) · · ·φ(d(xn))

= e(φ(x1)) · · ·φ(xn) + · · · + φ(x1) · · · e(φ(xn))

= e(φ̂(x1 · · ·xn)). � (20)

One remarks that D̃ commutes with the symmetry operators Uσ in T(M) (such an 
operator is defined by Uσ: x1⊗R · · ·⊗R xn → xσ(1)⊗R · · ·⊗R xσ(n) for some permutation 
σ ∈ Sn and thus consists in a permutation of the variables), i.e., Uσ(D̃(x1 ⊗R · · · ⊗R
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xn)) = D̃(xσ(1)⊗R · · ·⊗Rxσ(n)) for each σ ∈ Sn. Hence it factors through the symmetric 
algebra S(M) on M to provide an abelian group endomorphism still denoted D̃. The 
resulting map is easily shown to be a (R, ∂)-derivation.

Remark 37. For (M, d) a (R, ∂)-differential module, the canonical projection π: T(M) →
S(M) of course commutes with the derivations and thus defines a homomorphism of 
(R, ∂)-differential algebras. It then follows that the canonical injection M → S(M) also 
commutes with the derivations hence defines a homomorphism of differential modules, 
since it is given as the composition of π and the canonical injection j from M into T(M).

It is left to the reader to show that (S(M), D̃) is the free (R, ∂)-differential (associative, 
unital) commutative algebra on M, called the symmetric (R, ∂)-differential algebra on 
(M, d).

Remark 38. The above extension of a (R, ∂)-derivation to the tensor and the symmetric 
algebras is a generalization of the extension of an endomorphism to a (R, 0)-derivation 
from [6, Lemme 4, p. 35].

It is clear by composition of adjoints that if X is any set, then the symmetric differen-
tial algebra (S((R,∂)DiffMod[X]), D̃) on the free differential module (R,∂)DiffMod[X]
on X is nothing else than the algebra of differential polynomials R{X} with commuting 
variables in X (see Remark 34).

Of course, similarly to the non-differential case, (M, d) both embeds into (T(M), D̃)
and into (S(M), D̃) as a differential sub-module using the insertions of generators j
and π ◦ j. One observes that the following diagrams commute (where, I recall that 
dV : (R,∂)DiffV → RV denotes the obvious forgetful functor for each variety of R-algebras 
RV, and similarly for a variety RV1 of unital R-algebras; see Subsection 5.1).

(R,∂)DiffMod

dMod

T
(R,∂)DiffAss1

dAss

RMod
T RAss1

(21)

and

(R,∂)DiffMod

dMod

S
(R,∂)DiffAssc,1

dAssc

RMod
S RAssc,1

(22)



L. Poinsot / Advances in Applied Mathematics 72 (2016) 38–76 63
Hence it makes sense to say that the tensor (symmetric) differential algebra functor is 
obtained by lifting the usual tensor (symmetric) algebra functor to the categories of 
differential algebras.

5.4. Monoid and group differential algebra

Let us consider the following commutative diagram of obvious forgetful functors 
(M forgets the additive structure, and dAss forgets the derivation).

(R,∂)DiffAss1
dAss

DiffAss1

RAss1
M

Ass1

Mon

Mon

Set

(23)

The differential envelope (R,∂)DiffAss1[R[M]] (see Example 26.2) of the usual monoid 
algebra R[M] of a monoid M (a left adjoint of M) is, by composition of left adjoints, 
a left adjoint of M ◦ dAss that may be called the monoid differential algebra of M and 
is denoted by (R,∂)DiffAss1[M]. According to Theorem 18 it may also be described as

(R,∂)DiffAss1[M] = (R,∂)DiffAss1[Mon(M)]/

〈j(xy) − j(x)j(y), j(e) − 1:x, y ∈ Mon(M)〉

where e is the identity element of M.

Proposition 39. Any monoid M embeds into its monoid differential algebra
(R,∂)DiffAss1[M]. More precisely the insertion of generators j: M →
M(dAss((R,∂)DiffAss1[M])), which, by definition, is a homomorphism of monoids, is 
one-to-one.

Proof. It is well-known that the insertion of generators, say iM: M → M(R[M]), 
seen as a set-theoretic map, is one-to-one. Now, define a (R, ∂)-derivation on R[M]
by d 

(∑
x∈M αxiM(x)

)
=

∑
x∈M ∂(αx)iM(x) (where, in the sum, αx ∈ R for each 

x ∈ M, and there are only finitely many x such that αx �= 0). This shows that 
M embeds (as a sub-monoid) into a (R, ∂)-differential algebra by iM, hence it em-
beds into (R,∂)DiffAss1[M] using j because by the universal property satisfied by 

(R,∂)DiffAss1[M], there is a unique homomorphism φ̂: (R,∂)DiffAss1[M] → (R[M], d)
of (R, ∂)-differential algebras that extends iM, i.e., φ̂ ◦ j = iM, and given a set-theoretic 
retraction π of iM (i.e., π ◦ iM = id), one has π ◦ φ̂ ◦ j = π ◦ iM = id, hence j is also 
one-to-one. �
Remark 40. The construction, given in the proof of Proposition 39, of the (R, ∂)-differen-
tial algebra (R[M], d) from the commutative differential ring (R, ∂) extends to a functor. 
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Let (A, d) be any commutative (R, ∂)-differential algebra. The A-algebra A[M], namely 
the usual monoid A-algebra of M, is of course also a R-algebra (using the change of 
base ring along the unit map R → A, that sends the identity element of R to that of A). 
Now, define a (R, ∂)-derivation on A[M] by d 

(∑
x∈M αxiM(x)

)
=

∑
x∈M d(αx)iM(x). 

Given a homomorphism of (R, ∂)-differential commutative algebras φ: (A, d) → (B, e), 
one defines a homomorphism of (R, ∂)-differential algebras φ[M]: (A[M], d) → (B[M], e)
by setting φ[M] 

(∑
x∈M αxiM(x)

)
=

∑
x∈M φ(αx)iM(x). It is now easy to check that 

(−)[M]: (R,∂)DiffAssc,1 → (R,∂)DiffAss1 defines a functor.

My next objective is to provide a similar construction for groups instead of monoids. 
One now considers the following diagram, whose leftmost and bottom right triangles 
and the (deformed) triangle, with vertices RAss1, Mon, Set, are commutative, where 
U(−) is the usual functor that maps an algebra with a unit to its group of units (i.e., 
its invertible elements), M and W are the usual forgetful functors (M is as in the above 
Diagram (23), and W forgets the inverse map of a group).

(R,∂)DiffAss1

DiffAss1

dAss
RAss1

Ass1

U(−)

M

Grp
Grp

W

Set Mon
Mon

(24)

One observes that the composite W ◦ U is not the usual forgetful functor M from asso-
ciative unital algebras to monoids but a sub-functor thereof (in the sense that, as sets, 
one has Mon(W (U(A)) ⊆ Mon(M(A)) for every algebra A and for every algebra map 
f : A → B, incl ◦ Mon(W (U(f))) = Mon(M(f)) ◦ incl, where incl denotes an obvious 
canonical inclusion). Hence the (deformed) triangle with vertices RAss1, Grp, Mon is 
not commutative. Likewise the central triangle of the above diagram (the upper triangle 
in the square) is not commutative in general because Grp ◦ U is only a sub-functor of 
Ass1.

The bottom right triangle falls into the scope of Theorem 18. The left adjoint of W is 
the well-known Grothendieck group completion (see Example 21.1). Even if it is outside 
of the scope of Theorem 18, the functor U is known to admit a left adjoint, namely 
the group algebra R[G], where G is a group, which is obtained from a left adjoint of the 
algebraic functor M (the monoid algebra functor). In details, R[G] = R[W (G)]. Contrary 
to what it seems, it is a composition of left adjoints because W admitting a right adjoint, 
namely the functor (−)	 that sends a monoid to its group of invertible elements, is itself 
a left adjoint. In brief, one has the following commutative diagram of forgetful functors.
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RAss1
M

U

Mon

(−)�

Grp

(25)

which induces an evident commutative diagram of left adjoints.

RAss1 Mon
R[−]

Grp
R[−]◦W W

(26)

The left triangle of Diagram (24) falls into the construction of Section 4 and a descrip-
tion of a left adjoint of the functor dAss was already given in Example 26.2. Finally 
one obtains a left adjoint of U(−) ◦ dAss: (R,∂)DiffAss1 → Grp by composing left ad-
joints (see [21]): (R,∂)DiffAss1[G] = (R,∂)DiffAss1[R[G]]. Whence the differential algebra 

(R,∂)DiffAss1[G] may be called the group differential algebra of G. Of course, as in the 
case of a monoid, a group G embeds into its group differential algebra as a sub-group of 
its group of units.

Remark 41. Since (R,∂)DiffAss1[G] = (R,∂)DiffAss1[R[W (G)]] one has the following 
presentation (R,∂)DiffAss1[G] = (R,∂)DiffAss1[Mon(W (G))]/〈j(xy) − j(x)j(y), j(e) −
1: x, y ∈ Mon(W (G))〉 where e is the identity element of G. If x ∈ G, then one denotes 
by x(0) its image in (R,∂)DiffAss1[G], and its nth derivative is denoted by x(n); in par-
ticular, (x(0))′ = x(1). Then, in (R,∂)DiffAss1[G], one recovers some of the usual laws 
for the derivation: x(0)(x−1)(0) = (xx−1)(0) = e(0) = 1, hence 0 = (x(0)(x−1)(0))′ =
x(1)(x−1)(0) + x(0)(x−1)(1) so that (x−1)(1) = −x(1)(x−2)(0), and more generally for 
x, y ∈ G,

(x(0)(y−1)(0))′ = x(1)(y−1)(0) + x(0)(y(−1))′

= x(1)(y−1)(0) − x(0)y(1)(y−2)(0)

= (x(1)y(0) − x(0)y(1))(y−2)(0). (27)

6. Two approaches for the universal enveloping differential algebra of a differential Lie 
algebra

In this section I consider the construction of a universal enveloping differential algebra 
of a differential Lie algebra. As explained in Section 1 there are actually (at least) two 
ways to treat the problem, and only the second one cannot be reached by usual construc-
tions from non-differential algebras. I recall here the important fact that homomorphisms 
between differential (Lie) algebras are required to commute with the derivations.
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6.1. The “lifted” universal enveloping algebra

Given a (R, ∂)-differential (associative and unital) algebra (A, d) (with A =
((A, +, 0, ·), ∗, 1)), one has for x, y ∈ A,

d([x, y]) = d(x ∗ y − y ∗ x)

= d(x) ∗ y + x ∗ d(y) − d(y) ∗ x− y ∗ d(x)

= [d(x), y] + [x, d(y)] (28)

so that d also is a (R, ∂)-derivation for the commutator bracket, and (((A, +, 0, ·),
[−, −]), d) turns to be a (R, ∂)-differential Lie algebra (see Example 26.1 for the def-
inition of a (R, ∂)-differential Lie algebra).

Actually, this gives rise to a functor dComm: (R,∂)DiffAss1 → (R,∂)DiffLie which 
makes commute the following diagram (of functors), where Comm is the usual functor 
that consists in viewing an algebra as a Lie algebra under its Commutator bracket; the 
other two functors, as usually, just forget the derivation.

(R,∂)DiffAss1
dComm

dAss

(R,∂)DiffLie

dLie

RAss1
Comm

RLie

(29)

Because all the functors occurring in Diagram (29) are algebraic functors, each of them 
admits a left adjoint. A left adjoint of Comm is the usual universal enveloping algebra 
functor U. Left adjoints of dAss and dLie have already been described, both in Exam-
ple 26 (points (2) and (1)).

The task is now to provide an explicit construction for a left adjoint of dComm. So 
let ((g, [−, −]), d) be a (R, ∂)-differential Lie algebra. As in Subsection 5.3, one may con-
sider the tensor differential algebra (T(g), D̃) over the (R, ∂)-differential module (g, d). 
The (R, ∂)-derivation D̃ satisfies D̃(j(x)j(y) − j(y)j(x) − j([x, y])) = j(d(x))j(y) +
j(x)j(d(y)) − j(d(y))j(x) − j(y)j(d(x)) − j([d(x), y]) − j([x, d(y)]) for every x, y ∈ g, 
where j: g → T(g) is the canonical injection. Hence there is a unique R-linear map 
D̂: U(g, [−, −]) → U(g, [−, −]), which is easily seen to be a (R, ∂)-derivation, such that the 
following diagram commutes, where π: T(g) → U(g, [−, −]) = T(g)/〈j(x)j(y) −j(y)j(x) −
j([x, y]): x, y ∈ g〉 is the canonical epimorphism.

T(g) D̃

π

T(g)

π

U(g, [−,−])
D̂

U(g, [−,−])

(30)
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Remark 42. The R-linear map π ◦ j: g → U(g, [−, −]) is a homomorphism of differential 
Lie algebras from ((g, [−, −]), d) to dComm(U(g, [−, −]), D̂). This is clear because π ◦ j
is a homomorphism of Lie algebras from (g, [−, −]) to dComm(U(g, [−, −])), and by its 
definition it commutes with the derivations.

Proposition 43. The (R, ∂)-differential algebra (U(g, [−, −]), D̂) is the free (R, ∂)-differ-
ential algebra generated by the differential Lie algebra ((g, [−, −]), d). In details: for any 
(R, ∂)-differential (associative and unital) algebra (A, e) and for any homomorphism of 
differential Lie algebras φ: ((g, [−, −]), d) → dComm(A, e) = ((A, [−, −]), e) (where A is 
the underlying R-module of A), there is a unique homomorphism of differential algebras 
φ̂: (U(g, [−, −]), D̂) → (A, e) such that φ̂ ◦ (π ◦ j) = φ.

Proof. φ is of course a homomorphism of Lie algebras from (g, [−, −]) to (A, [−, −]). 
Hence there is a unique algebra map φ̂: U(g, [−, −]) → A such that φ̂ ◦ π ◦ j = φ (by the 
universal property of U). It remains to check that φ̂ commutes with the derivations. Let 
φ̃: (T(g), D̃) → (A, e) be the unique homomorphism of (R, ∂)-differential algebras such 
that φ̃ ◦ j = φ (by Proposition 36). By definition, φ̃ ◦ D̃ = e ◦ φ̄. Then, one has

φ̂ ◦ D̂ ◦ π = φ̂ ◦ π ◦ D̃ = φ̃ ◦ D̃ = e ◦ φ̃ = e ◦ φ̂ ◦ π.

Therefore φ̂ ◦ D̂ = e ◦ φ̂ (since π is onto). �
The differential algebra (R,∂)DiffAss1[(g, [−, −]), d] = (U(g, [−, −]), D̂) is referred 

to as the universal enveloping differential algebra of the differential Lie algebra 
((g, [−, −]), d). The following diagram commutes, which shows that the universal en-
veloping differential algebra is obtained by lifting to the differential algebra setting the 
usual universal enveloping algebra construction.

(R,∂)DiffLie

dLie

(R,∂)DiffAss1[−]
(R,∂)DiffAss1

dAss

RLie
U RAss1

(31)

It thus readily follows that Poincaré–Birkhoff–Witt Theorem holds unchanged for 
differential Lie algebras.

Theorem 44 (Poincaré–Birkhoff–Witt Theorem for differential Lie algebras). A differen-
tial Lie algebra embeds, through π ◦ j, as a differential sub-Lie algebra of its universal 
enveloping differential algebra (under its commutator bracket) if, and only if, its under-
lying Lie algebra embeds into its universal enveloping algebra (under the commutator 
bracket), again by π ◦ j.
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Example 45. For instance, if g is a free R-module, then (g, [−, −]) is a sub-Lie al-
gebra of the Lie algebra (U(g, [−, −]), [−, −]) = Comm(U(g, [−, −])), hence the map 
π ◦ j: ((g, [−, −]), d) → dComm(U(g, [−, −]), D̂) is one-to-one.

6.2. Wronskian enveloping algebra

One observes that whenever (A, d) is a commutative differential algebra, then 
dComm(A, d) turns to be a commutative differential Lie algebra, i.e., a Lie algebra with 
a zero bracket, hence just a differential module. Moreover, given a commutative differen-
tial Lie algebra ((g, 0), d), from Subsection 6.1 it follows that (R,∂)DiffAss1[(g, 0), d] =
(U(g, 0), D̂) = (S(g), D̂) (because the universal enveloping algebra of any commutative 
Lie algebra is the symmetric algebra of its underlying module; see [6]). It is also clear 
that D̂ actually corresponds to the derivation D̃ on S(g) as defined in Subsection 5.3. 
Therefore, the universal enveloping differential algebra of a commutative differential Lie 
algebra is its symmetric differential algebra.

It thus seems uninteresting to consider differential commutative algebras from the 
point of view of their relations with differential Lie algebras. But I argue below that it is 
not the case at all, and it is even the complete opposite! Indeed if one restricts our atten-
tion to commutative differential algebras only, then there is another “forgetful” functor, 
which is algebraic, from (R,0)DiffAssc,1 to (R,0)DiffLie, that differs from dComm, and 
that cannot be obtained as a lift of a functor from RAssc,1 to RLie.

Hence, let (((A, +, 0, ·), ∗, 1), d) be a commutative (unital and associative) (R, 0)-dif-
ferential algebra. Let us recall the definition of the Wronskian bracket (of course, the 
name comes from the Wronskian operation known in the case of differentiable functions; 
see for instance [5]) as given in Section 1. Let x, y ∈ A. Then, W (x, y) = x ∗d(y) −d(x) ∗y. 
Of course, this map is R-bilinear, and alternating, i.e., W (x, x) = x ∗ d(x) − d(x) ∗ x =
x ∗ d(x) − x ∗ d(x) = 0. Moreover it satisfies the Jacobi identity (commutativity of ∗ is 
essential to see this). Therefore, ((A, +, 0, ·), W ) is a Lie R-algebra.

Remark 46. If (((A, +, 0, ·), ∗, 1), d) is a commutative (unital and associative) (R, ∂)-dif-
ferential algebra, then its Wronskian bracket is only bi-additive (i.e., Z-bilinear) and, in 
general, not R-bilinear. Indeed, it satisfies the following: W (x, α · y) = ∂(α) · x ∗ y + α ·
W (x, y) for each x, y ∈ A and α ∈ R (a relation that makes it a “Lie pseudo-algebra”; 
see, e.g., [15]). This explains why the base ring R is equipped with the zero derivation.

Moreover, for x, y ∈ A,

d(W (x, y)) = d(x ∗ d(y) − d(x) ∗ y)
= d(x) ∗ d(y) + x ∗ d2(y) − d2(x) ∗ y − d(x) ∗ d(y)
= x ∗ d2(y) − d2(x) ∗ y, (32)

while
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W (d(x), y) + W (x, d(y)) = d(x) ∗ d(y) − d2(x) ∗ y + x ∗ d2(y) − d(x) ∗ d(y).

Hence d is also a R-derivation for the Wronskian bracket, so that (((A, +, 0, ·), W ), d)
turns to be a (R, 0)-differential Lie algebra. The correspondence (((A, +, 0, ·), ∗, 1), d) �→
(((A, +, 0, ·), W ), d) is the object map of a functor dWron: (R,0)DiffAssc,1 → (R,0)DiffLie
(because for each homomorphism φ of differential algebras, φ(W (x, y)) = φ(x ∗ d(y) −
d(x) ∗ y) = φ(x) ∗ d(φ(y)) − d(φ(x)) ∗ φ(y) = W (φ(x), φ(y))) which I call the Wronskian 
functor.

The Wronskian functor is an algebraic functor, hence it admits a left adjoint, say W. 
Let (g, d) be a (R, 0)-differential Lie algebra (with underlying set g). According to The-
orem 18, it holds that W(g, d) = (R,0)DiffAssc,1[g]/〈jg(x + y) − jg(x) − jg(y), jg(α · g) −
αjg(x), jg(0), jg([x, y]) −jg(x)(jg(y))′+(jg(x))′jg(y), jg(d(x)) −(jg(x))′: x, y ∈ g, α ∈ R〉. 
But (R,0)DiffAssc,1[g] is the algebra R{g} of differential polynomials in the commutative 
variables in g (with the zero derivation on R). It is more usual to denote by x(0) the 
member jg(x) of R{g}, x ∈ g, and the derivation then is (x(0))′ = x(1). Thus, W(g, d) is 
the quotient algebra of R{g} by the differential ideal Ig generated by

(x + y)(0) − x(0) − y(0), (α · x)(0) − αx(0), 0(0),

[x, y](0) − x(0)y(1) + x(1)y(0), (d(x))(0) − x(1),

x, y ∈ g, α ∈ R.
One calls universal Wronskian envelope of (g, d) the commutative differential algebra 

W(g, d) in order not to confuse with the universal enveloping differential algebra from 
Subsection 6.1.

Remark 47. Let us assume that (g, 0) is a (R, 0)-differential Lie algebra with a zero 
derivation (hence essentially just a usual Lie algebra). Then, because 0(0) = (d(x))(0) is 
equivalent both to 0 and to x(1) mod Ig, it follows that the derivation on R{g}/Ig is 
also the zero derivation (since x(n) generates R{g}, and x(n+1) ∼= 0 mod Ig for each n, 
x ∈ g). Despite an apparent, but misleading, similarity, this construction is quite different 
from the construction of the Wronskian envelope of g studied in [24]. The latter corre-
sponds to the free commutative (R, 0)-differential algebra (R,0)DiffAssc,1[g] generated 
by the Lie algebra g, which by Theorem 18 is given as the quotient differential alge-
bra (R,0)DiffAssc,1[g]/〈jg(x + y) − jg(x) − jg(y), jg(α · x) − αjg(x), jg(0), jg([x, y]) −
jg(x)(jg(y))′ + (jg(x))′jg(y): x, y ∈ g, α ∈ R〉, or also, R{g}/〈(x + y)(0) − x(0) −
y(0), (α · x)(0) − αx(0), 0(0), [x, y](0) − x(0)y(1) + x(1)y(0): x, y ∈ g, α ∈ R〉, while the for-
mer is W(J(g)) (recall from Subsection 5.1 that J is the full embedding of RLie into 

(R,0)DiffLie).

There is another possible description for W. Let (g, d) be a (R, 0)-differential Lie 
algebra (with underlying R-module g). Let us consider the symmetric differential algebra 
(S(g), D̃) of the (R, 0)-differential module (g, d) given as in Subsection 5.3. Let us consider 
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the (algebraic) ideal I generated by h(x)h(d(y)) −h(d(x))h(y) −h([x, y]), x, y ∈ g, where 
h = π ◦ j: g → S(g) is the canonical embedding. By definition of D̃, one has D̃(h(x)) =
h(d(x)) for each x ∈ g, so that I is the ideal generated by W (h(x), h(y)) − h([x, y]), 
x, y ∈ g, with W being the Wronskian bracket of (S(g), D̃).

One observes that D̃(I) ⊆ I. Indeed,

D̃(W (h(x), h(y)) = W (D̃(h(x)), h(y)) + W (h(x), D̃(h(y)))

= W (h(d(x)), h(y)) + W (h(x), h(d(y))) (33)

while

D̃(h([x, y])) = h(d([x, y]))

= h([d(x), y] + [x, d(y)])

(since d is a derivation for the Lie bracket)

= h([d(x), y]) + h([x, d(y)]). (34)

Hence, I is already a differential ideal of (S(g), D̃).
I claim that (S(g)/I, D̄) is the universal Wronskian envelope of (g, d), where D̄ is the 

quotient derivation given by D̄(x +I) = D̃(x) +I. To see this, let (A, e) (with underlying 
R-module A) be any commutative (associative and unital) (R, 0)-differential algebra, and 
let φ: (g, d) → dWron(A, e) = ((A, W ), e) be a homomorphism of (R, 0)-differential Lie 
algebras. Then, there is a unique algebra map φ̂: S(g) → A (where g is the underlying 
module of g) such that φ̂ ◦ h = φ. The map φ̂ commutes with the derivations (because 
φ̂(D̃(h(x))) = φ̂(h(d(x))) = φ(d(x)) = e(φ(x)) = e(φ̂(h(x))), and the h(x)’s generate 
S(g) when x ranges over g). Moreover it satisfies

φ̂(h(x)h(d(y)) − h(d(x))h(y) − h([x, y]))

= φ̂(h(x))φ̂(h(d(y))) − φ̂(h(d(x)))φ̂(h(y)) − φ̂(h([x, y]))

= φ(x)e(φ(y)) − e(φ(x))φ(y) −W (φ(x), φ(y))

= 0 (35)

for every x, y ∈ g. Hence it factors through I and provides a unique homomorphism of 
commutative differential algebras φ̃: (S(g)/I, D̄) → (A, e) such that φ̃(h(x) + I) = φ(x)
for each x ∈ g.

Remark 48. The R-linear map h̄: g → S(g)/I given by h̄(x) = h(x) + I, x ∈ g, is a 
homomorphism of differential Lie algebras from (g, d) to ((S(g)/I, W ), D̄). Indeed it of 
course commutes with the derivations by definition, and h̄([x, y]) = W (h̄(x), ̄h(y)) by 
the definition of I.

Therefore the following result is proved.
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Proposition 49. Using the same notations as above, (S(g)/I, D̄) is the universal Wron-
skian envelope of (g, d).

The following example shows that the question of the embedding conditions of a 
differential Lie algebra into its universal Wronskian envelope is much more difficult than 
in the non-differential case.

Example 50. The construction of W(g, d) given in Proposition 49 is useful to make 
the following observation. Let (g, [−, −]) be a Lie R-algebra. The derivation D̃ on S(g)
that extends the zero derivation on (g, [−, −]) is also just the zero derivation (see also 
Remark 47). Hence the ideal I is here equal to the (algebraic) ideal of S(g) generated 
by [h(x), h(y)], x, y ∈ g. Hence W((g, [−, −]), 0) = (S(g)/I, 0). If (g, [−, −]) is not a 
commutative Lie algebra (i.e., when [−, −] is not identically zero), ((g, [−, −]), 0) does 
not embed into its universal Wronskian envelope (because h̄([x, y]) = 0 even if [x, y] �= 0
for some x, y ∈ g), even if g is free as a R-module, and even if R is a field! Of course 
if (g, [−, −]) is commutative, then I is reduced to (0), and in this case h̄ = h is an 
embedding into W((g, 0), 0) = (S(g), 0).

A positive example of an embedding is given below.

Example 51. Let K be a field of characteristic zero. The Lie algebra sl2(K) embeds into 
the algebra of vector fields of K[x] by the identification of the elements of its Chevalley 
basis e = −1, h = −2x, f = x2 (the familiar commutation rules are satisfied: [h, e] = 2e, 
[h, f ] = −2f and [e, f ] = h). This defines a (K, 0)-differential Lie algebra when it is 
equipped with the usual derivation d

dx of polynomials. More precisely, let d: sl2(K) →
sl2(K) be given on generators by d(e) = 0, d(h) = 2e and d(f) = −h (hence it corresponds 
to d

dx ). One easily checks that d([u, v]) = [d(u), v] + [u, d(v)] for all generators u, v of 
sl2(K), hence (sl2(K), d) is a differential Lie algebra. It embeds as a differential sub-Lie 
algebra into (K[x], d

dx ) with the Wronskian bracket, therefore it embeds also into its 
universal Wronskian envelope.

7. Varieties of Rota–Baxter algebras

In this last section I want to demonstrate usefulness of the tools developed in Section 4
to a setting different from that of differential algebra, namely to the case of Rota–Baxter 
algebras [28], again focusing on the relation between Rota–Baxter associative algebras 
and their Lie counterpart.

Let, as in Subsection 5.1, RV be a variety of (not necessarily associative nor unital) 
R-algebras, i.e., a sub-variety of either RAlg or RAlg1, and let A = (A, ∗) (or (A, ∗, 1) in 
case of unital algebras) be a member of RV (hence A is a R-module). By a Rota–Baxter 
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operator1 on A is meant a R-linear endomorphism B: A → A which satisfies the so-called 
Rota–Baxter identity

B(x) ∗B(y) = B(B(x) ∗ y + x ∗B(y))

x, y ∈ A. A pair (A, B) is called a Rota–Baxter algebra in RV, and the algebra A is 
referred to as its underlying algebra.

Let RRBV be the variety of all Rota–Baxter algebras in RV, the homomorphisms of 
which are given as homomorphisms between the underlying R-algebras that commute 
with the Rota–Baxter operators.

Examples 52.

1. Let RV be the variety of all R-modules (i.e., algebras with a zero multiplication). 
Then, a Rota–Baxter operator is just a R-linear endomorphism (because in this 
case the Rota–Baxter identity degenerates to B(0) = 0). Hence RRBMod =
(R,0)DiffMod.

2. Let RV ∈ {RAss, RAss1, RAssc, RAssc,1}. With RRBV is thus obtained the vari-
eties of associative Rota–Baxter algebras, unital or not, commutative or not.

3. Let RV = RLie. Then, RRBLie is the variety of Rota–Baxter Lie algebras. The 
Rota–Baxter identity then reads as follows [B(x), B(y)] = B([B(x), y] + [x, B(y)]).

Of course, RRBV forms an equational variety of algebras, hence it admits a free 
object RRBV[X] on any set X. By a two-sided Rota–Baxter ideal I of a Rota–Baxter 
algebra (A, B) is meant a two-sided ideal of A, closed under B, i.e., B(I) ⊆ I. Hence 
B̃(x) = B(x) + I defines a Rota–Baxter operator on A/I. For any set E ⊆ A, there is 
a least Rota–Baxter ideal on A that contains E, called the Rota–Baxter ideal generated 
by E. It is nothing else than the usual ideal generated by {Bn(x): n ∈ N, x ∈ E}. Finally, 
congruences and two-sided Rota–Baxter ideals are in a one–one correspondence.

One observes that the zero map is a Rota–Baxter operator for any algebra in any 
variety of algebras (since the zero map satisfies the trivial Rota–Baxter identity 0 = 0). 
Moreover, because any homomorphism of algebras maps 0 to 0, this gives rise to a functor 
J : RV → RRBV that maps A to (A, 0). It is a full and faithful functor that enables to 
identify RV as a (full) sub-category of RRBV (namely the full sub-category of RRBV
spanned by those Rota–Baxter algebras of the form (A, 0)).

Proposition 53. RV is a reflective sub-category of RRBV. More precisely, J admits a 
left adjoint. In details: let (A, B) be a member of RRBV. There exists an algebra A∗

in RV and a homomorphism of Rota–Baxter algebras π: (A, B) → J(A∗) = (A∗, 0)
such that for each algebra B in RV and each homomorphism of Rota–Baxter algebras 

1 I restrict the study to Rota–Baxter operators of weight zero.
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φ: (A, B) → (B, 0) = J(B), there is a unique homomorphism of algebras φ̂: A∗ → B that 
satisfies φ̂ ◦ π = φ.

Proof. Let IB be the two-sided ideal of A generated by im(B). Then, A/IB is a member 
of RV, and let π: A → A/IB be the canonical epimorphism. Given an algebra B in 

RV and a homomorphism φ: (A, B) → J(B) = (B, 0) of Rota–Baxter algebras, since 
φ ◦ B = 0, φ factors uniquely through π and provides a homomorphism φ̂: A/IB → B
such that φ̂ ◦ π = φ. �

In an opposite way the obvious forgetful functor rbV : RRBV → RV also admits 
a left adjoint (because it is an algebraic functor). Its construction follows at once by 
Theorem 18: let A = ((A, +, 0, ·), ∗) be an algebra in the variety RV, then RRBV[A] =
RRBV[A]/IA, where IA is the (two-sided) Rota–Baxter ideal generated by

jA(x + y) − jA(x) − jA(y), jA(α · x) − αjA(x), jA(0), jA(x ∗ y) − jA(x)jA(y)

(and also by jA(1) − 1 when RV is a variety of unital algebras), and π ◦ jA: A →
rbV (RRBV[A]/IA) is the insertion of generators.

Let (((A, +, 0, ·), ∗), B) be an associative Rota–Baxter algebra, i.e., a member of the 
variety RRBAss. It is possible to define its double product (see [12]) as

x ∗B y := B(x) ∗ y + x ∗B(y),

x, y ∈ A. It is left to the reader to check that this bilinear product is associative, and thus 
((A, +, 0, ·), ∗B) is once again an associative algebra. Moreover B ∈ RAss(Dbl(A), A), 
i.e., B is a homomorphism of algebras from the algebra ((A, +, 0, ·), ∗B) to the orig-
inal algebra ((A, +, 0, ·), ∗). Finally B is also a Rota–Baxter operator for the algebra 
(((A, +, 0, ·), ∗B). Indeed,

B(x) ∗B B(y) = B2(x) ∗B(y) + B(x) ∗B2(y) = B(B(x) ∗B y + x ∗B B(y)).

So B is a homomorphism of Rota–Baxter algebras B: (((A, +, 0, ·), ∗B), B) →
(((A, +, 0, ·), ∗, )B).

Given a homomorphism φ: (A, B) → (B, C) of Rota–Baxter (associative) algebras, 
one has

φ(x ∗B y) = φ(B(x) ∗ y + x ∗B(y))

= φ(B(x)) ∗ φ(y) + φ(x) ∗ φ(B(y))

= C(φ(x)) ∗ φ(y) + φ(x) ∗ C(φ(y))

= φ(x) ∗C φ(y) (36)

for all x, y ∈ A. It thus follows that one gets a functor “double” Dbl: RRBAss →
RRBAss.
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Remark 54. In a similar way one defines a functor Dbl: RRBAss1 → RRBAss, because 
an algebra with a double product has no obvious identity element.

A similar phenomenon occurs in the case of Rota–Baxter Lie algebras: given a Rota–
Baxter Lie algebra ((g, [−, −]), B) one defines its double bracket as the R-bilinear map

[x, y]B = [B(x), y] + [x,B(y)],

x, y ∈ g.
The double bracket is of course alternating (since [−, −] is so). It satisfies the Jacobi 

identity. Indeed, [−, −] itself satisfies Jacobi identity and the following equalities hold.

[x, [y, z]B ]B = [B(x), [y, z]B ] + [x,B([y, z]B)]

= [B(x), [B(y), z] + [y,B(z)]] + [x,B([B(y), z] + [y,B(z)])]

= [B(x), [B(y), z]] + [B(x), [y,B(z)]] + [x, [B(y), B(z)]],

[[x, y]B , z]B = [B([x, y]B), z] + [[x, y]B , B(z)]

= [B([B(x), y] + [x,B(y)]), z] + [[B(x), y] + [x,B(y)], B(z)]

= [[B(x), B(y)], z] + [[B(x), y], B(z)] + [[x,B(y)], B(z)],

[y, [x, z]B ]B = [B(y), [x, z]B ] + [y,B([x, z]B)]

= [B(y), [B(x), z] + [x,B(z)]] + [y,B([B(x), z] + [x,B(z)])]

= [B(y), [B(x), z]] + [B(y), [x,B(z)]] + [y, [B(x), B(z)]].

Hence (g, [−, −]B) is again a Lie algebra.
Moreover, B([x, y]B) = B([B(x), y] + [x, B(y)]) = [B(x), B(y)], hence B is a homo-

morphism of Lie algebras from (g, [−, −]B) to (g, [−, −]). It follows that

[B(x), B(y)]B = [B2(x), B(y)] + [B(x), B2(y)] = B([B(x), y] + [x,B(y)]) = B([x, y]B)

hence (g, [−, −]B , B) is a Rota–Baxter Lie algebra.
Quite obviously this provides a functor DblLie: RRBLie → RRBLie.
There is also a functorial way to relate Rota–Baxter (associative) algebras to Rota–

Baxter Lie algebras. Let (((A, +, 0, ·), ∗), B) be a Rota–Baxter associative algebra. Then, 
(((A, +, 0, ·), [−, −]), B) is a Rota–Baxter Lie algebra (where [−, −] denotes the commu-
tator bracket). Indeed,

[B(x), B(y)] = B(x) ∗B(y) −B(y) ∗B(x)

= B(B(x) ∗ y + x ∗B(y) −B(y) ∗ x− y ∗B(x))

= B(B(x) ∗ y − y ∗B(x) + x ∗B(y) −B(y) ∗ x)

= B([B(x), y] + [x,B(y)]) (37)

x, y ∈ A.
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Therefore, one gets a functor rbComm: RRBAss → RRBLie, and the following dia-
gram commutes.

RAss Comm
RLie

RRBAss

rbAss

rbComm
RRBLie

rbLie

RRBAss

Dbl

rbComm
RRBLie

DblLie

Each of these functors is algebraic, hence admits a left adjoint. In particular, one can 
form the universal enveloping Rota–Baxter algebra on a Rota–Baxter Lie algebra.

8. Conclusion

Under the lifted version (Subsection 6.1), the question of the embeddability of a 
differential Lie algebra into its universal enveloping differential algebra was shown rather 
simple since it only depends on the same question at the non-differential level, which is 
pretty well controlled by the famous Poincaré–Birkhoff–Witt Theorem.

On the contrary the same question for the Wronskian bracket version seems to be quite 
harder (see Example 50). It also seems to be connected to the existence of a (faithful) 
realization of a Lie algebra as a Lie algebra of vector fields over a one-dimensional 
smooth variety. For instance, given two polynomial vector fields P (x) d

dx and Q(x) d
dx , 

their commutator bracket [P (x) d
dx , Q(x) d

dx ] (as operators on the polynomial algebra 
R[x]) is equal to W (P (x), Q(x)) d

dx . Nevertheless Lie algebras of vector fields satisfy 
some non-trivial identities (i.e., identities which are not satisfied by every Lie algebras) 
as explained in the unpublished note [2]. This makes this problem more intricate since 
specific to a particular kind of Lie algebras.

Another possible way to deal with this problem would be to use Gröbner bases for 
differential algebras [22] that should provide a basis for the quotient algebra W(g, d) at 
least when the base ring is a field.

Finally, as suggested by a referee, Herz’s work [15] on several associative envelopes of 
Lie pseudo-algebras over a field should be investigated in order to obtain results about the 
embedding conditions of a (differential or not) Lie algebra into its Wronskian envelope.
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