This article was downloaded by: [Laurent Poinsot]

On: 22 July 2015, At: 02:46

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: 5 Howick Place,
London, SW1P 1WG

Communications in Algebra

Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/lagh20

Free Monoids over Semigroups in a Monoidal Category:
Construction and Applications

Laurent Poinsot *° & Hans-E. Porst
m % LIPN, CNRS (UMR 7030), Université Paris 13, Villetaneuse , France
® CReA, French Air Force Academy, Salon-de-Provence , France

¢ Department of Mathematics , University of Stellenbosch , Stellenbosch , South Africa
Published online: 21 Jul 2015.

@ CrossMark

Click for updates

To cite this article: Laurent Poinsot & Hans-E. Porst (2015) Free Monoids over Semigroups in a Monoidal Category:
Construction and Applications, Communications in Algebra, 43:11, 4873-4899, DOI: 10.1080/00927872.2014.955575

To link to this article: http://dx.doi.org/10.1080/00927872.2014.955575

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained

in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no
representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the
Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and
are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and
should be independently verified with primary sources of information. Taylor and Francis shall not be liable for
any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever
or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of
the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any

form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions



http://crossmark.crossref.org/dialog/?doi=10.1080/00927872.2014.955575&domain=pdf&date_stamp=2015-07-21
http://www.tandfonline.com/loi/lagb20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00927872.2014.955575
http://dx.doi.org/10.1080/00927872.2014.955575
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [Laurent Poinsot] at 02:46 22 July 2015

Communications in Algebra®, 43: 4873-4899, 2015 .
’ ’ Taylor & Franci
Copyright © Taylor & Francis Group, LLC Ta;a.o}f&?mng‘mf cis

ISSN: 0092-7872 print/1532-4125 online
DOI: 10.1080/00927872.2014.955575

FREE MONOIDS OVER SEMIGROUPS IN A MONOIDAL
CATEGORY: CONSTRUCTION AND APPLICATIONS
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2CReA, French Air Force Academy, Salon-de-Provence, France
3Department of Mathematics, University of Stellenbosch, Stellenbosch,
South Africa

The adjunction of a unit to an algebraic structure with a given binary associative
operation is discussed by interpreting such structures as semigroups and monoids
respectively in a monoidal category. This approach then allows for results on the
adjunction of counits to coalgebraic structures with a binary co-associative co-operation
as well. Special attention is paid to situations where a given coalgebraic structure
induces a ““dual" algebraic one; here the compatibility of adjoining (co)units and
dualization is examined. The extension of this process to starred algebraic structures
and to monoid actions is discussed as well. Particular emphasis is given to examples
from many areas of mathematics.

Key Words: (Banach) algebra; Coring; Monoid; Monoidal category; Ring.
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1. INTRODUCTION

It is well known that one can adjoin a unit to a semigroup and other algebraic
structures with an associative binary operation. The constructions are often easy and
all similar. In fact, the existence of these constructions is, in some of the best known
cases as, e.g., for monoids, rings and algebras, and for the internal versions of these
in a locally presentable category as well (see [34]), a special instance of the fact
that algebraic functors have left adjoints. But a construction according to this idea
would be unnecessarily complicated. Since the concepts of semigroups and monoids
are most naturally discussed in the realm of monoidal categories, we discuss in this
note the adjunction of units within this theory, where it turns out to be a rather
straightforward generalization of the familiar constructions.

Examples of this unitarization process then include—amongst others—the
adjunction of a unit to algebras, bialgebras, R-rings, semirings, Banach algebras, and
graded algebras.
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Since the chosen approach allows for categorical dualization, we also provide
examples of counitarization, i.e., the adjunction of a counit, as for example in the
cases of coalgebras and R-corings.

The familiar construction of the dual algebra of a coalgebra is a paradigmatic
example of situations, where one can assign to a given coalgebraic structure a dual
algebraic one. We therefore investigate the problem to what extent the constructions
of dualization and (co)unitarization commute.

Moreover, it will be shown how to extend the unitarization process to starred
algebraic structures like rings with involution and to semigroup actions and monoid
actions.

Though not all of our results may be very deep from a categorical point
of view (in particular Theorem 5), we are confident about the interest of their
implications and applications in quite a number of areas of mathematics. In support
of this conviction, we add a long list of examples.

2. NOTATION AND PREREQUISITES

Throughout, € = (C, — ® —, I, o, 4, ¢) denotes a monoidal category, where
— ® — denotes a bifunctor on the category C, I a C-object, and the natural
isomorphisms (A® B) ® C ) B®C(C), CRI L5 ¢, and I® e, C the
associativity and right and left unit constraints, respectively. If € even is symmetric
monoidal, the symmetry will be denoted by ¢ = (C ® D 2D C)¢.p- C is called
cartesian if the tensor product is given by categorical product and I is the terminal
object of C.

A monoid in C is a triple (C,C ® C LNYol) SN C) such that the diagrams

CeCel™20el cel%cec€Cige

lc®@m l \L m m
pPC A

C@C—C C

commute, while a monoid morphism (C,m,e) — (C',m',¢') is any f:C — ('
making the diagrams

CeC-"—=C I—%~ ¢
f®fl lf e\\ lf
C'®C ——C' cr

commutative. This defines the category MonC of monoids in C.
The category ComonC of comonoids over C is defined to be (MonC°P)°P, the
dual of the category of monoids in €. ! Comonoids thus are triples (C, C Lew

'Here € denotes the monoidal category (C°P, — ® —, I), i.e., the dual of C with the given
tensor product.
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c, ¢ -5 I) such that the diagrams

lL € €
c Cec loX- Y Eiilo X Yohiill &Y.

Hl llc@# T}L/
—1 -1
Pc Ac

CoC—=Co0aC b

commute, while a comonoid morphism (C, u,e€) — (C', ', €) is any f: C — C’
making the diagrams

o
C——CxC C—o7
fl lf@f fl //?’
¢ —s e o

commute.

A monoid (C,m,e) is called commutative iff m =mo o, with o.-:C®
C — C® C the symmetry; dually, a comonoid (C, y, €) is called cocommutative,
provided that u = o, op. By .MonC and ,.ComonC, we denote the categories
of commutative monoids and cocommutative comonoids, respectively, with all
(co)monoid morphisms as morphisms. One has .,.ComonC = (.Mon(C°P)°P.

Omitting the unit ¢ of a monoid as well as the respective axioms one obtains
the categories SgrC and .SgrC of (commutative) semigroups (S, s) in C. Dually, one
has the categories CosgrC and _,.CosgrC of (co-commutative) co-semigroups.

Remark 1. Note that if would have been more correct to write the axioms
describing associativity of a monoid (and, dually, the co-associativity axiom for a
comonoid) as

Cec)ec™<ogC
CcCeC)C m
1c®'rni
CecC — C

This is legitimized by Mac Lane’s coherence theorem [27]. For details, see, e.g.,
[3, 1.4].

The following situations are well-known examples of these concepts. Further
examples are discussed in Section 4.

1. If € is the (cartesian) monoidal category Set of sets and maps, then MonC
is the category of ordinary monoids, while SgrC is the category of ordinary
semigroups.

2. If € is the monoidal category Mod, of R-modules and R-linear maps for a
commutative unital ring R with its usual tensor product, then MonC is the
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category ;Alg, of unital R-algebras and ComonC is the category .Coalg, of co-
unital R-coalgebras.

We briefly recall the following definitions and facts, too, which are
fundamental for this note.

Definition 2. Let C=(C,—-® —,/) and €' =(C,—® —,I') be monoidal
categories. A lax (weak) monoidal functor from C to T is a triple (F, @, ¢), where F :
C — C'is a functor, @, ¢, : FC, ® FC, — F(C, ® C,) is a natural transformation
and ¢ : I’ — FI is a C-morphism, subject to certain coherence conditions (see e.g.
[40]). A lax monoidal functor is called strong monoidal (resp., strict monoidal), if ®
and ¢ are isomorphisms (resp., identities).

Proposition 3. Let (F, ®, ¢) : C — T be a lax monoidal functor.

~ P m e
F(M, m, e) = (FM, FM ® FM % F(M @ M) =2 Fm, 1 -2 FI = Fwm),
and F f = Ff define an induced functor F : MonC — MonC', such that the diagram

MonC —Z + MonC’

1
Um Um,

C C’

commutes (with forgetful functors U,, and U)).

The same obviously holds for the categories of semigroups over € and T,
respectively. Write then F instead of F. We thus have the following commutative
diagram (with forgetful functors V, V', U,, and U)):

MonC — - MonC’
1% \V’
Un| SgrC 7 SgrC’ |u.,
\U;
C L

Remark 4. By duality a strong monoidal functor F induces functors F,, :
ComonC — ComonC’ and F, : CosgrC — CosgrC’' commuting with the forgetful
functors as in the diagram above.

3. ADJOINING A UNIT TO A SEMIGROUP

Theorem 5. Letr €= (C,—® —, ) be a monoidal category where the following
statemenst hold:
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1. C has binary coproducts;
2. All functors C @ — and — @ C preserve coproducts of the form S + I.

Then the forgetful functor MonC — SgrC has a left adjoint, called the unitarization
functor.

If € is a symmetric monoidal category the following holds, in addition: If the
semigroup (S, m) is commutative so is its unitarization (S, in, ¢).

In more detail, for every semigroup S = (S, m) there exists a monoid S=
(S, m, ¢) and a morphism of semigroups Us : S — S, such that every morphism
of semigroups f:S — (M,a,z) from S to (the underlying semigroup of) a
monoid admits a unique monoid morphism f* : S — (M, a, z) making the following
diagram commute:

s—" -3

N
\ v

(M,a,z)

Proof. Put S := S + I, the coproduct of S and I, with coproduct injections
Hs My
S— S+I1<«—1

S + I can be equipped with C-morphims 7z : S®S— Sandz: 1 — SsuchthatS =
(S, i, 2) is a monoid in € and g : S — S is the required morphism of semigroups
as follows.

The unit & : I — § is defined as

e=1-25 841

In order to define the multiplication m : S®S — 5’, observe first that, by
assumption 7, (S + 1) ® (S + I) has a coproduct presentation

S®S S®I

S+ (S+1)

&

1 I®I
with
Hss = Mg @ fg Mg = Us @ Uy Myg = J @ fg [y = My @ ;.

If we put

M =S®S -8 mg=S1 2585 my=I®S—->S my=1x1-51

(M
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the multiplication m : (S+ 1) ® (S+ 1) — (S + I), then is defined component-wise
as follows:

mo e =pgomy and mop, = omy (2

for (I, 1) # (J, K) € {1, S}>.
(S + 1, m, e) is a monoid in C, provided that the following diagrams commute:

ER(S+I) (S+I)®é
_— -~

I®(S+1) S+ (S+1) S+l
\ m/ )
AS+4T PS+1I
S+1
(S+I)®(S+I)®(S+I)(M(S+I)®(S+I)
Mm@ (S+I) ‘m 4)
(S+ D@ (S+1I) - S+1.

Concerning Diagram (3), we use the coproduct presentation of I ® (S + 1)

[0S 25 1o (S+1) <2 1e1 .

Commutativity of the left-hand triangle of Diagram (3) then is equivalent to the
equations

o @@ (S+ D)o (I® ts) = hspr o (I 8 ug). )
o @®(S+D)o(I®u) =i, o0 (O ). ©)

Since e = y; by definition, this can be read off the following diagrams with J = I or
J = §, where the outer frame commutes by definition of /z and the left-hand square
commutes, since A is a natural transformation:

HJI1
I®u ®(S+1
ToJ 9 1o+ e Iy e (s +1)
AS+1 B
HIT=AJ "
S ¥ S+1

Similarly for the right-hand diagram. Thus, ¢ is a unit with respect to .
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Concerning Diagram (4), we use the coproduct presentation

o, =T @K@ LIS @(S+1) J K, Lel(s, )

of @B +DN:=E+DHR(S+1)®(S+I). Commutativity of Diagram (3)
then is equivalent to the equations

mo((S+DN@m)opy, =mo(m®(S+1)opuy, foral J K,Le({S,I}.
By functoriality of — ® — and Eq. (2), one gets
((S+D®@m) oy, =ty o(J@my),
where L Vv K denotes the target of my,. Thus,
(S+ D ®@m)opy =ty ® (J @ mg).
Similarly,
(m® (S+1) otk = tyyxr 0 (M @ L).
We thus need to check commutativity of the outer frames of the following diagrams,

for all (J,K,L) € {S, I}, where we only need to specify the various maps m
according to Eq. (1):

JoK® LT85 jo(LvK) Y (S 1T @ (S+ 1)
myrQL j"UL\/K
(JVEK)®L——— (LVK) m
N
HIVKL
S+ (S+1) -~ S+1.

The right-hand and lower cells commute by definition of m, such that we only have
to care about the top left squares. These are as follows:

SeSesEr o 5es SeSeI s sgs
meS m m&I m
S&8—r0 S S@I———> 5.

Commutativity in the case JKL = SSS is simply associativity of m, while
commutativity in the case SSI follows from naturally of p, which gives m o pges =
pso(m®1I), and coherence (see, e.g., [27]), which here gives pgo5 = S ® p;. The
remaining cases are similar. Thus, S = (3, m, e) is a monoid in C.
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That ug :=ug:S — Sisa morphism of semigroups is equivalent to Eq. (2)
for JK = S, since pug = tg ® L.

Let now M= (M,M®M—a> M, 1> M) be a monoid in € and f: (S, m) —
(M, @) a morphism of semigroups. Denote by f*: (S+ 1) — M the C-morphism
with components f and z, i.e., the unique morphism making the diagram

ST
s Y
S £t I (7)
SNLA
M

commute. f¥ preserves the unit by its very definition, since yu, is the unit of S.
Thus, the definition of f* immediately shows that it is the unique monoid morphism
factoring through ug, provided that it preserves the multiplication, that is, that the
following diagram commutes:

# #
S+hes+0 I mem

ﬁzl a

S+1 M.

By means of the coproduct presentation of (S + I) ® (S + I) as above, this follows in
a straightforward fashion, using—besides the fact that f is a semigroup morphism—
functoriality of — ® —, naturality of p and 4, and, Eqgs. (2) and (7).

Concerning the final statement, one observes first that the symmetry ¢ on (S +
I) ® (S + 1) is the coproduct of the symmetries o, oy, 05, 0. Using Eqgs. (1) and
(2), one now gets m o ¢ = m as required. O

Remark 6.

1. The hypothesis of the above theorem is satisfied if the category € is monoidal
closed, since then the tensor functors, being left adjoints, preserve (all)
coproducts. This is the case in particular if C is the category of algebras for
a commutative algebraic theory, since such categories are symmetric monoidal
closed by a result of Linton [25] (see also [9]). Examples of this kind are Ab,
xMod,, the category of abelian groups and, more generally, Mod,, the category
of modules over a commutative unital ring R, but also .Mon, the category
of commutative monoids and the category Set of sets with binary product as
tensor product (see Examples 4.1.1, 4.3.1, 4.3.2, 4.3.3). Other monoidal closed
categories (not in this class) we are going to use are the category Ban, of Banach
spaces and short maps (with the projective tensor product), the category Mod,
of bimodules over a noncommutative unital ring R (here, due to the lack of
symmetry, one more precisely should say “left closed” and “right closed”), and
Hilb, the category of (real or complex) Hilbert spaces, which—though closed only
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in the finite dimensional case—also satisfies the assumptions of the theorem (see
[37).

2. The following example shows that preservation of arbitrary (binary) coproducts
is not required (as is obvious from the proof above). Let L = (L, v, A, 0, 1) be
an arbitrary bounded lattice. Considered as a category, L is (cartesian) monoidal
with binary products given by A, terminal object 1, and binary coproducts given
by V. As is easily seen, this category satisfies Assumption 2 of Theorem 5, though
not the preservation of all binary coproducts by the tensor functors x A — and
— Ax, x € L (this would require the lattice to be distributive). In fact, every
element x in L is a semigroup in L, the top element 1 is the only monoid, and the
morphism corresponding to x < 1 is the monoid reflection of x (as also follows
from Theorem 5).

Dually to Theorem 5, one has the following theorem.

Theorem 7. Let C be a monoidal category where the following statements hold:

1. C has binary products,
2. All functors C @ — and — @ C preserve products of the form S x I.

Then the forgetful functor ComonC — CosgrC has a right adjoint, called the
co-unitarization functor.

If C is a symmetric monoidal category, the following statements holds, in addition:
If the cosemigroup (S, 8) is cocommutative, so is its counitarization (S, 3, €).

In more detail, for every cosemigroup S = (S, ) there exists a comonoid S =
(S, J, €) and a morphism of cosemigroups yg : S — S, such that every morphism of
cosemigroups f: (C, A, €) — S from (the underlying cosemigroup of) a comonoid

(C, A, €) to S admits a unique comonoid morphism f* : (C, A, €) — S making the
following diagram commute:

L
A

£ /

(C, A, €)

Remark 8. The requirement in the theorem above, that tensoring preserves binary
products of the form S x I, may seem restrictive. Note, however, that a stronger
condition (namely, that the functors C ® — and — ® C preserve all binary products)
is satisfied in every additive category with biproducts, where the functors C ® — and
— ® C are additive, thus, for example in Mod, and in ;Mod,. The following simple
lemma, that extends a result of [6], shows that the categories | Alg, and ., Alg, share
this property as well.

Lemma 9. In the categories |Alg, and . Algy, the functors A ® — preserve binary
products.
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Proof. Because . Alg,, the category of commutative unital algebras, is closed in
L Alg, under tensoring and products, it suffices to consider ,Alg,. Since the forgetful

functor | — | : Alg, — Mod, creates products, it suffices to show that, whenever
B~ BxCX (8)

is a product in |Alg, then

|A®ps] [A®pc|

|A ® B] |A® (B x C)| |A® C| (9)

is a product in Mod.
But this follows easily since the functor | — | is strict monoidal and products
in Mod,, are biproducts and, thus, preserved by tensoring. |

Theorem 5 is compatible with the functors introduced in Proposition 3 in the
following sense.

Theorem 10. Let € and T be monoidal categories with binary coproducts, where
coproducts of the form S+ 1 are preserved by all functors CQ — and —Q C. If
(F, ®, ¢) : C — C is a lax monoidal functor, such that F preserves binary coproducts
and ¢ is an isomorphism, then the diagram

MonC —F - MonC’
A] ]A/
SgrC — SgrC’

commutes (up to a natural isomorphism), where A and A’ denote the left adjoints of V
and V' respectively.

Some simple illustrations of the situation described here can be found in Example
4.1.2, while more interesting applications will be given given in Example 4.3.

Proof. One has, for a semigroup (S, m) in €, by construction

AE(S,m) = (FS+1', Fmo ®g g, Fu,),
FA(S,m) = (F(S+1), Fino ®g,; 5./, Fiuy o ¢).

We will prove that the C-isomorphism id,S+ ¢ : FS+1' — FS + FI is a monoid
morphism A'F (S, m) — FA(S, m), i.e., thatthe following diagrams commute, which
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in fact is obvious for the first one:

I — Mo ps4r
o} idps+¢
FI FS+FI,
Fur

(idps+¢)@(idpg+a)

(FS+I'Yo (FS+1T') (FS+FI)® (FS+ FI)

Dsir,541
Fmodg,s F(S+I)®(S+1))
Fm
(FS+1) FS+FI .

idrps+¢

Concerning the second diagram, we need to show that precomposition with
the various coproduct injections iy pg» Hps > My ps» and wy, , equalizes both ways
of the diagram.

For i pg, this can be seen using the diagram below, where the left-hand
cell and the bottom right rectangle commute by definition of -, the top rectangle
by definition of id + ¢ and functoriality of — ® —, and the top right triangle by
naturality of ®, while the outer frame of the diagram commutes trivially.

The other cases follow analogously, except one is using coherence in order to

see that the outer frame commutes. Moreover, it is clear that this isomorphism then

is natural:
Ps,s id®i
F(S®8) %S FS®FS doid FS® FS
l‘/ps®//ps Fus®Fus
(FS+ 1) @ (FS + 22U 4 pry o (S + FI)
Fm Psir 541
Fmodg,g F(S+I)®(S+ I)}uswus F(S®59)
Fm ij
!/
FS -~ FS+T dto F(S+1) e FS.
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4. EXAMPLES
4.1. The Cartesian Case

Recall that the monoidal structure of a monoidal category is called cartesian
if the tensor product is the categorical product. This includes the cases of Set, POS,
the category of partially ordered sets and monotone maps, Cat, the category of small
categories, every topos, and . .Coalg,, the category of cocommutative and counital
R-coalgebras with its usual tensor product (all of which are cartesian closed, such
that tensoring automatically preserves binary coproducts, as required in Theorems
5 and 10). Note that this argument also applies to CAT, the large category of all
categories, though we cannot literally speak about it as a cartesian closed category.
The category Top of topological spaces and every bounded lattice, considered as a
category, are cartesian as well (though not cartesian closed).

As we will show in the list of examples of this case to follow, we here not
only find the most trivial example, that of ordinary semigroups and monoids, which
motivates the (proof of) Theorem 5, but also some curious examples questioning the
necessity of the hypothesis: The Example 6(2) of bounded lattices shows that the
slightly inelegant assumption on the tensor functors (as compared to the condition
that they preserve binary coproducts) can be of use; Example 4.1.4 (a) below shows
that unitarization without our hypothesis can be possible, while Example 4.1.4 (b)
below shows that it may not be.

4.1.1. Semigroups. Using as a monoidal category the cartesian category
Set of sets, i.e., tensor product is cartesian product and the object I is a singleton,
we get the familiar construction.

4.1.2. Topological and ordered semigroups. Since in the cartesian
category Top of topological spaces each functor X x — preserves coproducts, one
can by Theorem 5 freely adjoin a unit to every topological semigroup. The same
holds for every subcategory of Top, closed under topological products and sums as,
e.g., the category Top, of Hausdorff spaces. Since POS is cartesian closed, one has
the same result for ordered semigroups. In all of these cases, the adjunction of a
unit is trivially the topologized (respectively, ordered) modification of the case of
usual semigroups. In fact, these are (trivial) illustrations of the situation described
in Theorem 10.

4.1.3. Semimonoidal categories. A category C equipped with a bifunctor
—®—, such that (=, ® ) ® —3=—, ® (—, ® —3), will be called a strict
semimonoidal category (see, e.g., [1]). As a strict monoidal category is a monoid
in CAT a strict semimonoidal category is a semigroup in CAT. Since CAT has
coproducts, Theorem 5 applies and one can, to any strict ssmimonoidal category,
freely adjoin an identity object I and so get a strict monoidal category.

One can casily extend this construction by adjoining a strict unit object
to a nonstrict semimonoidal category. Given such (C, — ® —, o) one obtains the
monoidal category (C+ 1, —®—, @, 4, p), where (C +1, —®—, Z, p) are defined as

idc
above, i.e., for all C in C one has A. = p.:1® C=C —> C, and where 7 is the
idggc

d
extension of o given by, e.g., %, 5 =(1®B)®C=B®C —>BR®C=1® (B®
C)). This construction is well known.
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Since (arbitrary) monoidal categories are pseudomonoids in CAT, considered
as a 2-category, these results lead to the question whether our process of adjoining
units can be extended to pseudomonoids. This, however, would require the use of
higher dimensional category theory, which is beyond the scope of this note.

4.1.4. Cosemigroups. Itis well known that in the cartesian category Set of
sets (as in any cartesian category), there are no nontrivial comonoids, i.e., the only
comonoid on a set X is (X, Ay, !) with Ay : X - X x X the diagonal of X and ! the
(unique) map from X to the singleton. However, there are nontrivial cosemigroups
as, for example, S, = ({0, 1}, §) with §(0) = (1) = (0,0) and S, = ({0, 1, 2}, ")
with 6(0) = (0, 0), 6(1) = d6(2) = (1, 1). It is obvious that Set°? does not satisfy the
second hypothesis of Theorem 5.

(a) Nevertheless, to every cosemigroup (X, o) in Set one can cofreely adjoin
a counit as follows: Put X = {x e X | d(x) = (x,x)}. Then (X,Az,!) is a
comonoid and the inclusion 7y : X < X is a morphism of cosemigroups. If
now f: (C, A;) — (X, 0) is morphism of cosemigroups, the image f[C] must be
contained in X, i.e., f factors (uniquely) as C Sox X, and clearly f* is
a morphism of comonoids. The counitarization of S, is the comonoid on {0},
while the counitarization of S, is the comonoid on {0, 1}.

(b) If one considers instead of Set the cartesian category Set,, of all sets with
cardinality # 2, our construction would not work for S,. In fact, for this
cosemigroup there is no counitarization over Set, at all, as is easily seen.

Remark 11. The construction of the morphism 7 : (X, Ay) — (X, d) in (a) above
generalizes to any category C with finite products and equalizers (let simply 7y :
X — X be the equalizer of Ay and §); and this gives a counitarization of (X, &),
provided that C has unique factorizations of morphisms which can be lifted to
CosgrC.

4.2. When Tensoring Preserves (Co)products Only

4.2.1. Banach algebras. By Remark 6 above we can apply Theorem 5 to
the category Ban, of Banach spaces and short maps. The category Mon(Ban,) then
is the category of Banach algebras (see e.g. [30]). Thus, our construction provides
the well-known (free) adjunction of a unit to a Banach algebra which does not
necessarily have one.

One could apply the dual argument in order to cofreely adjoin a counit to
any Banach coalgebra without a counit, provided that tensoring preserves binary
products, which would be the case if Ban, had biproducts (see Remark 8). However,
this is not so.

4.2.2. Bialgebras over a commutative unital ring. Given a commutative
unital ring R, the (unital) R-bialgebras are the semigroups and monoids, respectively,
in the category of R-coalgebras (with counit). This category is monoidally closed
(see [32]). Hence, by Theorem 5, one can freely adjoin a unit to any nonunital
counital bialgebra.
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The same argument can be used with respect to the category of cocommutative
R-coalgebras with counit. This possibly may be better known, since here the
monoidal structure under consideration is the cartesian one (see, e.g., [12]). In
addition the final statement of Theorem 5 leads to the unitarization of a nonunital
commutative and cocommutative bialgebra with a counit.

Since by Lemma 9 tensoring preserves (binary) products in the category of
(commutative) unital algebras, these results dualize by Theorem 7.

The following diagram displays the categories just discussed. Here all arrows
are the obvious forgetful functors (embeddings) and the subscripts ¢ (coc, 1, €) refer
to commutative (cocommutative, unital, counital) structures. The above statements
then read as follows: The functors U, V, W admit a left adjoint, a unitarization, while
the functors U’, V', W admit a right adjoint, a counitarization:

. U . u’ .
c,coc,eBlalg -~ c,coc,l,eBlalg - c,coc,lBlalg

v v v
(:oc,l,eBialg l,eBialg c,l,eBialg

S 2

coc,cBialg Bialg 1Bialg 1 Bialg .

Some of these results are of particular interest in algebraic geometry. Indeed,
existence of the counitarization of commutative unital biagebras implies, by the
Yoneda lemma, the existence of the unitarization of semigroup schemes (over R) to
obtain monoid schemes [14]. Moreover, if R is an algebraically closed field k, and
if only finitely generated commutative k-algebras with a unit are considered?, one
gets unitarizations of affine algebraic semigroups to obtain affine algebraic monoids
(see [21]). From the above unitarization of cocommutative counital bialgebras we
obtain, again by the Yoneda lemma, the unitarization of a formal semigroup to get
a formal monoid (see [12]).

4.2.3. Categories without identities. Here we use the categories Grph of
(directed) graphs and its (non-full) subcategory of O-Grph of graphs with a fixed set
O as set of vertices (and identity-on-objects graph homomorphisms) from [27, pp.
48-49]. The former category is symmetric monoidal for the pullback over O along
the source and target maps, the unit object being the O-graph on O with source and
target maps the identities.

Roughly speaking, a semicategory (also called a taxonomy, see [2]) is a category
where objects do not necessarily have identities (in particular, the source and
target maps are not required to be onto). A semigroup (respectively, monoid) in
O-Grph, thus, is a (small) semicategory (respectively, category) with object set O.
A paradigmatic example of a semicategory is given by Hilbert spaces with Hilbert—
Schmidt operators as morphisms, since the identity on an infinite dimensional
Hilbert space fails to be a Hilbert-Schmidt operator (see, e.g., [37]).

Since the category O-Grph has finite coproducts (a binary coproduct here is
essentially the disjoint sum of the sets of edges), which are preserved by the pullback,

2Observe that these are closed under tensor product and binary product.
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we may apply Theorem 5 to freely add identities to a (small) semicategory to get
a (small) category (both with object set O). The identities can, by construction, be
identified with the elements of O.

This construction is of a local nature since the category obtained from a
semicategory is universal only among those categories with object set O. It may be
globalized as follows. Let Semi-Cat denote the category of all semicategories with
object class all objects from Sgr(O-Grph) for all sets O, and with arrows the obvious
ones, the semifunctors. We then have (see [2] for quite a different proof).

Proposition 12. The forgetful functor | — | : Semi-Cat — Cat has a left adjoint.

Proof. Let S be a (small) semicategory (and let O(S) be its object set). Let C be a
category, and let F = (F,, F,) : S — |C| be a semifunctor (F), is the object function,
while F, is the arrow function of F). Let S be the unitarization of S in O(S)-Grph.
Then, we define a functor F* = (F,, F}) : S — C by F,(f) = F,(f) for every arrow
fin S, and F,(id,) = idj, ,, for every object x € O(S). This functor is the unique
functor G : S — C with the property that G ,(f) = F,(f) for every arrow f of S and
G,(x) = F,(x) for every object x of O(S). O

Remark 13. The above constructions, both the adjunction of identities to
semicategories, and the globalization of its universal property, may be extended to
internal (semi)categories [8] in a locally cartesian closed category C (see, e.g., [42])
with binary coproducts, as it is clear by the following somewhat more abstract
description of this construction.

Consider the slice category Set | O with its forgetful functor | —| into
Set. O-Grph is (by the identification (A, ¢, d) = ((A, ¢), (A, d)) isomorphic to) the
subcategory of the (non-full) category (Set | 0)? with those objects ((A, f), (B, g))
with A = B (f and g are the source and target maps) and those morphisms (¢, )
with ¢ = .

Since, as for any slice category, the functor | — | creates coproducts as (A, f) +
(B,g) = (A+ B, [f, g]) (here [f, g] is the morphism A + B — O with components f
and g) and, as for any product category, coproducts are constructed coordinate-
wise, one has in (Set | 0)?

(A, ). (B, g)) + (A", f). (B, &) = (A, ) + (A", ). ((B. 8) + (B’ §))
=((A+ A1 f]D. (B+ B, [g.&]).
This shows in particular, that O-Grph is closed in (Set | 0)? under coproducts.
Since the pullback of A —> O along B 5 O'is the product (A, ¢) x (B, t) in

Set | O, the tensor product in O-Grph defined above can alternatively be described
as

(A, ¢, d) ® (B, s, 1) = (|(A, ) x (B, 5)], s 0 mp, d 0 1),
where 7, and my are the projections of the pullback in question.

It is now easy to see that, in O-Grph, tensoring preserves binary coproducts
since, in Set | O, product multiplication preserves binary coproducts.
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Thus, the construction above can be generalized to internal categories in any
locally cartesian closed category with binary coproducts. Every quasi-topos satisfies
these conditions by definition (see, e.g., [31]) and, thus, in particular the categories of
Kowalsky’s convergence spaces, Choquet’s pseudo-topologies, or Spanier’s quasi-
topologies.

4.3. When Tensoring Preserves Coproducts and Products

4.3.1. Rings. This example is a special instance of Section 4.3.3 below. We
only mention it here already because of its generally known importance.

Since (not necessary unital) rings are semigroups in the monoidal category Ab
of abelian groups with its canonical tensor product, our construction gives the free
adjunction of a unity to a ring, which is not necessarily unital. While the familiar
construction (see, e.g., [22, 2.27]) also requires to pay attention to the additive
structure of the ring when adjoint the unity, this comes for free here. Note, however,
that our abstract construction nevertheless directly translates into the familiar one.

Remark 14. This example moreover shows, that the universal adjunction of a
unit—being obviously a minimal monoid extension in the case of semigroups—
in general will fail to be so: The nonunital ring 2Z of even integers admits
an embedding into the unital ring Z, which is not isomorphic to the universal
construction and properly contained in it.

4.3.2. Semirings. The category .Mon of (ordinary) commutative monoids
is known to be monoidally closed (see Remark 6). The tensor product, thus,
constructed as in Ab and the internal hom functor is given by the bi-additive maps.
Thus, the semigroups in this monoidal category are semirings (without unit), while
the monoids are the unital semirings (whose additive identity is not necessarily
absorbing, as it is sometimes required in the definition of a semiring). Theorem 5
thus applies.

Moroever, .Mon has binary biproducts and tensor functors are additive. Thus,
Theorem 7 applies as well. Calling a comonoid in ,Mon a semi-coring (see [1] for a
related notion), we therefore conclude, that one can cofreely adjoin a counit to any
semi-coring, which does not necessarily have a counit.

4.3.3. Algebras and coalgebras over a commutative unital ring. Let
R be a commutative unital ring. Then the same considerations as for rings apply,
except one considers, instead of Ab, the category Meod, with its canonical tensor
product. We thus get a left adjoint of the forgetful functor from the category ,Alg,
of unital R-algebras to the category Alg, of R-algebras which are not necessarily
unital.

Since Mody’, the dual of the category of R-modules, is monoidal as well, the
categories Mon(Mody’) and Sgr(Mod;") are defined and one has Mon(Mod;") =
.Coalg’, the category of R-coalgebras with a counit, and Sgr(Mody’) = Coalg;’,
the category of coalgebras which do not necessarily have a counit. By Remark 8§,
we can apply Theorem 7, that is, one can adjoin a counit to any R-coalgebra, and
cofreely so.
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Moreover, the dualization functor F = (—)*:Mody’ — Mod; is a lax
monoidal functor (the canonical morphisms M* @ M* — (M @ M)* form a
natural transformation @, and the canonical morphism ¢ : R — R* here is even
an isomorphism). We thus get induced functors F: Coalg)® — Alg, and F:
.Coalgy” — | Alg, by Proposition 3, such that we have the commutative diagram

Coalgy’ £ . 1Alg

Coalg%p Algp

where V and V' have left adjoints A and A’, respectively. The functors F and F are
the so-called dual algebra functors (note that usually only F is considered).

Clearly, the dualization functor (—)* preserves binary coproducts as well, such
that the assumptions of Theorem 10 are satisfied as well. We thus get the following
proposition.

Proposition 15. Let R be a unital commutative ring. Then, for every R-coalgebra
C, the unitarization of the dual algebra of C coincides with the dual algebra of the
counitarization of C.

It is known that the dual algebra functor F : Coalg, —  Alg, has a left
adjoint. For R = k a field, this is given by the so-called finite dual of an algebra. For
arbitrary rings, this has been shown in [33], and it is clear from that proof that also
the dual algebra functor F : Coalg, — Alg; has a left adjoint. Let us call these left
adjoints “finite duals" as well. Then, by composition of adjoints, we obviously get a
kind of inverse of the above result as follows.

Proposition 16. Let R be a unital commutative ring. Then, for every R-algebra A, the
counitarization of the finite dual of A coincides with the finite dual of the unitarization

of A

4.3.4. Differential algebras and coalgebras. Let R be a commutative
unital ring. A derivation ¢ on R is an endomorphism of the underlying additive
group of R satisfying Leibniz’ rule, i.e., for every a, b € R,

0(ab) = ad(b) + d(a)b.

The pair (R, 0) is called a commutative differential unital ring [24]. Every commutative
unital ring R may be equipped with the trivial derivation 0.

An R-module M is said to be an (R, 0)-module, if it is equipped with a (module)
derivation D, i.e., an endomorphism of the underlying additive group of M such that
for every a € R and x € M,

D(ax) = aD(x) + d(a)x.
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The pair (M, D) is called a differential module over (R, 0). If 0 = 0, then D is just a
R-linear map. A morphism of differential modules over (R, 0) is an R-linear map,
commuting with the derivations. This defines the category diffMod ;. The map
M — (M, 0) evidently defines an embedding of Mody into diffMod ).

The category diffMod, ) has biproducts, constructed as follows: If (M, D,,)
and (N, Dy) are differential modules over (R, 0), then sois (M @ N, D, y) with D,
defined by (D,, + Dy)(x,y) = (Dy(x), Dy(y)), x € M,y € N.

The category diffMod  , also admits a symmetric monoidal structure as
follows. If (M, D,,), (N, Dy) are differential modules over (R,0), let D: M x
N — M ® N be the bi-additive map with D(x,y) = D, (x) ® y + x ® Dy(y). This
map satisfies D(ax,y) = aD(x,y) + 0(a)(x®y) = D(x,ay) (a€ R,xe M,y € N)
and, thus, induces a group endomorphism D,, ® idy +id,, ® Dy of M ® N, which
is easily seen to be module derivation. Now define (M, D)) ® (N, Dy) :=(M ®
N, D, ®idy +id,, ® Dy). (R, 0) is the left and right unit of this tensor product.

The categories Sgr(diffMod ;) (Mon(diffMod  ;)) are called the categories
of (unital)differential (R, 0)-algebras. In particular, a commutative differential unital
ring is a commutative monoid in diffMod ).

Dually, the categories Cosgr(diffMod ;) (Comon(diffMod ; ;)) are called the
categories of (counital) differential (R, 0)-coalgebras. A (counital) differential (R, 0)-
coalgebra, thus, is a pair (C, D), where C is a (counital) R-coalgebra and D is a
coderivation, i.e., a module derivation (of the underlying module) of C satisfying
the co-Leibniz rule (D ® id + id ® D) o A = A o D, where A is the comultiplication
of C [35].

From the preservation by M ® — of binary biproducts on Mody, it follows
that (M, D) ® — also preserves binary biproducts on diffMod ; ;, and thus we may
freely add a unit to a differential (R, 0)-algebra to obtain a unital differential
(R, 0)-algebra, and cofreely add a counit to a differential (R, d)-coalgebra to obtain
a counital differential (R, 0)-coalgebra.

4.3.5. Monoids and comonoids in Hilbert spaces. The category Hilb of
Hilbert spaces (real or complex) and linear bounded operators has binary biproducts
(see [17, 19]). It is a symmetric monoidal category by the usual hilbertian tensor
product (see [23]) and each tensor functor H ® — is additive and preserves binary
biproducts (see [37) Hilb carrles a contravariant involutive endofunctor (—)F

defined by (H N H) :=H —> H, where f7 is the adjoint of f. Denoting by
Hilb°? the dual monoidal category of Hilb, the functor (=) : Hilb°® — Hilb is a
strict monoidal functor.

By Proposition 3 and Remark 4, the functor (—)' thus induces an adjoint
monoid functor M : (Comon(Hilb))°®? — Mon(Hilb) as well as an adjoint comonoid
functor C: Mon(Hilb) — (Comon(Hilb))°? and, analogously, an adjoint semigroup
functor and an adjoint cosemigroup functor. The functor C then is a left adjoint, in
fact an equivalence inverse, of M.

Using the same arguments as in Section 4.3.3 (replacing (—)* by (—)"), one
now gets the following result where, contrary to the case of Banach algebras, every
cosemigroup (H, m) lives on the same space H as its adjoint semigroup (H, m)" =
(H, m") (and similar for comonoids).
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Proposition 17.

1. To every semigroup in Hilb, one can freely adjoin a unit.

2. To every cosemigroup in Hilb one can cofreely adjoin a counit.

3. For every cosemigroup in Hilb the unitarization of its adjoint semigroup coincides
with the adjoint monoid of its counitarization.

4. For every semigroup in Hilb the counitarization of its adjoint cosemigroup coincides
with the adjoint monoid of its unitarization.

Note that we do not use the term Hilbert algebra here, because that
term already is in use in (more than one) different meanings. Examples (and
counterexamples) of the structures discussed above are, e.g., as follows:

1. Every semigroup (respectively, monoid) in Hilb is a Banach algebra (respectively,
unital Banach algebra) up to a change of an equivalent Banach norm (if (H, m) is
a semigroup, then because the bilinear map m, corresponding to m is continuous,
one has, for every x, y € H, ||my(x, y)|| < C|lx||||y|| for some positive real number

C, and from [36] it is known that we may find an equivalent norm | - || on H
such that |my(x, y)||” < ||x|'|ly|l'; moreover, if H has a unit e # 0, we may even
choose the equivalent norm so that |le||’ = 1).

2. Conversely, not every Banach algebra which is also a Hilbert space (and with the
norm induced by its inner product) is a semigroup (or monoid) in Hilb. Indeed,
the Hilbert tensor product does not coincide in general with the projective tensor
product. In particular, a continuous bilinear mapping induces a bounded linear
mapping on the hilbertian tensor product if, and only if, it is a weakly Hilbert—
Schmidt mapping (see [23]). Simple computations show that the multiplication
in a full matrix algebra (see [4, p. 367]) of an infinite order, while bilinear and
continuous, is not a weakly Hilbert-Schmidt mapping and, thus, such a Banach
algebra (which is also a Hilbert space) is not a semigroup object in Hilb. For
the same reason the algebra of Hilbert—Schmidt operators [16, 39] on an infinite-
dimensional Hilbert space is not a semigroup object in Hilb.

3. For any set I, the algebra ¢>(I) (under component-wise operations, see [4]) is a
semigroup in Hilb (and even a monoid when [ is finite).

4. Using the Peter—Weyl theorem [20, p. 24] we can check that for any compact
group G the L%-algebra L?(G) of G (the space of square-integrable real or
complex-valued functions with respect to the normalized Haar measure of G and
with the convolution product, see again [4]) also is a semigroup in Hilb. This
algebra admits a unit, and so is a monoid in Hilb, when G is a finite group.

4.3.6. R-rings and R-corings. There is no generally accepted notion of an
algebra over a noncommutative unital ring R. The most feasible generalizations
from commutative rings to this situation seem to be the concepts of unital R-rings
in the sense of Cohn [11] and of R-rings without a unit in the sense of [7]. These
then form the categories Mon(;Mod;) and Sgr(,Mod), respectively. Recall that,
in general, the monoidal structure of ;Mod, fails to be symmetric, but is left and
right closed, such that the assumptions of Theorem 5 are satisfied. Then the same
considerations as in the previous example allow for a free adjunction of a unit to
an R-ring to obtain a unital R-ring.
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Moreover, Theorem 7 applies by Remark 8. Thus, one can cofreely adjoin a
counit to any R-coring in order to obtain a counital R-coring (see [10, 41] for the
definition of an R-coring).

4.3.7. Graded semigroups and monoids. As a further application, we
describe a graded version of our results, which is of interest for algebraic topology (a
filtered version will be investigated later). See [28] for the proofs concerning graded
categories.

Let € =(C,—® —,I) be a monoidal category with arbitrary coproducts,
preserved by all functors C ® — and — ® C. Moreover, let M be a (usual) monoid
with underlying set M and unit ey,. Then there is a monoidal category Gr(C),, =
(CM, — ® —, Y) of M-graded objects of C where the following statements hold:

1. CM is the M-fold power of the category C, i.e., objects are families (F,) ., of
objects of C, and a morphism f: F — G is a family (f,),c, of morphisms f, :
F, — G, in C. Composition and identities in C¥ are taken coordinate-wise.

2. F® G is defined by

(F ® G)zEM = ]_[ Fx ® G)"

xy=z
3. Y is defined as

v — 01if x # ey
TN if x = ey,

where 0 is the initial object of C.

CM has coproducts, defined pointwise by

()

jeJ

— J
M_]_[Fx’
re jel

and these are preserved by all functors F ® — and — ® F. Hence, we obtain by
Theorem 5.

Theorem 18. Let C = (C, — ® —, I) be a monoidal category such that C has binary
coproducts, where all functors C @ — and — ® C preserve coproducts of the form S + 1,
and let M be a monoid. Then the forgetful functor SgrGr(C)y,, — MonGr(C)y, has a
left adjoint.

Applications of this graded generalization of (co)unitarization concern for
instance the following cases:

e For €, the cartesian category Set of sets, we get graded semigroups and graded
monoids, respectively (i.e., usual semigroups (S, m) and monoids (S, m, ¢) that
may be written as a set-theoretic disjoint sum S = | |,.,, S, such that m(a, b) € S,
for every a€ S, b€ S, and x =yz, e € S, ). (See [38] for a slightly less general
notion.)
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e For €C = Mod; (with its usual tensor product), we get the usual M-graded R-
algebras with or without a unit (see [26, p. 177] for this description), which
might be better known in the cases M =7Z and M =N (graded in positive
degrees), seen as additive monoids (see e.g. [29]). When M = Z/27Z, we recover
superalgebras [13]. As another example, the monoid algebra R[M] of a monoid
M is obviously an M-graded R-algebra.

e If C = Mod}’, we get M-graded coalgebras with or without a counit.

4.4. Extensions

4.4.1. *-algebras. This example is devoted to the problem of lifting our
construction to *-monoids.

Recall that a ring with involution is a (commutative and unital) ring R together
with a self inverse automorphism ¢ of R. This automorphism induces an involutive
automorphism (—)? on the category Alg, by assigning to an algebra A = (A, (1 -
—),er» M) (Where A is an abelian group, A - — denotes a scalar multiplication making
A into an R-module, and m is a bilinear and associative multiplication) the algebra
A? = (A, (P4 —),cx>, m°P). If ¢ is the identity, A? is simply the opposite algebra
A°P of A. The other interesting case is that of complex algebras with ¢ being the
complex conjugation; in this case, we will write A instead of A?.

Definition 19. Let (R, ¢) be a ring with involution. A *-algebra over (R, ¢) is an
R-algebra A equipped with an involutive algebra homomorphism »: A — A?. A
homomorphism of *-algebras then is an algebra homomomorphism commuting with
the x-operations.

Note that a *-algebra over (R, ¢) thus is a functor algebra (and a functor
coalgebra) over Alg, with respect to the functor (—)?. Thus, the category *Alg g )
of *-algebras over (R, ) is the full subcategory of Alg(—)? and Coalg(—)?,
respectively, spanned by those (co)algebras satisfying % o x = id.

The category *Algz q) is called the category of *-rings (see also [5, 18], where
such structures are called rings with involution).

Note that, if A is a (real or complex) Banach algebra, so are A% and A,
equipped with the given norm. We thus have, by obvious generalization, categories
*Ban, of real and of complex *-Banach algebras as subcategories of categories of
functor (co)algebras over Sgr(Ban,).

Some of the structures discussed here are also known as B*-algebras (see, e.g.,
[36], where also the problem of adjoining a unit is discussed).

With notation just introduced a C*-algebra is a complex *-Banach algebra A
satisfying the C*-identity

VaxeA, [t = lxlllx]-

A homomorphism f between C*-algebras is an algebra homomorphism
commuting with the operation (—)*, which is bounded (equivalently, which is a short
map).

Thus, C*-algebras form a (non full) subcategory of the category *Bam, as
defined above.
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The various categories of *-algebras defined above clearly come in unital and
non-unital versions. It is therefore worthwhile to consider the problem of adjoining
a unit to a nonunital *-algebra. We here use the notations *SgrC and *MonC in
the obvious way, that is, we assume that there are given self inverse functors (—)?
on SgrC and MonC, respectively, such that (—=)? oV =V o (—)? (with V as in
Section 2).

Proposition 20. Let C be a monoidal category, such that one can freely adjoin a
unit to any semigroup over C. Let (—)? : SgrC — SgrC be a self-inverse automorphism
on SgrC, which can be restricted to an automorphism on MonC. Then the adjunction
between SgrC and MonC can be lifted to an adjunction between *SgrC and *MonC.

Proof. Let S be a semigroup and  : S — S? its *-operation. If 5 : S — ‘S is the
unit of the given adjunction, there is a unique monoid morphism % : S — S¢ such
that the diagram

T]S ¢

commutes, and this is, by construction, self-inverse. It now suffices to observe that

. . L ad s & 19)? o
by composition and uniqueness of adjoints S =50 =8"5,3§ (the functors

(—)? are isomorphisms on MonC and SgrC, respectively).
It is then easy to see that 5g : (S, x) — (S, %) is a universal morphism for the
forgetful functor *SgrC — *MonC. O

Thus, the free adjunction of units is possible for *-rings, *-algebras, *-Banach
algebras, and *R-rings.

Concerning C*-algebras, it would remain to show that the C*-identity holds
for A + C. But this, unfortunately is not the case, as it is well known. For this one
has to change the norm of A 4+ C to an equivalent one (see [15]).

4.4.2. Monoid and semigroup actions. Given a symmetric monoidal
category € = (C, — ® —, 1) and a monoid M = (M, m, e¢) in C, there is the well
known category ,,Lact of left M-(monoid) actions (see [27]). Left M-actions thus are
pairs (C, y) with C an object and y: M ® C — C a morphism in C satisfying the
usual axioms concerning associativity and unit. In the same way, one can define left
actions of a semigroup S = (S, m) in € by dropping the condition on the action by
the unit and so gets categories gLact of left S-(semigroup) actions.

Monoid actions on a set in the usual sense are monoid actions in the cartesian
category Set, while for a monoid M in the monoidal category Ab of abelian groups
(with the usual tensor product), i.e., a unital ring, the category y,Lact is the category
wMod of left M-modules.
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The following example is well known for actions in Set: A semigroup action of
a semigroup S on a set X can be made into monoid action by adjoining an identity
to the semigroup and requiring that it acts as the identity transformation on X.
Since every monoid action of this monoid, by restricting its action to S, induces
a semigroup action of S, and these operations are mutually inverse one gets an
isomorphism of the categories gLact and gLact.

The process just described for Set can in fact be generalized to any symmetric
monoidal category C satisfying the hypotheses of Theorem 5 as follows: If S =
(S, m) is a semigroup in €, S = (S + 1, /i, ) its unitarization, and (C, y) an S-action,
let y: (S+ 1) ® C — C be the unique morphism such that the diagram

sec—Lsinect® 1gc

Y K Ao

C

commutes. Then, using the methods of the proofs in Section 3, it is easy (though
somewhat lengthy) to see that (C,%) is an S-action, and that the assignment
(C,y) = (C,7) defines an isomorphism of categories

sLact >~ gLact. (10)

We can avoid this cumbersome argument by directly applying Theorem 5 in
case € is a symmetric monoidal closed category. Here we can use an equivalent
description of an M-action (C, y), familiar from the cases € = Set or € = Mod, as
a monoid morphism from M into the endomorphism monoid of C.

By elementary facts on symmetric monoidal categories (see, e.g., [9, 6.1.]),
for every C-object C one has a monoid 1¢,4(C) = ([C, C, ¢cc.c» ec) in €, where
[—, —] denotes the internal hom functor, ¢ is the composition morphism
[C.,C]®[C,C] — [C,C], and e, : I — [C, C] is the unit morphism (corresponding
by adjunction to id.). We call, for obvious reasons, 1g,4(C) the endomorphism
monoid of C and End(C) = ([C, C], c¢.¢.¢) the endomorphism semigroup of C.

We will also use the evaluation morphism ev. : [C, C] ® C — C, corresponding
by adjunction to the identity of [C, C]. Note the equation

CeI®C % (0,000C 2% C=ide . (11)

By adjunction, there corresponds to any C-morphism X® C — C a C-
morphism X — [C, C]. We will use the following standard categorical observation.

Fact 21. If M is a monoid and C an object in C, for any morphism M ® C BN
C and its mate M — [C, C], corresponding to y by adjunction, the following
statements are equivalent:

1. (C,y) is a left M-action;

2. ML {End(C) is a monoid morphism.
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For left M-actions (C,y) and (D, d) and a C-morphism f: C — D the following
statements are equivalent:

3. f:(C,y) = (D, d) is a morphism of left M-actions;
4. The following diagram commutes:

Mec-2% 00002 wC
Mof s
MeD-"%2 D DleD 2L (.

Similarly for semigroups and their actions.

We now can prove the following proposition, using these equivalent
description of actions and their morphisms.

Proposition 22. Let C be a symmetric monoidal closed category with binary
coproducts. Then, for any semigroup S in C with unitarization S, the categories sLact of
left S-semigroup actions and gLact of left S-monoid actions are (concretely) isomorphic.

Proof. If (C,S®C BRI () is an S action, there exists, by Theorem 5, a unique
monoid morphism 7 := (y*)* : S 1g0a(C) With J o g = y*. Thus, one can assign

to every gLact-object a § Lact-object by (C,y) — (C, S —>1 End(C)) =: W(C, ).
In order to see that this, with W(f) = f, becomes a functor, we need to show that
the right-hand rectangle in the diagram below commutes, which will be the case,
provided that precomposition with p¢ ® C and p;, ® C equalizes both ways:

7*eC
Sec %L nec 2l So,0ec -
S®f J(S—O—I)@f f
SeD—Ls 1 nNeDp 22 . D DD . C.

\-/

0*®C

For p this follows, by definition of j and 5, from commutativity of the left-hand
cell and the fact that f is a morphism in gLact. ~

Concerning precomposition with g, recall this is the unit of S and, thus,
preserved by the monoid morphisms 7 and d, which, by definition, is equivalent to
saying y o it; = e and J o y; = ej,. This reduces the required equality to f o ev, o
(ec ® C) = evpo (e ® D)o (I® f), and this holds trivially using Equation (11).

By definition of m (see Eq 1) pg: (S, m) — (S+1,m) is a morphism of
semigroups. Thus, by (S, S —>1 End(C)) — (S,S L End(C)), one assigns to

every gLact-object an gLact-object. This construction obviously defines a functor ®
with ®(f) = f for every morphism in gLact.
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Now ¥ o ® acts on monoid morphisms S RN 1End(C)as

—

S+I5 00,0 = 8T (0,0] — §+1 2L, [0, 0);

by definition, y*?ﬂs is the unique monoid morphism S —, End(C) satisfying
(7" o pg) o s = 7" 0 pg. Thus, Wo D(y*) = y*. i
Since ® o ¥ acts on semigroup morphisms S — End(C) as

S 00,0] = S+15[0.C] — 82 (0,0,

one concludes ® o ¥(y*) = y* by definition of 7.
Since both functors, ® and W, are concrete functors over C by definition, one
concludes that they are mutually inverse. |

It is clear by the examples discussed in Section 4 in which situations this result
can be applied (e.g., Ab, Mod,, Ban,). Note that, in order to apply a nonsymmetric
or dualized version (e.g., for actions of R-rings or coalgebras), one cannot apply
Proposition 22 directly but has to resort to the argument preceding Eq. (10).

5. CONCLUSIONS

Generalizing the familiar adjunction of a unity element to a semigroup and
a ring, respectively, we have constructed a left adjoint “unitarization functor” to
the forgetful functor from the category MonC of monoids in a monoidal category
C into the category SgrC of semigroups, using only mild natural conditions on C.
This not only allows for wide range of examples from various areas of algebra as
shown in Section 4, but—due to its categorical character—for applications in the
area of coalgebra as well, yielding here a “counitarization functor,” right adjoint to
the forgetful functor from comonoids to co-semigroups. A nontrivial compatibility
of these functors with dualization functors (like the dual algebra functor) has been
established.

The question, to what extent this compatibility also applies to Sweedler’s dual
ring functors (see [41]) will be dealt with in a paper in preparation. As a further open
problem we ask whether there is a 2-dimensional generalization of our construction
provided.
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