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Hilbertian (function) algebras

Laurent Poinsota,b

aCREA, French Air Force Academy, BA 701, Salon-de-Provence, France; bLIPN – UMR CNRS 7030, University
Paris 13, Sorbonne Paris Cit�e, Villetaneuse, France

ABSTRACT
A Hilbertian (co)algebra is defined as a (co)semigroup object in the
monoidal category of Hilbert spaces. The carrier Hilbert space of such an
algebra ðH, lÞ splits as an orthogonal direct sum of its Jacobson radical
and the closure of the linear span of a special class of elements, the
group-like elements of its adjoint coalgebra ðH,l†Þ, which by the Riesz
representation, correspond to closed maximal modular ideals. When the
coproduct is isometric, that is, when l � l† ¼ id, semisimplicity is shown
to be equivalent to the existence of adjoints in the sense of Ambrose’s
H�-algebras. We also prove that the category of semisimple special
Hilbertian algebras, that is, semisimple Hilbertian algebras with an iso-
metric coproduct, i.e., essentially the algebras of the form ‘2ðXÞ with the
pointwise product, are dually equivalent to a subcategory of pointed
sets and base-point preserving maps.
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1. Introduction

This text discusses what one proposes to call a Hilbertian algebra: a semigroup object in the
symmetric monoidal category of Hilbert spaces and bounded linear maps with the usual
tensor product, �̂2, that is, a “Hilbertian algebra” is a Hilbert space H with a bounded lin-
ear map l : H�̂2 H ! H such that lða� lðb� cÞÞ ¼ lðlða� bÞ � cÞ for all a, b, c 2 H: One
of the main results is a description of the carrier Hilbert space of a commutative Hilbertian
algebra (Theorem 22) in terms of “group-like” elements, which is obtained by combining
the Gelfand transform from the theory of Banach algebras with basic results on
Hilbert spaces.

Any Frobenius algebra (see e.g. [2]) in the monoidal category of Hilbert spaces, and in particu-
lar any finite-dimensional C�-algebra (its underlying vector space becomes a Hilbert space under
the inner product ha, bi ¼ trðb�aÞ) is a commutative Hilbertian algebra. This suggests that study-
ing Hilbertian algebras might be useful for the study of categorical quantum mechanics (see e.g.
[1]) in the infinite-dimensional case.

A result in [2, Proposition 23, p. 16] similar to Theorem 22, is even obtained for (nonunital)
Frobenius algebras. It explicitly states that such an algebra is the direct sum of subalgebras con-
sisting of its radical and a H�-algebra, and that this decomposition is also a direct sum of sub-
coalgebras for the adjoint coalgebra. This in particular implies that both summands are
subalgebras and subcoalgebras. Sadly the proof of this claim is false and the remaining valid part
of the proof only states that the summand corresponding to the H�-algebra is a subcoalgebra,
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and not a subalgebra (but a quotient H�-algebra).1 The flaw in the proof is due to the use of [14,
Lemma 6, p. 866] whose validity is itself based on [14, Lemma 1, p. 860] which is manifestly
false2 since it states in the context of Hilbert spaces, that kerðf �̂2 f Þ ¼ kerðf Þ �̂2 kerðf Þ for every
bounded linear map f. It is one of the purpose of, and the original motivation for, this note to
get a corrected and improved result.

Some important points that could be extracted from the text are:

1. On every Hilbertian algebra there is a norm jj � jj0 (possibly different from the norm induced
by the inner product but equivalent to) with respect to which the underlying Banach space
becomes a Banach algebra with multiplication a � b ¼ lða� bÞ:

2. Any Hilbertian algebra ðH, lÞ gives rise to an adjoint Hilbertian coalgebra ðH, l†Þ, that is, a
cosemigroup object in the monoidal category of Hilbert spaces. Moreover the orthogonal
complement I? of a closed two-sided ideal of ðH, lÞ is a closed subcoalgebra of ðH, l†Þ, and
I 7! I? is even a bijection between closed two-sided ideals and closed subcoalgebras.

3. Every character of a Hilbertian algebra ðH,lÞ, that is, nonzero multiplicative linear map f :
H ! C, is of the form f � h�, xi for a unique group-like element x of ðH,lÞ, that is, a non-
zero element of H with l†ðxÞ ¼ x� x:

To get Theorem 22, these three points are combined as follows. Let ðH,lÞ be a commutative
Hilbertian algebra. Then by (1) it is a Banach algebra, and so the Gelfand transform G is avail-

able. Since its kernel ker G, is a closed ideal, the Hilbert space H splits as H ¼
ðker GÞ �2ðker GÞ?: By (2) ðker GÞ? is a closed subcoalgebra. Moreover, since ker G is the inter-

section of the kernels of all characters, and the kernel of a character is equal to ðCxÞ? for some

group-like element x by point (3), it follows that ðker GÞ? is the closure of the linear span of the
group-like elements. Finally, the kernel of the Gelfand transform is also the radical, and so we
have Theorem 22. In particular a commutative Hilbertian algebra is semisimple if, and only if,
the linear span of its group-like elements is dense.

In the special case where the coproduct is isometric, that is, when l � l† ¼ id, semisimplicity
is shown to be equivalent to the existence of adjoints in the sense of Ambrose’s H�-algebras [5]
(Theorem 32 and Corollary 33).

To a pointed set ðX, x0Þ is associated the Hilbert space ‘2�ðX, x0Þ of all square-summable maps
X ! C annihilated at x0. With pointwise multiplication it is even a Hilbertian algebra with an
isometric coproduct. This correspondence is extended into a functor from the dual of a subcat-
egory of pointed sets to the category of Hilbertian algebras with an isometric coproduct, hereafter
referred to as special, which is shown to be part of an adjunction (Proposition 36) in which the
set of group-like elements – seen as a pointed set with 0 added – provides a left adjoint.
Moreover, this adjunction restricts to a dual equivalence between the subcategory of pointed sets
and the category of semisimple special Hilbertian algebras (Theorem 40).

The paper is organized as follows:
Section 2 deals with the theory of tensor products of Hilbert and Banach spaces for the sake

of the readers not already familiar with it, which leads to the introduction of the main objects of
the paper namely the Hilbertian (co)algebras (Definition 1). It also contains a presentation of
some functorial relations between the different tensor products (Propositions 3 and 5) and an

1At the time of completing this paper its author does not know if [2, Proposition 23, p. 16] is valid in its whole generality,
that is, if its proof can be corrected.
2For example, consider H ¼ C� C, where C is the complex field, and let p1 : H ! C be the canonical projection onto the
first factor, then kerðp1 �̂2 p1Þ is 3-dimensional as it is equal to the direct sum of the one-dimensional and mutually
orthogonal subspaces of H �̂2 H, ðð0Þ � CÞ �̂2 ðC� ð0ÞÞ, ðC� ð0ÞÞ �̂2 ðð0Þ � CÞ, ðð0Þ � CÞ �̂2 ðð0Þ � CÞ, while kerðp1Þ �̂2
kerðp1Þ ¼ ðð0Þ � CÞ �̂2 ðð0Þ � CÞ ’ C is just a vector line.
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analysis of Ambrose’s H�-algebras from the viewpoint of Hilbertian algebras (see in particular
Theorem 9).

The main result (Theorem 18) of Section 3 is the one-to-one correspondence from the set of
closed two-sided ideals of a Hilbertian algebra onto the set of closed subcoalgebras of its adjoint
Hilbertian coalgebra, provided by orthogonal complementation.

From Section 4 one only considers commutative algebras. Section 4 discusses the general con-
cept of semisimplicity for (commutative) Hilbertian algebras. Here a structure theorem (Theorem
22) is provided, which makes use of the group-like elements (Definition 10) corresponding, under
the Riesz isomorphism, to the usual structure space.

Section 5 is entirely devoted to commutative special Hilbertian algebras (i.e., with a coisomet-
ric multiplication; Definition 12). Subsections 5.1–5.2 reach for these algebras, to the equivalence
between semisimplicity and the property of having adjoints in the sense of H�-algebras (Theorem
32 and Corollary 33), while Subsection 5.3 provides a dual equivalence between the above alge-
bras and a category of pointed sets, seemingly similar to the contravariant equivalence between
commutative C�-algebras and pointed compact spaces.

2. Hilbertian and Banach (co)algebras

The main notion of the paper, namely Hilbertian (co)algebras, is introduced hereafter. It is most
naturally presented in the realm of monoidal categories and one also recalls for the reader’s con-
venience some useful facts about the tensor products of Hilbert spaces and Banach spaces (both
the injective and the projective) and some of their functorial relations. Most of the notations and
notions from the theory of monoidal categories needed hereafter are taken from [25, Sect. 2, pp.
4874–4876] with the following exceptions: SemðCÞ and CosemðCÞ stand for the categories of
semigroup and of cosemigroup objects of a monoidal category C, while cSemðCÞ and
cocCosemðCÞ are the categories of commutative semigroup and of cocommutative cosemigroup
objects in a symmetric ([33, p. 69]) monoidal category C: By convention, the underlying category
of a (symmetric) monoidal category C is denoted C, and in general one denotes the same way
a(n op)monoidal functor from C to D and its underlying functor F : C ! D; in this situation
one says that F lifts to a(n op)monoidal functor. A(n op)monoidal functor F : C ! D induces a
functor again denoted F : SemðCÞ ! SemðDÞ (resp. F : CosemðCÞ ! CosemðDÞ) [25, Prop. 3,
p. 4876], and symmetric ones induce functors between the respective categories of (co)commuta-
tive (co)semigroup objects ([3, Prop. 3.37, p. 79]). Note that “(op)monoidal functor” always
means a lax one. Concerning other standard category-theoretic notions the main reference is
[21]. In particular given C-objects A, B, CðA,BÞ stands for the hom-set of all C-morphisms with
domain A and codomain B.

2.1. The category of Hilbert spaces

In this contribution, vector spaces (algebras and coalgebras) are over a fixed K 2 fR,Cg without
further ado; in particular � stands for the algebraic tensor product over K: a 7! �a stands for the
involution of K (the usual complex one or the identity in the real case).

By an inner product h�, �i is meant a Hermitian-symmetric sesquilinear form (conjugate-linear-
ity in the second argument) when K ¼ C, or just a symmetric bilinear form when K ¼ R, which
is positive-definite. Thus, a vector space with an inner product, i.e., a pre-Hilbert space, has a
norm induced by its inner product. The inner product of a Hilbert space H will sometimes be
denoted by h�, �iH: The norm induced by the inner product of the Hilbert space ‘2ðXÞ of square-
summable functions from X to K is denoted as usually by jj � jj2:

Categories: Ban and Hilb are respectively the categories of Banach and Hilbert spaces, each
with bounded linear maps as morphisms (in particular by an isomorphism in these categories is
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meant a topological isomorphism, i.e., a bounded bijective operator; its inverse is also bounded
according to the open mapping theorem). The usual operator norm of a (bounded linear) operator
between any normed spaces is denoted by jj � jjop: If C is one of the above categories, then C1 denotes

the subcategory of C with the same objects and with linear contractions (i.e., of operator norm 	 1) as
morphisms. Let U : Hilb ! Ban (and also U : Hilb1 ! Ban1) be the obvious forgetful functor.

Banach and Hilbert adjoint functors: The Banach adjoint functor is denoted � : Banop !
Ban: As usually it acts on a morphism f : E ! F as f � : F� ! E�, f �ð‘Þ ¼ ‘ � f : Of course, one
also has a “contractive” version � : Banop

1 ! Ban1 (since jjf jjop ¼ jjf �jjop [28, Theorem 4.10,

p. 98]).
The conjugate �H of a Hilbert space H shares the same abelian group as H but the scalar

action is given by a � x ¼ �ax, while hx, yi �H ¼ hy, xiH (of course when K ¼ R, �H ¼ H). This
extends in an obvious way to a functorial automorphism of Hilb (the identity when K ¼ R),
which is the identity on morphisms3 (since any linear map is automatically conjugate-linear too).
By the Riesz representation theorem ([17, Theorem 2.3.1, p. 98]), Uð �HÞ ’ UðHÞ� isometrically
and canonically under RH : x 7! h�, xiH: Now, given f 2 HilbðH,KÞ, f † 2 HilbðK,HÞ is the
unique map such that the following diagram commutes. In other words, RH � f † ¼ f � � RK,
i.e., hu, f †ðvÞiH ¼ hf ðuÞ, viK, u 2 H, v 2 K:

(1)

This gives rise to the Hilbert adjoint functor †:Hilbop ! Hilb, which is the identity on objects.
A corresponding result holds for Hilb1 (essentially because jjf jjop ¼ jjf †jjop [17, Theorem 2.4.2, p.

101]). As ðf †Þ† ¼ f , the dagger functor turns Hilb and Hilb1 into dagger categories [31]. Record
for later the following easy result.

Lemma 1. Let f : H ! K be a bounded linear map between Hilbert spaces. Let V 
 H and W 

K be closed subspaces. One has f ðVÞ 
 W if, and only if, f †ðW?Þ 
 V?:

Hilbert direct sum: Given Hilbert spaces H,K, the algebraic direct sum H � K equipped,
with the inner product hðx, yÞ, ðx0, y0Þi ¼ hx, x0iH þ hy, y0iK, turns out to be a Hilbert space
H �2 K called the Hilbert (or orthogonal) direct sum. When ðHiÞi2I is any collection of Hilbert
spaces, then the Hilbert direct sum �2i2I Hi :¼ fðuiÞi2I : 8i, ui 2 Hi, ðjjuijjÞi2I 2 ‘2ðIÞg is a
Hilbert space with hðuiÞi, ðviÞii :¼

P
i2Ihui, vii:

Given a subspace V of H,H ’ clðVÞ �2V?, where clðVÞ is the closure of V in the norm top-
ology of H, while V? denotes the orthogonal complement of V. For a closed subspace V, one
denotes by iV : V ,! H (respectively, pV : H ! V) the canonical injection (respectively, projec-
tion). Then, p†V ¼ iV and pV � iV ¼ idV : The range ranðiVÞ of iV is closed (because of the closed
range theorem for Hilbert spaces [22, Proposition 11.12, p. 87], since ranði†VÞ ¼ ranðpVÞ ¼ V).

2.2. Hilbert tensor product and Hilbertian (co)algebras

The category of Hilbert spaces also has a symmetric monoidal structure, given by the so-called
Hilbertian (or Hilbert) tensor product �̂2 (see [7]). H�̂2 K is the completion of the pre-Hilbert

3To be on the safe side, it should be said that the underlying group homomorphisms of H !f K and �H !�f �K are the same.
Nevertheless, in what follows such slightly ambiguous formulations will be used.
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space H�2 K where, for pre-Hilbert spaces H and K, H�2 K denotes the algebraic tensor prod-
uct together with the inner product hx� y, x0 � y0i ¼ hx, x0iHhy, y0iK ([7]).

Let H,K,L be Hilbert spaces, and f : H�K ! L be a bounded bilinear map (here as usual
bounded means that there is a real number M such that jjf ðx, yÞjjL 	 MjjxjjHjjyjjK, x 2 H, y 2 K
and the least such constant is its (bilinear) operator norm jjf jjop which is equivalently defined as

jjf jjop ¼ supjjxjj¼1¼jjyjj jjf ðx, yÞjj). It is said to be a weak Hilbert-Schmidt mapping if for every z 2 L,
and every orthonormal basis X of H and Y of K, the sum jfzjHS :¼

�P
x2X

P
y2Y jhf ðx, yÞ, ziLj2

�1
2
is

finite. By the closed graph theorem, there is a real number d such that jfzjHS 	 djjzjj for each z 2 L,
and the least possible value of the constant d is denoted by jjf jjHS:

Given such a map f, by [17, Theorem 2.6.4, p. 132], there exists a unique bounded linear map

f̂ : H�̂2 K ! L such that f̂ ðx� yÞ ¼ f ðx, yÞ, x 2 H, y 2 K and moreover, jjf̂ jjop ¼ jjf jjHS:
Remark 1. Not all bounded bilinear maps are weak Hilbert-Schmidt mappings. E.g., the inner
product h�, �i : H�H ! K is bounded (by the Cauchy-Bunyakovski-Schwarz inequality) but is a
weak Hilbert-Schmidt mapping only when H is finite-dimensional. This incidentally implies that
when H is infinite-dimensional then the unique linear extension of h�, �i to H�H is not a con-
tinuous map H�2 H ! K:

Notation 1. Given a bounded linear map H�̂2 K!f L, in what follows fbil : H�K ! L stands
for the corresponding weak Hilbert-Schmidt mapping and falg : H�K ! L for the correspond-
ing linear map on the algebraic tensor product, which of course is continuous as a map falg :
H�2 K ! L: Obviously, jjf jjop ¼ jjfbiljjHS ¼ jjfalg jjop and jjfbiljjop 	 jjf jjop (since jjfbilðx, yÞjj ¼
jjf ðx� yÞjj 	 jjf jjopjjxjjjjyjj).

Remark 2.
1. The conjugate space functor ð�Þ is a (symmetric) strict monoidal functor from Hilb :¼

ðHilb, �̂2 ,KÞ to ðHilb, �̂2 , �KÞ:
2. The Hilbert tensor product still provides a symmetric monoidal structure Hilb1 for Hilb1

([13]) because the coherence constraints are unitary (hence of norm 1), and because
jjf �̂2 gjjop ¼ jjf jjopjjgjjop for every operators f, g ([17, p. 146]).

�̂2 is additive: H�̂2 ðK �2LÞ ’ ðH �̂2 KÞ �2ðH �̂2 LÞ (canonically, [27]). Moreover, �̂2

preserves closed subspaces (as a consequence of [7, Proposition 3, Chap. V, p. 28]), i.e., if V, W
are closed subspaces of H and K respectively, then V �̂2 W ’ ranðiV �̂2 iWÞ, and in what follows
one even treats both subspaces as identical for convenience. Additivity of �̂2 implies
the following.

Lemma 2. Let H,K be Hilbert spaces with respective subspaces V, W. Then, as subspaces of
H�̂2 K,

ðclðVÞ �̂2 clðWÞÞ? ¼ ðclðVÞ �̂2 W
?Þ �2 ðV? �̂2 clðWÞÞ �2 ðV? �̂2 W

?Þ:
Let us at last introduce the central object of this study.

Definition 1. By a Hilbertian algebra (respectively, coalgebra) is meant a semigroup (respectively,
cosemigroup) object in Hilb or Hilb1: Because from Section 4 we only consider commutative
Hilbertian algebras over C, in order to save space one refers to them simply as “Hilbertian alge-
bras”, and in Section 5 the meaning of these words is even restricted to complex commutative
Hilbertian algebras with a contractive multiplication, without further ado.

One refrains from using the name “Hilbert algebras” because this terminology is reserved to
another well-established notion related to von Neumann algebras (see [36, Chap. VI]).
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Why nonunital algebras rather than unital ones? One recalls [25, Sect. 4.3.5, pp. 4890–4891]
that to any semigroup in Hilb one can freely add a unit so as to obtain a monoid. Whence any
semigroup in Hilb will canonically and functorially provide a monoid object in Hilb: Moreover
the fundamental example of Hilbertian algebras ð‘2ðXÞ, lXÞ (see Example 1 below), essential for
the results obtained in Section 5, provides unital algebras only for the finite-dimensional case
(i.e., when X is finite). This explains why emphasis is put on semigroups rather than monoids.

Example 1. Let X be a set. For x 2 X, let dx : X ! C be given as usually by the Kronecker delta
dxðyÞ ¼ dx, y, y 2 X: ð‘2ðXÞ, lXÞ is a commutative Hilbertian algebra, with lX : ‘2ðXÞ �̂2 ‘

2ðXÞ !
‘2ðXÞ,lXð

P
x, y2X f ðx, yÞdðx, yÞÞ :¼

P
x2X f ðx, xÞdx up to the unitary transformation ‘2ðXÞ �̂2

‘2ðXÞ ’ ‘2ðX � XÞ, dx � dy 7! dðx, yÞ, x, y 2 X ([17, Example 2.6.10, p. 142]). Given f , g 2 ‘2ðXÞ,
and x 2 X, lXðf �̂2 gÞðxÞ ¼ f ðxÞgðxÞ and thus lXðf �̂2 gÞ is just the pointwise product fg. One
observes that lX � l†X ¼ id:

Adjoint Hilbertian coalgebra: The Hilbert adjoint functors †:Hilbop ! Hilb and †:Hilbop1 !
Hilb1 become strict (symmetric) monoidal functors (in particular ðf �̂2 gÞ† ¼ f † �̂2 g† for opera-
tors f, g). Consequently, any semigroup in Hilb shares the same Hilbert space with its “adjoint”
cosemigroup. Indeed the Hilbert adjoint functor induces a functor still denoted by † from
CosemðHilbÞop to SemðHilbÞ, which is actually an isomorphism. (The same is true for Hilb1:)

Definition 2. Let ðH,lÞ be a Hilbert algebra. Then, ðH,l†Þ is a Hilbert coalgebra referred to as
the adjoint coalgebra of ðH,lÞ:

2.3. The projective tensor product and Banach algebras

Projective tensor product: A Hilbert space “is” a Banach space but is a Hilbertian (co)algebra a
Banach (co)algebra? This question suggests a comparison between (co)semigroup objects which is
most naturally discussed in the realm of monoidal categories. Let E, F be Banach spaces. The
algebraic tensor product E� F becomes a normed space E �p F under the projective norm
pðuÞ ¼ inffPn

i¼1 jjxijjEjjyijjF : u ¼ Pn
i¼1 xi � yig: It is also a normed space E �� F for the inject-

ive norm �ðuÞ ¼ supfjPn
i¼1 ‘1ðxiÞ‘2ðyiÞj : ‘1 2 E�, jj‘1jjop 	 1, ‘2 2 F�, jj‘2jjop 	 1, g, where u ¼Pn

i¼1 xi � yi: Let E �̂a F be the corresponding completion, a ¼ p, �:
It is worth mentioning that the projective tensor norm has a universal property: Let E, F, G be

Banach spaces, and f : E� F ! G be a bounded bilinear map, then there is a unique bounded

linear map f̂ : E �̂p F ! G such that f̂ ðx� yÞ ¼ f ðx, yÞ, x 2 E, y 2 F:
It is well-known that ðBan, �̂aÞ, a ¼ p, �, is a symmetric monoidal category, and the coher-

ence constraints are isometries (see e.g., [39, pp. 3–4]). Both tensor products satisfy the following:
jjf �̂a gjjop ¼ jjf jjopjjgjjop, for operators f, g ([29, Proposition 2.4, p. 18, and Proposition 3.2,

p. 47]). Thus, ðBan1, �̂aÞ, a ¼ p, �, is also a symmetric monoidal category.
We record for later use that the injective tensor product preserves closed subspaces, i.e., if

X 
 E and Y 
 F are closed subspaces, then X �̂� Y is a closed subspace of E �̂� F, see [29]. This
is seldom true for the projective tensor product ([29, p. 24]).

“Classical” Banach algebras and semigroup objects: A (not necessarily unital) Banach algebra
is ordinarily defined as a pair ððE, jj � jjÞ,mÞ, where ðE, jj � jjÞ is a Banach space, m : E� E ! E is
an associative bounded bilinear map, of norm 	 1: With bounded multiplicative4 linear maps
this provides the category BanAlg of Banach algebras. Letting l : E �̂p E ! E be the bounded

4By “multiplicative” is meant fðmðx, yÞÞ ¼ fðxÞfðyÞ:
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linear map obtained from m using the universal property of �̂p , ððE, jj � jjÞ, lÞ provides a semi-
group object in ðBan1, �̂pÞ: Conversely, any semigroup object ððE, jj � jjÞ, lÞ in ðBan, �̂pÞ pro-
vides a K-algebra (E, m), with m : E� E ! E, given by mðx, yÞ ¼ lðx� yÞ, being jointly
continuous, but its norm, as a bounded bilinear map, is not necessarily 	 1: However the norm
jj � jj0 :¼ jjljjopjj � jj ([11, p. 293]) is equivalent to jj � jj (i.e., the identity map of E is an iso-

morphism ðE, jj � jjÞ ! ðE, jj � jj0Þ) and jjmðx, yÞjj0 	 jjxjj0jjyjj0, x, y 2 E, so that BAððE, jj � jjÞ, lÞ :
¼ ððE, jj � jj0Þ,mÞ becomes a Banach algebra. As a matter of fact BA acting as the identity on
morphisms, yields an equivalence of categories between SemðBan, �̂pÞ and BanAlg. Moreover,
SemðBan1, �̂pÞ is even isomorphic (concretely over Ban1) to BanAlg (since in this case there is
no need to replace the norm by an equivalent one).

Banach coalgebras: To our knowledge there is little literature about Banach coalgebras, i.e.,
cosemigroup or comonoid objects in ðBan, �̂�Þ: Josef Wichmann 1975 PhD’s thesis [39] and
Andrew M. Tonge’s papers [37, 38] may be considered as important references of the subject. Let
us see a fundamental example which makes use of the well-known canonical isomorphism CðX �
YÞ ’ CðXÞ �̂� CðYÞ, for (Hausdorff) compact spaces X, Y (see [29, p. 50]), where C(X) denotes
the Banach spaces of all continuous complex-valued functions on X with the uniform norm
jj � jj1: Given a compact monoid ðM,m, 1Þ, i.e., a monoid which is also a (Hausdorff) compact
topological space, and whose multiplication m is jointly continuous, the Banach space C(M) of all
continuous functions on M inherits from ðM,m, 1Þ a structure of a Banach coalgebra. The copro-
duct D : CðMÞ ! CðM �MÞ ’ CðMÞ �̂� CðMÞ is given by f 7! ððx, yÞ 7! f ðmðx, yÞÞÞ, and the
counit � : CðMÞ ! C is obtained as �ðf Þ ¼ f ð1Þ:

The dual of a Banach coalgebra: Given a norm a on the algebraic tensor product E� F of
Banach spaces, one denotes by E�aF the corresponding normed space, and by E �̂a F its norm
completion. To any such norm a, one may associate a number a�ð‘Þ for each ‘ 2 E� � F� by set-
ting a�ð‘Þ ¼ supfj‘ðuÞj : u 2 E� F, aðuÞ 	 1g, where ‘ is seen as a functional on E� F using the

canonical embedding ðE� � F�Þ ,! ðE] � E]Þ ,! ðE� FÞ] with ð�Þ] the algebraic dual space. This
is not always a finite number, but for a ¼ p, �, it is; for instance, p� ¼ � (see [30]). When a�ð‘Þ is
finite for each ‘, a� defines a norm on E� � F�, and the above canonical embedding co-restricts
as E��a�F� ,! ðE�aFÞ� (since by definition of a�, j‘ðuÞj 	 a�ð‘ÞaðuÞ, ‘ 2 E� � F�, u 2 E� F).
Passing to the completion it uniquely extends to a canonical embedding E��̂a�F� ,! ðE �̂a FÞ� ’
ðE�aFÞ�: According to the above, for every Banach spaces E, F, one has a canonical map

HE, F : E� �̂p F
� ! E��̂��F

� ,! ðE �̂� FÞ�: (2)

(The first map is obtained using the universal property of �̂p , because ��ð‘Þ 	 pð‘Þ for every
‘ 2 E� � F�:) In details, HE, Fð‘1 � ‘2Þðx1 � x2Þ ¼ ‘1ðx1Þ‘2ðx2Þ, ‘1 2 E�, x1 2 E, ‘2 2 F�, x2 2 F�:

Following [39, Propositions 7.1 and 7.2, pp. 18–20] in a modern category-theoretic language,
Eq. (2) actually implies that the Banach adjoint functor �:Banop ! Ban lifts to a (symmetric)
monoidal functor from ðBan, �̂�Þop to ðBan, �̂pÞ: So it induces a functor �:CosemðBan,

�̂�Þop ! SemðBan, �̂pÞ: In other words, the dual of a Banach coalgebra is a semigroup object
of ðBan, �̂pÞ that is, up to equivalence a Banach algebra.

Comparisons with �̂2 : If H,K are Hilbert spaces, then nor UðHÞ �̂p UðKÞ ([13, p. 186] or
[10, Corollary 1.1.15, p. 18]) neither UðHÞ �̂� UðKÞ are Hilbert spaces in general (e.g., [29,
Corollary 4.24, p. 87]). However, there are some nice relations.

Proposition 3. The forgetful functor U : Hilb ! Ban lifts to a (symmetric) monoidal functor from
ðHilb, �̂2Þ to ðBan, �̂pÞ, and to an (symmetric) opmonoidal functor from ðHilb, �̂2Þ to
ðBan, �̂�Þ. Corresponding results are true for U : Hilb1 ! Ban1:
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Proof. Let H,K be two Hilbert spaces. The canonical bilinear map ���: UðHÞ � UðKÞ !
UðH �̂2 KÞ is continuous. The universal property of the projective tensor product provides the
unique bounded linear map UH,K : UðHÞ �̂p UðKÞ ! UðH �̂2 KÞ such that UH,Kðx� yÞ ¼
x� y (observe that UH,K has norm 1). It is natural by construction. Compatibility with the coher-
ence constraints are easily checked, so that ðU,U, idKÞ is a monoidal functor from ðHilb, �̂2Þ to
ðBan, �̂pÞ: According to [9, p. 351], for each u 2 H�K, �ðuÞ 	 jjujj2 	 pðuÞ, where jj � jj2 is the
norm on H�K induced by the inner product of H�2 K: It follows that the canonical injection
i : H�2 K ,! UðHÞ �̂� UðKÞ is continuous. Since UðHÞ �̂� UðKÞ is complete, it has a unique
continuous extension WH,K : UðH �̂2 KÞ ! UðHÞ �̂� UðKÞ (which is of norm 1). One observes
that, by definition, WH,Kðx� yÞ ¼ x� y, x 2 H, y 2 K: It is left to the reader to check that
ðU,W, idKÞ defines an opmonoidal functor from ðHilb, �̂2Þ to ðBan, �̂�Þ as desired. w

Proposition 3 implies that there are two induced functors U : CosemðHilbÞ !
CosemðBan, �̂�Þ and U : SemðHilbÞ ! SemðBan, �̂pÞ:
Definition 3. For a Hilbertian algebra ðH,lÞ,BAðUðH, lÞÞ is its underlying Banach algebra and
UðH, l†Þ its underlying Banach coalgebra.

Remark 3. Given Hilbertian algebras ðH, lÞ and ðK, cÞ, and a bounded linear map f : H ! K, f
is a morphism of Hilbertian algebras if, and only if, f is a morphism of the underlying
Banach algebras.

Relations with ordinary algebras: Hilbertian algebras “are” ordinary algebras too.

Definition 4. Letting by abuse of notation H be both a Hilbert space and its underlying vector
space, ðH,lbilÞ stands for the underlying K-algebra of the Hilbertian algebra ðH, lÞ, where as in
Notation 1, lbil : H�H ! H is the unique (bounded) bilinear map whose corresponding
bounded linear map lalg : H�2 H ! H is the restriction of l to the algebraic tensor product.
This provides a functor from SemðHilbÞ to the category Alg of (nonunital) K-algebras (with a
bilinear multiplication) and algebra homomorphisms, which acts as the identity on morphisms.
By forgetting the norm of BAðUðH, lÞÞ one of course recovers ðH, lbilÞ:

Remark 4. Let Vect ¼ ðVect, � ,KÞ be the usual (symmetric) monoidal category of K-vector
spaces. Clearly Alg ’ SemðVectÞ concretely over Vect (bilinear multiplications correspond bi-
univocally to their unique linear extension to the algebraic tensor product). The obvious forgetful
functor Hilb ! Vect is (symmetric) monoidal and thus provides a functor SemðHilbÞ !
SemðVectÞ ’ Alg which corresponds to the one mentioned in Definition 4.

Remark 3 may be completed by the following result.

Lemma 4. f 2 SemðHilbÞððH,lÞ, ðK, cÞÞ if, and only if, f : H ! K is continuous
and f 2 AlgððH,lbilÞ, ðK, cbilÞÞ:

Proof. The direct implication is clear because the forgetful functor from Hilb to Vect is monoidal.
Let us assume that f is a bounded linear map which is an algebra map from ðH, lbilÞ to ðK, cbilÞ,
that is, cbilðf ðxÞ, f ðyÞÞ ¼ f ðlbilðx, yÞÞ, x, y 2 H: By continuity this provides a bounded algebra map
from ðH,lalgÞ to ðK, calgÞ, i.e., calg � ðf � f Þ ¼ f � lalg : Then, the extensions by continuity of the

maps calg � ðf � f Þ, f � lalg : H�2 H ! K to the completion of H�2 H, remain equal, i.e., c �
ðf �̂2 f Þ ¼ f � l: Whence f 2 SemðHilbÞððH, lÞ, ðK, cÞÞ: w

The underlying Banach coalgebra of a Hilbertian algebra:
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Proposition 5. For each Hilbertian coalgebra ðH, dÞ,RH : UðH, d†Þ ’ UðH, dÞ�, conjugate-linear,
in SemðBan, �̂pÞ:

Proof. It suffices to prove that the following diagram commutes, where ðH, dÞ is a Hilbertian coalgebra.

(3)

Let x, y, u, v 2 H: W�
H,HðHUðHÞ,UðHÞððRH �̂p RHÞðx� yÞÞÞðu� vÞ ¼ hu, xihv, yi ¼ hu� v, x�

yiH �̂2 H ¼ RH�̂2 HðUH,Hðx� yÞÞðu� vÞ: By definition of the Riesz isomorphism, RH � Uðd†Þ ¼
UðdÞ� � RH�̂2 H: Therefore, the leftmost and rightmost diagrams below commute (by linearity and
density), so commutes Diag. (3).

(4)

w

Proposition 5 is not used in what follows but one notwithstanding provides the following
consequences.

Because of Proposition 3, Theorem 7 below is essentially due to [37, Lemma 2.10, p. 14] which
states that any Banach coalgebra in ðBan1, �̂�Þ embeds into a Banach coalgebra of functions on a
compact semigroup. Nonetheless one provides a direct proof in our Hilbertian setting.

Lemma 6. Let ðH,lÞ be a complex Hilbertian algebra. One furthermore assumes that jjljjop ¼
jjl†jjop 	 1: Equivalently one requires ðH,lÞ to be a semigroup object in the monoidal category

Hilb1 of Hilbert spaces with linear contractions. Let BHð0, 1� be the closed unit ball of H: Then,
BHð0, 1� is a compact semigroup (in the weak topology).

Proof. Since jjljjop 	 1, it is clear that BHð0, 1� is a semigroup under the restriction say m, of
lbil: According to Banach-Alaoglu theorem it is also compact in the weak topology, i.e., the weak-
est topology on H that makes continuous all functionals h�, xi, x 2 H: It remains to prove that
the multiplication in BHð0, 1� is jointly continuous (in the weak topology), i.e., that for each x 2
H,RHðxÞ �m : BHð0, 1� � BHð0, 1� ! C is continuous. Since m is the restriction of l, it follows
that RHðxÞðmðy, zÞÞ ¼ RHðxÞðlðy� zÞÞ ¼ hlðy� zÞ, xiH ¼ hy� z, l†ðxÞiH �̂2 H ¼ RH�̂2 Hðl†ðxÞÞ
ðy� zÞ, y, z 2 BHð0, 1�: But RH�̂2 Hðl†ðxÞÞ is continuous for the weak topology on H�̂2 H, so we
are done. w
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Let H be a Hilbert space. For x 2 H, let x̂ 2 ð �HÞ� be defined by x̂ðyÞ :¼ hx, yiH,
i.e., x̂ ¼ R �HðxÞ:
Theorem 7. Under the same assumptions as in Lemma 6, the underlying Banach coalgebra of
ðH,lÞ embeds as a closed subcoalgebra5 of CðBHð0, 1�Þ:

Proof. For each x 2 H, x̂ induces by restriction a continuous map from BHð0, 1� ¼ B �Hð0, 1� to C,
i.e., x̂ 2 CðBHð0, 1�Þ, since R �HðxÞ is continuous. Now, R �H : x 7! x̂, considered as a linear map R
from H to CðBHð0, 1�Þ, is clearly one-to-one because BHð0, 1� contains every orthonormal basis.
Therefore, as vector spaces, H embeds into CðBHð0, 1�Þ: R is continuous since, by the Cauchy-

Bunyakovski-Schwarz inequality, jjx̂jj1 	 jjxjjH: Moreover, for x 6¼ 0, jx̂ x
jjxjj

� �
j ¼ jjxjj, whence R

is even an isometry, and thus the image of H under R is a closed subspace. R is a coalgebra
map. Indeed for y, z 2 BHð0, 1�, ðDðRðxÞÞÞðy, zÞ ¼ x̂ðmðy, zÞÞ ¼ hx,lðy� zÞiH ¼ hl†ðxÞ, y�
ziH �̂2 H ¼ ðR �̂� RÞðWðl†ðxÞÞÞðy, zÞ, where W ¼ WH,H is the coherence constraint for the opmo-

noidal functor from Hilb1 to ðBan1, �̂�Þ from (the proof of) Proposition 3. Concerning the last
equality, first of all given bounded linear maps f : E ! CðXÞ and g : F ! CðYÞ for Banach spaces
E, F and compact spaces X, Y, under CðX � XÞ ’ CðXÞ �̂� CðXÞ, one has ðf �̂� gÞðu� vÞðx, yÞ ¼
f ðuÞðxÞgðvÞðyÞ, u 2 E, v 2 F, x 2 X, y 2 Y: Therefore, ðR �̂� RÞðWðu� vÞÞðy, zÞ ¼ hu� v, y�
ziH �̂2 H, since W is the identity map on the algebraic tensor product H�H: By continuity, this
equality between maps on a dense subset extends to an equality on the completion. w

Given a compact set X, MðXÞ denotes the Banach space of all Radon measures of X, that is,
complex regular Borel measures of X. Under Riesz representation theorem (e.g., [32, Theorem
1.1, p. 325]), MðXÞ identifies with the dual space CðXÞ�: Given a compact semigroup S with
jointly continuous multiplication m, as is well-known ([12]) ðMðSÞ, ?Þ is a Banach algebra under
convolution �1 ? �2 ¼ ð�1 � �2Þ �m�1, where �1 � �2 is the product measure.

Corollary 8. The underlying Banach algebra of the conjugate of a Hilbertian algebra ðH,lÞ with
jjljjop 	 1, is the image of MðSÞ for some compact semigroup S.

Proof. Since ðCðSÞ,DÞ is a Banach coalgebra by [39, Propositions 7.1, p. 18] its dual CðSÞ� is a
Banach algebra. Its multiplication is explicitly given by ð‘1 ? ‘2Þðf Þ ¼

Ð
S

Ð
Sf ðmðx, yÞÞd�1ðxÞ

d�2ðyÞ, f 2 CðSÞ, where under Riesz representation theorem, �i is the Radon measure on S corre-
sponding to ‘i: The observation that ð‘1 ? ‘2Þðf Þ ¼

Ð
S fdð�1 ? �2Þ ([12, p. 53] with other notations,

or [34, Theorem 2, p. 350] for locally compact semigroups) does not mean anything other than
ðMðSÞ, ?Þ ’ ðCðSÞ�, ?Þ under Riesz representation.

Now, the map UðH,l†Þ!R CðBHð0, 1�Þ from the proof of Theorem 7 is a coalgebra map and

an isometry. Therefore, CðBHð0, 1�Þ� !R
�
UðH,l†Þ� is a morphism in SemðBan, �̂pÞ and is a cois-

ometry which means that it maps the open unit ball of CðBHð0, 1�Þ� onto that of UðH, l†Þ� (this
is essentially due to the Hahn-Banach theorem). So of course, it is onto, and it is so as a morphism

of Banach algebras BAðCðBHð0, 1�Þ�ÞÞ!R
�
BAðUðH,l†Þ�Þ: The conclusion is obtained by the compos-

ition ðMðBHð0, 1�Þ, ?Þ ’ ðCðBHð0, 1�Þ�, ?Þ ¼ BAðCðBHð0, 1�Þ�ÞÞ!R
�
BAðUðH, l†Þ�Þ ’ BAðUð �H, �lÞÞ,

where the last isomorphism is the result of Proposition 5. w

5C.f. Definition 6 and the discussion that follows.
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2.4. H�-algebras, in-between Banach and Hilbertian algebras

In this section all algebras are over the field of complex numbers.
Let us consider a H�-algebra [5] ðUðHÞ,mÞ, that is a complex Banach algebra with H a

Hilbert space such that for each x 2 H there is a (not necessarily unique) x� 2 H, called an
adjoint of x, such that for all y, z 2 H, hmðx, yÞ, zi ¼ hy,mðx�, zÞi and hmðy, xÞ, zi ¼ hy,mðz, x�Þi:
It is said to be proper whenever every element has a unique adjoint ([5, Theorem 2.1, p. 370]).6

According to the proof of [5, Corollary 4.1, p. 382] a proper commutative H�-algebra is iso-
morphic to one of the form ‘2aðXÞ :¼ ðUð‘2aðXÞ, h�, �iaÞ,mXÞ where ‘2aðXÞ :¼ ff 2 CX :

P
x2X

aðxÞjf ðxÞj2 < þ1g for some fixed set X and map X!a ½1, þ1½, hf , gia :¼
P

x2X aðxÞf ðxÞgðxÞ,
mXðf , gÞðxÞ :¼ f ðxÞgðxÞ, and f �ðxÞ :¼ f ðxÞ, x 2 X, f , g 2 ‘2aðXÞ: Observe that jjmXjjop 	 1:

More precisely (see e.g. [20]) for any proper commutative H�-algebra ðUðHÞ,mÞ,H is the
Hilbert direct sum of its (necessarily closed) minimal ideals (these are pairwise orthogonal)
which, as C-algebras, are isomorphic to C: So ðUðHÞ,mÞ ’ ‘2aðH,mÞ ðMinðH,mÞÞ (isometrically)

under XðH,mÞ : eI 7! dI , I 2 MinðH,mÞ, where MinðH,mÞ stands for the set of all minimal ideals

and aðH,mÞðIÞ :¼ jjeIjj2 with eI the identity of I 2 MinðH,mÞ:
Such proper commutative H�-algebras will play a fundamental rôle in what follows (see below

Section 5). For now on let us see how they are related to Hilbertian algebras. The multiplication
mX of the most general model ‘2aðXÞ, is a weak Hilbert-Schmidt mapping as

P
x, y2X jhmXðux ,

uyÞ, f iaj2 ¼
P

x2X jf ðxÞj2 	 jjf jj2a (because aðxÞ 
 1, x 2 X) with jjf jja :¼
ffiffiffiffiffiffiffiffiffiffiffiffihf , f ia

p
, where ux :¼

1ffiffiffiffiffiffi
aðxÞ

p dx, x 2 X: Whence ðð‘2aðXÞ, h�, �iaÞ,lXÞ is a commutative Hilbertian algebra, with lX :

‘2aðXÞ �̂2 ‘
2
aðXÞ ! ‘2aðXÞ the unique bounded linear map such that ðlXÞbil ¼ mX: One

has jjlXjjop ¼ jjmXjjHS 	 1:

Remark 5. Of course, ð‘2aðXÞ, h�, �iaÞ as above, is unitarily isomorphic to ‘2ðXÞ under KX :

ux 7! dx (x 2 X), i.e., KX is the multiplication operator f 7! a
1
2f by a

1
2 : x 7! ffiffiffiffiffiffiffiffiffi

aðxÞp
: This is not

an algebra isomorphism (under pointwise product) whenever for at least one x, aðxÞ > 1:
The situation is quite different for noncommutative H�-algebras. E.g., a full matrix algebra with an

infinite set of indices never is (the underlying Banach algebra of) a Hilbertian algebra, because its
multiplication fails to be a weak Hilbert-Schmidt mapping. However the convolution L2-algebra
L2ðGÞ of any compact group G turns to be a semigroup in Hilb (by the Peter-Weyl theorem).

Theorem 9. Let a: X ! ½1, þ1½: ðð‘2aðXÞ, h�, �iaÞ,lXÞ ’ ð‘2ðYÞ, lYÞ (topological isomorphism in
cSemðHilbÞ) for some set Y if, and only if, a is bounded above. In this case Y may be chosen equal
to X. Moreover, if for some x, aðxÞ > 1, then no topological isomorphism as above is unitary. In
particular, a proper commutative H�-algebra ðUðHÞ,mÞ is topologically isomorphic to
BAðUð‘2ðXÞ, lXÞÞ ¼ ðð‘2ðXÞ, jj � jj2Þ,mXÞ if, and only if, aðH,mÞ is bounded above. Moreover, if
aðH,mÞðIÞ > 1 for some closed minimal ideal I, then no topological isomorphism as above is
an isometry.

Proof. One first observes that ‘2aðXÞ 
 ‘2ðXÞ since 1 	 aðxÞ, x 2 X, and the inclusion is continu-
ous because jjf jj2 	 jjf jja: Secondly, when a is bounded above, then ‘2aðXÞ ¼ ‘2ðXÞ (qua vector

spaces). In this case one notices that jjf jja 	 jjajj121jjf jj2 so that id : ðð‘2aðXÞ, h�, �iaÞ, lXÞ ’
ð‘2ðXÞ,lXÞ is a topological isomorphism in cSemðHilbÞ (albeit not unitary in general).

6More rigorously, a H�-algebra is a Banach algebra (E, m) such that there exists a Hilbert space H with UðHÞ ¼ E and
admitting adjoints. But actually the Hilbert space H is entirely determined by E since U is injective on objects (the norm of E
satisfies the parallelogram law and thus uniquely determines the inner product of H).
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Conversely let us assume that ðð‘2aðXÞ, h�, �iaÞ, lXÞ ’ ð‘2ðYÞ,lYÞ for some set Y. In particular
the Hilbert spaces ð‘2aðXÞ, h�, �iaÞ and ‘2ðYÞ are topologically isomorphic, and the polar decompos-
ition of such an isomorphism (see [19, Corollary 5.91, p. 405]) shows that they are actually even
unitarily isomorphic. So, without loss of generality one may assume that X¼Y. In this situation,
it is possible to transport the pointwise product lX of ð‘2aðXÞ, h�, �iaÞ on ‘2ðXÞ using the unitary

transformation KX from Remark 5. Let la be the resulting multiplication: laðf � gÞ ¼
a�

1
2fg, f , g 2 ‘2ðXÞ: Of course, KX : ðð‘2aðXÞ, h�, �iaÞ, lXÞ ’ ð‘2ðXÞ, laÞ (unitarily so).
One now has a topological isomorphism ð‘2ðXÞ, laÞ ’ ð‘2ðXÞ,lXÞ: Call it P. If X ¼ ;, then a

is of course bounded above. So let us assume that X 6¼ ;: As a matter of fact, P a�
1
2fg

� �
¼

Pðf ÞPðgÞ for each f , g 2 ‘2ðXÞ: In particular, for f ¼ dx ¼ g, x 2 X, 1ffiffiffiffiffiffi
aðxÞ

p PðdxÞ ¼ PðdxÞ2:
Observe that by continuity and linearity, P is entirely determined by its values on dx, x 2 X: Let
Sx :¼ fz 2 X : PðdxÞðzÞ 6¼ 0g 6¼ ; (since P is one-to-one). Then, PðdxÞ ¼ 1ffiffiffiffiffiffi

aðxÞ
p P

z2Sx dz as the

sum of a summable family in ‘2ðXÞ, so that Sx is necessarily finite.
Now let x, y 2 X with x 6¼ y: Then, 0 ¼ PðdxÞPðdyÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

aðxÞaðyÞ
p P

z2Sx\Sy dz from what it fol-

lows that Sx \ Sy ¼ ;: Let [x2X Sx !p X be defined by pðzÞ ¼ x if, and only if, z 2 Sx: It is onto.
Since P is onto, it follows that X ¼ [x2X Sx: Indeed, let y 2 X n [x2X Sx: Since dy 2 ranðPÞ,

there exists f 2 ‘2ðXÞ such that dy ¼ Pðf Þ ¼ P
x2X

f ðxÞffiffiffiffiffiffi
aðxÞ

p P
z2Sx dz ¼

P
z2[x2X Sx

f ðpðzÞÞffiffiffiffiffiffiffiffiffiffiffi
aðpðzÞÞ

p dz which

contradicts dy 62 [x2X Sx:

Now it follows that Pðf Þ ¼ P
z2X

f ðpðzÞÞffiffiffiffiffiffiffiffiffiffiffi
aðpðzÞÞ

p dz ¼ a�
1
2f

� �
� p, f 2 ‘2ðXÞ: Let us assume that

X!p X is not one-to-one. Let x, y 2 X, x 6¼ y such that pðxÞ ¼ pðyÞ: Since P is onto, there exists

f 2 ‘2ðXÞ such that dx ¼ Pðf Þ ¼ a�
1
2f

� �
� p: Then, 0 ¼ dxðyÞ ¼ f ðpðyÞÞffiffiffiffiffiffiffiffiffiffiffi

aðpðyÞÞ
p ¼ f ðpðxÞÞffiffiffiffiffiffiffiffiffiffiffi

aðpðxÞÞ
p ¼ dxðxÞ ¼ 1,

which is impossible.
Consequently, p is a permutation of X, and P�1ðf Þ ¼ a

1
2ðf � p�1Þ: Since P�1 is also bounded,

a is necessarily bounded, and thus bounded above. So the first equivalence of the statement is

proved. (Observe that P† ¼ a�
1
2ðf � p�1Þ and thus P is unitary if, and only if, aðxÞ ¼ 1 for

each x 2 X:)
One may check directly that for f 2 ‘2aðXÞ, ðlXðl†Xðf ÞÞ ¼ a�1f while one knows that for f 2

‘2ðXÞ,lX � l†X ¼ id: Thus, even if ðð‘2aðXÞ, h�, �iaÞ, lXÞ ’ ð‘2ðYÞ, lYÞ, it cannot be unitary so when
aðxÞ > 1 for some x.

Finally for a proper commutative H�-algebra ðUðH,mÞ, ðUðHÞ,mÞ ’ ðð‘2ðXÞ, jj � jj2Þ,mXÞ if,
and only if, ‘2aðH,mÞ ðMinðH,mÞÞ ’ ðð‘2ðXÞ, jj � jj2Þ,mXÞ if, and only if, ðð‘2aðH,mÞ ðMinðH,mÞÞ,
h�, �iaðH,mÞ Þ, lMinðH,mÞÞ ’ ð‘2ðXÞ, lXÞ if, and only if, aðH,mÞ is bounded above. With X ¼
MinðH,mÞ, one may choose P � KMinðH,mÞ � XðH,mÞ as an isomorphism (which is not an isometry
in general because of the presence of P).

By the above if ðUðHÞ,mÞ ’ ðð‘2ðXÞ, jj � jj2Þ,mXÞ but aðH,mÞ 6� 1, then the isomorphism can-
not be an isometry. w

3. Ideals and subcoalgebras

In this section is described how the closed ideals of a Hilbertian algebra and the closed subcoalge-
bras of its adjoint coalgebra are related (see Theorem 18 below).
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In what follows H denotes a Hilbert space. Given two subspaces V, W, their sum VþW is the
subspace fvþ w : v 2 V,w 2 Wg: Of course, ðV þWÞ? ¼ V? \W? and ðclðVÞ \ clðWÞÞ? ¼
clðV? þW?Þ: More generally, given a family ðViÞi2I of subspaces of H,

P
i2I Vi is the subspace

consisting of all finite sums of elements of [i2I Vi: The following result is clear.

Lemma 10. Let ðViÞi2I be a family of subspaces of H. Then, ðPi2I ViÞ? ¼ \i2I V?
i

and ð\i2I clðViÞÞ? ¼ clðPi2I V
?
i Þ:

Lemma 11. For a closed subspace V of H,clðH�̂2V?þV?�̂2HÞ¼kerðpV �̂2pVÞ¼
ðV�̂2VÞ?¼ ðV?�̂2VÞ�2ðV?�̂2V?Þ�2ðV�̂2V?Þ:

Proof. The last equality is due to Lemma 2, while the penultimate one is obvious.
Clearly H� V? þ V? �H 
 kerðpV �̂2 pVÞ, so clðH �̂2 V? þ V? �̂2 HÞ 
 kerðpI? �̂2 pI?Þ, and
ðV? �̂2 VÞ �2ðV? �̂2 V?Þ �2ðV �̂2 V?Þ 
 clðH �̂2 V? þ V? �̂2 HÞ: w

Now, let us assume that ðH,lÞ is a Hilbertian algebra and let ðH, lbilÞ be its underlying
K-algebra (Definition 4).

Definition 5. A two-sided ideal I of ðH, lÞ is defined as a two-sided ideal of ðH, lbilÞ, i.e., a sub-
space such that lalgðH � I þ I �HÞ 
 I:

Lemma 12. Let I be a closed subspace of H. I is a two-sided ideal if, and only if, lðclðH �̂2 I þ
I �̂2 HÞÞ 
 I if, and only if, lððI? �̂2 IÞ �2ðI �̂2 IÞ �2ðI �̂2 I?ÞÞ 
 I:

Proof. Let us assume that lðclðH �̂2 I þ I �̂2 HÞÞ 
 I: Then I is a two-sided ideal of ðH, lbilÞ
since lalgðH � I þ I �HÞ ¼ lðH � I þ I �HÞ 
 lðclðH �̂2 I þ I �̂2 HÞÞ 
 I follows from H�
I þ I �H 
 clðH �̂2 I þ I �̂2 HÞ: Conversely, let us assume that I is a two-sided ideal of
ðH,lbilÞ: By continuity of l, lðclðH � I þ I �HÞÞ 
 clðlðH � I þ I �HÞÞ ¼ clðlalgðH � I þ I �
HÞÞ 
 clðIÞ ¼ I (I being closed). But clðH � I þ I �HÞ ¼ clðH �̂2 I þ I �̂2 HÞ and we are done.
The second equivalence follows from Lemma 11. w

Definition 6. Let ðH, lÞ be a Hilbertian algebra and ðK, dÞ a Hilbertian coalgebra.

1. A closed subalgebra of ðH, lÞ is a closed subspace C of H such that lðC �̂2 CÞ 
 C: Let

C�̂C !
ljC C be the corresponding co-restriction of l.

2. A closed subcoalgebra of ðK, dÞ is a closed subspace C of K with dðCÞ 
 C �̂2 C: The corre-

sponding co-restriction of d is denoted C!djC C �̂2 C:

It is clear from the preservation of closed subspaces by the Hilbert tensor product, that a closed
sub(co)algebra is a (co)algebra on its own and the canonical inclusion is a morphism of
Hilbertian (co)algebras. Moreover by Lemma 12 a closed ideal is also a closed subalgebra. Since
the injective tensor product also preserves closed subspaces, the notion of a closed subcoalgebra
makes sense as well for objects of CosemðBan, �̂�Þ:

Lemma 13. Let ðH,lÞ be a Hilbertian algebra, and let V be a closed subspace of H: If V is both a
closed subalgebra of ðH,lÞ and a closed subcoalgebra of ðH, l†Þ, then ðljV Þ

† ¼ ðl†ÞjV : In this situ-

ation, both maps pV : H ! V and iV : V ,! H are morphisms of Hilbertian algebras and coalge-
bras. Moreover, if l � l† ¼ idH, then ljV � ðljV? Þ

† ¼ idV :
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Proof. By construction ðl†ÞjV ¼ ðpV �̂2 pVÞ � l† � iV and ljV ¼ pV � l � ðiV �̂2 iVÞ: Whence
ðljV Þ

† ¼ ðl†ÞjV : Since V is both a closed subalgebra and a closed subcoalgebra, iV : ðV, ðl†ÞjV Þ !
ðH,l†Þ and iV : ðV, ljV Þ ! ðH, lÞ are respectively morphisms of coalgebras and algebras.

Passing to the adjoint, in view of the equality ðljV Þ
† ¼ ðl†ÞjV ,pV : ðH, lÞ ! ðV, ljV Þ and pV :

ðH,l†Þ ! ðV , ðl†ÞjV Þ are respectively morphisms of algebras and coalgebras.

As a consequence of ðljV Þ
† ¼ ðl†ÞjV , when l � l† ¼ idH, iV � ljV � ðljV Þ

† ¼ l � ðiV �̂2 iVÞ �
ðljV Þ

† ¼ l � l† � iV ¼ iV : Since iV is a monomorphism, ljV � ðljV Þ
† ¼ idV : w

Now let us establish a series of lemmas so as to provide a relation between closed ideals and
coalgebras (Theorem 18 below).

Lemma 14. If C is a closed subcoalgebra of ðH, l†Þ, then C? is a closed two-sided ideal of ðH, lÞ:

Proof. l†ðCÞ 
 C �̂2 C if, and only if, lððC �̂2 CÞ?Þ 
 C? (by Lemma 1). According to Lemma 2,
ðC �̂2 CÞ? ¼ ðC �̂2 C?Þ �2ðC? �̂2 CÞ �2ðC? �̂2 C?Þ � H� C? þ C? � H: Whence it follows
that lðH � C? þ C? �HÞ 
 C?, and thus C? is a closed two-sided ideal of ðH,lÞ: w

Lemma 15. Let I be a closed two-sided ideal of ðH, lÞ. Then, I? is a closed subcoalgebra
of ðH, l†Þ:

Proof. First ðI? �̂2 IÞ �2ðI �̂2 I?Þ �2ðI �̂2 IÞ 
 H �̂2 I þ I �̂2 H 
 clðH �̂2 I þ I �̂2 HÞ: Whence
lððI? �̂2 IÞ �2ðI �̂2 I?Þ �2ðI �̂2 IÞÞ 
 lðclðH �̂2 I þ I �̂2 HÞÞ 
 I: But
ðI? �̂2 IÞ �2ðI �̂2 I?Þ �2ðI �̂2 IÞ ¼ ðI? �̂2 I?Þ?: So l†ðI?Þ 
 I? �̂2 I?: w

Definition 7. Let ðH,lÞ be a Hilbertian algebra. Let V 
 H be a closed subspace. Let us assume
that there exists a bounded linear map lV : V �̂2 V ! V: ðV ,lVÞ is said to be a quotient
Hilbertian algebra of ðH, lÞ if the following diagram commutes. In particular, lV ¼ pV � l �
ðiV �̂2 iVÞ and it is called the quotient multiplication.

(5)

Lemma 16. ðV ,lVÞ is a quotient Hilbertian algebra of ðH,lÞ if, and only if, ðV, l†VÞ is a closed
subcoalgebra of the adjoint coalgebra ðH, l†Þ: In particular every quotient Hilbertian algebra is a
Hilbertian algebra on its own right and pV is a morphism of Hilbertian algebras.

Proof. Taking the adjoint on Diagram (5) provides the following commutative diagram which
shows that ðV ,l†VÞ is a closed subcoalgebra of ðH,l†Þ: Associativity of lV follows from coassocia-
tivity of l†V :

(6)

From a closed subcoalgebra, by passing to the adjoint, one of course gets a quotient Hilbertian
algebra. w
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Lemma 17. Let V be a closed subspace of ðH, lÞ:

1. If I is a closed two-sided ideal of ðH,lÞ, then ðI?, pI? � l � ðiI? �̂2 iI?ÞÞ is a quotient
Hilbertian algebra of ðH, lÞ:

2. If ðV, lVÞ is a quotient Hilbertian algebra of ðH, lÞ, then V? is a closed two-sided ideal
of ðH,lÞ:

3. Let ðV ,lVÞ be a quotient Hilbertian algebra of ðH,lÞ: Let H=V? be the quotient Hilbert
space, and let canV? : H ! H=V? be the canonical epimorphism (which is bounded). Then,
ðV ,lVÞ ’ ðH=V?, ~lÞ (as Hilbertian algebras) under the canonical isomorphism V ’ H=V?,
where ~l : H�̂2 H ! H is defined by the following diagram.

(7)

Proof. Let us prove the first point. Let I be a closed two-sided ideal of ðH, lÞ: Thus,
lððI? �̂2 I?Þ?Þ 
 I: According to Lemma 1, l†ðI?Þ 
 I? �̂2 I?: Diagrammatically the situation is
depicted as follows (i.e., ðl†ÞjI? is given by co-restricting l†).

(8)

Taking the adjoint provides the following commutative diagram which shows that ðI?, ðl†Þ†jI? Þ is

a quotient Hilbertian algebra.

(9)

Multiplying on the right by iI? �̂2 iI? both equal maps from Diagram (9) one obtains ðl†Þ†jI? ¼
pI? � l � ðiI? �̂2 iI?Þ: The second point follows from Lemmas 14 and 16. The third point is merely
obvious since V ’ H=V? (canonically as Hilbert spaces). w

Lemmas 14, 15, 16 and 17 together establish a nice connection between closed (two-sided)
ideals of ðH,lÞ, closed subcoalgebras of ðH,l†Þ and quotient Hilbertian algebras of ðH, lÞ as
stated by the following result. Recall that a maximal ideal is assumed to be a proper ideal (i.e., dif-
ferent from H).

Definition 8. Let us call simple a closed subcoalgebra C of ðH, l†Þ different from (0) and such
that for any closed subcoalgebra D 
 C, either D ¼ ð0Þ or D¼C.

Theorem 18. ð�Þ? is an order-decreasing one-one correspondence from the set of closed two-sided
ideals of ðH, lÞ onto the set of closed subcoalgebras of ðH, l†Þ (or the set of quotient Hilbertian
algebras of ðH,lÞ). In particular, maximal closed two-sided ideals of ðH, lÞ correspond to simple
closed subcoalgebras of ðH, l†Þ:
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Remark 6. Letting I be the set of all closed two-sided ideals of ðH, lÞ and S be the set of all

closed subcoalgebras of ðH, l†Þ, ðI !ð�Þ?
S, S !ð�Þ?

TÞ is a Galois correspondence.

4. The underlying Banach algebra of a commutative Hilbertian algebra

In this section is proved (Theorem 22 below) that the orthogonal complement of the Jacobson
radical of a complex commutative Hilbertian algebra is the closure of the linear span of its
group-like elements (Definition 10), i.e., its members which correspond by the Riesz representa-
tion, to its nonzero multiplicative functionals (Lemma 19). Moreover, the correspondences send-
ing a Hilbertian algebra to its radical, and to the orthogonal complement of its radical, are shown
to be functorial and to be part of adjunctions (Theorem 24).

4.1. A structure theorem

One recalls that a two-sided ideal I of an algebra A is said to be modular (also called regular) if
there exists some element e 2 A such that for all x 2 A, x� ex 2 I: e is called a modular unit of I
because being modular is equivalent to the fact that A/I is a unital algebra (with unit eþ I). Of
course, if A is itself unital, then every two-sided ideal is modular. Also, if e is a modular unit for
I which belongs to I, then I¼A.

As announced in Definition 1, from now on to the end of Section 4, we only consider com-
mutative Hilbertian algebras over K ¼ C

Their underlying (complex) Banach algebras thus are commutative too and the next discussion
applies as well to them. Following e.g., [18], maximal closed modular ideals of a (commutative)
complex Banach algebra A are in one-one correspondence with its nonzero multiplicative func-
tionals. Note also that any maximal modular ideal is actually closed ([18, Lemma 1.4.5, p. 23]).

The Jacobson radical, or simply radical, J of a Banach algebra A is defined as \ModMax ¼
\‘ ker ‘, where ModMax is the set of all modular maximal (closed) ideals of A, and in the second
intersection ‘ runs over the set of all nonzero multiplicative functionals. By definition, if there
are no maximal modular closed ideals, then J¼A. In any case, J is a closed ideal of A.

Definition 9. It is clear from the definition that the set all modular maximal closed ideals of
ðH,lÞ is equal to that of its underlying Banach algebra. Therefore it makes sense to consider the
radical, denoted JðH,lÞ or simply J, of a Hilbertian algebra ðH,lÞ as the intersection of all its
maximal modular ideals, i.e., as the radical of its underlying Banach algebra. As a matter of fact,
a Hilbertian algebra is said to be semisimple (resp. radical) when its underlying Banach algebra is
so (see e.g., [18, Def. 2.1.9, p. 50]).

Applying Lemma 4 with C for ðK, cÞ, i.e., for bounded multiplicative functionals on ðH,lÞ,
gives that f 2 SemðHilbÞððH, lÞ,CÞ if, and only if, f is an algebra map from ðH, lbilÞ to C: (This
follows from automatic continuity of algebra maps from the underlying algebra of a Banach alge-
bra to C (see [26, Corollary 3.1.7, p. 112] or [18, Corollary 2.1.10, p. 50]).) Therefore, the
bounded multiplicative functionals on a complex commutative Hilbertian algebra are exactly the
characters of its underlying algebra. The trivial character, identically null, is denoted by 0.
Because the topological dual of a Hilbert space is (conjugate-linear) isomorphic to it, one obtains
an intrinsic characterization of these characters as explained below.

Definition 10. Let us call group-like element (following the usual terminology from the theory of
ordinary coalgebras, see for instance [35]; such elements are sometimes called copyable in the
context of Frobenius algebras [2]) a nonzero member x of a Hilbertian algebra ðH,lÞ such that
l†ðxÞ ¼ x� x: The set of all such elements is denoted by GðH, lÞ:
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Observe that for a group-like element x of ðH, lÞ, h�, xi is a nonzero character
as hlðu� vÞ, xi ¼ hu� v,l†ðxÞi ¼ hu� v, x� xi ¼ hu, xihv, xi, u, v 2 H:

Lemma 19. The Riesz representation RH : �H ! H�, x 7! RHðxÞ :¼ h�, xiH, provides a bijection
from GðH, lÞ onto cSemðHilbÞððH, lÞ,CÞ n f0g:

Lemma 19 also provides a nice characterization of maximal modular closed ideals. Given x 2
GðH, lÞ, then by the above kerRHðxÞ ¼ fxg? ¼ ðCxÞ? is a maximal modular closed ideal of
ðH,lÞ, and every maximal modular closed ideal is of this form for some unique group-like elem-
ent x. (A modular unit for ðCxÞ? is given by x

jjxjj2 since RHðxÞ x
jjxjj2

� �
¼ 1:)

Dedekind’s lemma (see [8, Lemma 7.5.1 and its proof, pp. 206–207]) may be extended with-
out difficulty.

Lemma 20. (Dedekind’s lemma) Let E
cSemðHilbÞððH, lÞ,CÞ n f0g: Then E is linearly
independent.

Corollary 21. The set of group-like elements of ðH, lÞ is linearly independent.
Lemma 19 implies that the radical J of ðH, lÞ is equal to \x2GðH, lÞ ðCxÞ? ¼ ðPx2GðH,lÞ CxÞ?

(by Lemma 10) ¼ ð �x2GðH, lÞ CxÞ? (Corollary 21). Because the radical of a Banach algebra is a
closed ideal, an application of Lemma 15 shows that J? ¼ clð �x2GðH, lÞ CxÞ is a closed subcoalge-
bra of ðH, l†Þ: This discussion makes it possible to state the following structure theorem for com-
mutative Hilbertian algebras.

Theorem 22. The carrier Hilbert space of a commutative complex Hilbertian algebra ðH,lÞ splits
as H ¼ clð �x2GðH, lÞ CxÞ �2J, and the first member of the Hilbert direct sum is a closed
subcoalgebra.

Corollary 23. ðH, lÞ is semisimple (i.e., J ¼ ð0Þ) if, and only if, the set of all finite linear combina-
tions of group-like elements is dense in H: ðH, lÞ is radical (i.e., J ¼ H) if, and only
if, GðH, lÞ ¼ ;:

Example 2. The Hilbertian algebra ð‘2ðXÞ, lXÞ from Example 1, is semisimple
since Gð‘2ðXÞ, lXÞ ¼ fdx : x 2 Xg:

One may even describe the quotient multiplication on J? using Lemma 16. Since J? is a closed
subcoalgebra, its coproduct is given by ðpJ? �̂2 pJ?Þ � l† � iJ? (the co-restriction of l†) and thus
the quotient multiplication is the adjoint lJ? ¼ pJ? � l � ðiJ? �̂2 iJ?Þ:

Remark 7. Of course, JðJðH, lÞÞ ¼ JðH, lÞ and J? is semisimple, see [23, Theorem 4.3.2, p. 474].

Definition 11. Let radical, cSemðHilbÞ (resp. semisimple, cSemðHilbÞ) be the full subcategory of
cSemðHilbÞ spanned by radical (resp. semisimple) (complex) commutative Hilbertian algebras.

For complex commutative Hilbertian algebras, the radical and its orthogonal complement have
nice category-theoretic features.

Theorem 24. The canonical embedding functors radical, cSemðHilbÞ,!cSemðHilbÞ and
semisimple, cSemðHilbÞ,!cSemðHilbÞ have a right resp. left adjoint given by Jð�Þ : ðH, lÞ 7! J

and Jð�Þ? : ðH, lÞ 7! J?:
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Proof. Let us first check that ðH,lÞ 7! J is the object map of a functor. Let f : ðH,lÞ ! ðK, cÞ
be a morphism of Hilbertian algebras, so that f † : ðK, c†Þ ! ðH, l†Þ is a morphism of Hilbertian
coalgebras, and according to Lemma 25 (below) f †ðGðK, cÞÞ 
 GðH, lÞ [ f0g: By continuity it

follows that f †ðJðK, cÞ?Þ 
 JðH,lÞ?: According to Lemma 1, f ðJðH, lÞÞ 
 JðK, cÞ: The co-restric-

tion JðH,lÞ!Jðf Þ JðK, cÞ of f provides, with ðH, lÞ 7! J, the expected functor from cSemðHilbÞ
to radical, cSemðHilbÞ:

Let also JðK, cÞ? !g JðH,lÞ? be the co-restriction of f † obtained from the above discussion.
Passing to the adjoint one gets the commutative diagram below.

(10)

That g† ¼ pJðK, cÞ? � f � iJðH,lÞ? is a morphism of Hilbertian algebras is clear from the definition

of the quotient multiplications of the orthogonal complement of the radicals. The correspondence
f 7! g† provides with ðH, lÞ 7! J? a functor Jð�Þ? from cSemðHilbÞ to semisimple, cSemðHilbÞ:
(Functoriality is not immediate at first sight as for ðH,lÞ!f ðK, cÞ and ðK, cÞ!g ðL,qÞ one has
Jðg � f Þ? ¼ pJð‘,qÞ? � g � f � iJðH, lÞ? while JðgÞ? � Jðf Þ? ¼ pJð‘, qÞ? � g � iJðK, cÞ? � pJðK, cÞ? � f �
iJðH,lÞ? and in general iJðK, cÞ? � pJðK, cÞ? is a nonidentity orthogonal projection. Nevertheless from

the first equation, by definition of JðgÞ?, and then by that of Jðf Þ? one obtains Jðg � f Þ? ¼
JðgÞ? � pJðK, cÞ? � f � iJðH, lÞ? ¼ JðgÞ? � Jðf Þ? � pJðH,lÞ? � iJðH,lÞ? ¼ JðgÞ? � Jðf Þ?:)

Now let us assume first that ðH,lÞ is radical (and ðK, cÞ is arbitrary). Since f ðHÞ ¼
f ðJðH, lÞÞ 
 JðK, cÞ, there is a unique bounded linear map ðH, lÞ!

~f
JðK, cÞ such that iJðK, cÞ �

~f ¼ f , and which is of course a morphism of Hilbertian algebras. Therefore, Jð�Þ is a right
adjoint of the embedding functor radical, cSemðHilbÞ,!cSemðHilbÞ:

Secondly, let us assume that ðK, cÞ is semisimple (and ðH, lÞ is arbitrary). Whence
f ðJðH, lÞÞ 
 JðK, cÞ ¼ ð0Þ so that ker pJðH, lÞ? 
 kerðf Þ: Therefore, there is a unique bounded lin-

ear map JðH,lÞ? !f
]

ðK, cÞ such that f ] � pJðH,lÞ? ¼ f : f ] is a morphism of Hilbertian algebras as

is shown by the following commutative diagram (of course pJðH, lÞ? �̂2 pJðH, lÞ? is an epimor-

phism). Consequently Jð�Þ? is a left adjoint of the embedding functor semisimple, cSemðHilbÞ,!
cSemðHilbÞ:

(11)

w
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Lemma 25. Let f : ðH, l†Þ ! ðK, c†Þ be a morphism of Hilbertian coalgebras.
Then, f ðGðH, lÞÞ 
 GðK, cÞ [ f0g:

Proof. Let x 2 GðH,lÞ: Then,
c†ðf ðxÞÞ ¼ ðf �̂2 f Þðl†ðxÞÞ

¼ ðf �̂2 f Þðx� xÞ
¼ f ðxÞ � f ðxÞ:

(12)

w

4.2. Interpretation in terms of the Gelfand transform

Since the group-like elements of a complex commutative Hilbertian algebra correspond to the
nontrivial characters of its underlying Banach algebra (Lemma 19), it seems instructive to treat
some notions from the previous section in a way similar to the Gelfand theory of Banach alge-
bras. See e.g. [18, Chap. 2] for basic facts and results about the Gelfand theory.

One assumes that ðH, lÞ is a commutative complex Hilbertian algebra with jjljjop ¼ jjl†jjop 	
1, i.e., ðH, lÞ is a semigroup object in ðHilb1, �̂2 ,CÞ:

The set GðH,lÞ 
 H inherits the weak topology from H, i.e., the weakest topology that makes
continuous every functional RHðxÞ, x 2 H: A neighborhood basis at x 2 GðH, lÞ is given by the
sets

Vx, u1, :::, un , � :¼ fz 2 GðH,lÞ : jhui, zi � hui, xij < �, 1 	 i 	 ng, (13)

u1, :::, un 2 H, � > 0:
Under this topology GðH, lÞ becomes a Hausdorff space (as the RHðxÞ’s separate the points of

GðH, lÞ). It is not difficult to check that GðH, lÞ [ f0g is closed in the closed unit ball BHð0, 1�,
which is compact under the weak topology, according to the Banach-Alaoglu theorem (since

jjl†jjop 	 1, for each x 2 GðH,lÞ, jjxjj2 ¼ jjx� xjj 	 jjxjj, so that GðH, lÞ 
 BHð0, 1�). Therefore,
GðH, lÞ is a locally compact space.

For each z 2 H, let us define ẑ : GðH,lÞ ! C by ẑðxÞ ¼ hz, xi ¼ R �HðzÞðxÞ, i.e., ẑ is the
restriction of R �HðzÞ to GðH,lÞ: This provides a continuous map from GðH,lÞ to C which van-
ishes at infinity. (Indeed, for z 2 H and � > 0, the set of all group-like elements x such that
jẑðxÞj ¼ jhz, xiHj 
 � is closed in the weak topology, whence is compact, and thus ẑ vanishes at
infinity.) Therefore ẑ 2 C0ðGðH, lÞÞ, z 2 H, where as usual C0ðXÞ stands for the Banach space of
complex-valued continuous functions on a locally compact space, vanishing at infinity, with the
uniform norm.

Moreover the following co-restriction of the Riesz representation R �H : H ’ ð �HÞ� namely the
map RðH, lÞ : H ! C0ðGðH, lÞÞ, z 7! ẑ , is a linear contraction (by the Cauchy-Bunyakovski-
Schwarz inequality one has jjRðH, lÞðzÞjj1 	 supx2GðH, lÞ jjxjjjjzjj 	 jjzjj). Besides RðH, lÞ is an

algebra map from ðH, lbilÞ to C0ðGðH, lÞÞ since
RðH, lÞðlðy� zÞÞðxÞ ¼ hx,lðy� zÞiH

¼ hl†ðxÞ, y� ziH�̂2 H¼ hx� x, y� ziH �̂2 H¼ RðH, lÞðyÞðxÞRðH, lÞðzÞðxÞ:
(14)

Remark 8. Up to the Riesz isomorphism RH : �H ’ H�,RðH, lÞ thus corresponds to the usual
Gelfand transform GðH,lbilÞ of the underlying Banach algebra of ðH, lÞ; more precisely
GðH,lbilÞðzÞðRHðxÞÞ ¼ RðH, lÞðzÞðxÞ, x 2 GðH, lÞ and z 2 H:
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Finally, ker RðH, lÞ ¼ fz 2 H : hz, xiH ¼ 0, x 2 GðH,lÞg ¼ GðH,lÞ? ¼ J (as above J denotes

the radical), and H=J ’ J? ¼ ð �x2GðH, lÞ CxÞ is (algebraically) isomorphic to the subalgebra
ranðRðH, lÞÞ of C0ðGðH,lÞÞ: Using the notation from the end of Section 4.1 this means

that hlJ?ðx� yÞ, zi ¼ hx, zihy, zi ¼ hx� y, z � zi ¼ hx� y, l†ðzÞi, x, y 2 J?, z 2 GðH, lÞ:

5. Hilbertian function algebras

In this section, in accordance with Definition 1, by Hilbertian algebra is meant a complex com-
mutative Hilbertian algebra with jjljjop 	 1 (the morphisms however are not assumed

contractive).
Let us briefly disclose the content of this section. As any complex commutative (nonunital)

C�-algebra is isomorphic to the model C�-algebra C0ðX, sÞ with ðX, sÞ its structure space, under
the Gelfand transform, one may wonder at which conditions is a Hilbertian algebra isomorphic
to the model ð‘2ðXÞ, lXÞ (Example 1) with X its set of group-like elements, under the “Riesz
transform” R: Observe immediately that this underlies the fact that R factors through the inclu-
sion ‘2ðXÞ ,! C0ðXÞ: For this to hold it is sufficient7 to consider Hilbertian algebras with a coiso-
metric multiplication (or an isometric comultiplication; see Definition 12) in such a way the
group-like elements form an orthonormal family (see below Lemma 27). Next, with the assump-
tion of an isometric comultiplication, the condition found to the above question is that the
Hilbertian algebra has adjoints in the sense of Ambrose’s H�-algebras (Theorem 32). Under the
assumption of an isometric comultiplication this is a characterization of semisimplicity
(Corollary 33).

Afterward this characterization is used to provide a dual equivalence between Hilbertian alge-
bras with H�-adjoints and isometric coproduct and a category of pointed sets (see Theorem 40)
which is similar to the folklore duality between commutative C�-algebras and pointed com-
pact spaces.

5.1. Special Hilbertian algebras

Let us begin with some preliminary observations which will be found useful hereafter. Let ðX, dÞ
be a discrete space. Then, ‘2ðXÞ 
 C0ðX,dÞ and the inclusion is continuous, i.e., jjf jj1 	
jjf jj2, f 2 ‘2ðXÞ:

Now let us consider again the question of semisimplicity but for some particular algebras. Let
ðH,lÞ be a Hilbertian algebra in Hilb1 (i.e., jjljjop 	 1), and let us assume for a while that its set

GðH, lÞ of group-like elements forms an orthonormal set. So according to Theorem 22, it is an
orthonormal basis of J? and thus J? ¼ �2x2GðH, lÞ Cx ’ ‘2ðGðH, lÞÞ under the unitary transform-

ation dGðH, lÞ : x 7! dx (see Example 1). In this situation GðH,lÞ is discrete under the weak top-
ology because the open neighborhood Vx, x, 1 (see Eq. (12)) of x reduces to fxg for each group-
like element x.

One furthermore notices that RðH, lÞðuÞ 2 ‘2ðGðH,lÞÞ for each u 2 H since one has
RðH,lÞðuÞðxÞ ¼ hu, xi, x 2 GðH,lÞ, and thus ðhu, xiÞx2GðH, lÞ is square-summable (since GðH,lÞ is
an orthonormal set), so RðH, lÞðuÞ ¼

P
x2GðH, lÞhu, xidx: This means that RðH,lÞ uniquely factors

as indicated by the following diagram, where d denotes the discrete topology on GðH, lÞ:

7Whether or not this condition is also necessary is not studied in this paper.
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(15)

The co-restriction thus obtained is still denoted by RðH, lÞ and is called the Gelfand-Riesz
transform of ðH,lÞ:

It is a coisometry: R†
ðH, lÞðf Þ ¼

P
x2GðH, lÞ f ðxÞx, and thus of course RðH, lÞ �R†

ðH, lÞ ¼
id‘2ðGðH,lÞÞ: In particular, jjRðH,lÞjjop ¼ 1 (if J? 6¼ ð0Þ) or 0 (if J? ¼ ð0Þ). As a matter of fact

jjRðH, lÞjjop 	 1, and ranðRðH, lÞÞ ¼ ‘2ðGðH, lÞÞ:
One knows from Example 1 that ð‘2ðGðH, lÞÞ,lGðH, lÞÞ is a Hilbertian algebra and it is rather

apparent that RðH, lÞ is an epimorphism of Hilbertian algebras from ðH,lÞ
to ð‘2ðGðH,lÞÞ,lGðH, lÞÞ:

By the above discussion the following result is clear (RðH, lÞ is an isomorphism if, and only if,
it is one-to-one if, and only if, it is a unitary transformation).

Proposition 26. Let ðH, lÞ be a Hilbertian algebra in Hilb1, and let us assume that GðH,lÞ is an
orthonormal set. ðH, lÞ is semisimple if, and only if, ðH,lÞ ’ ð‘2ðGðH, lÞÞ, lGðH, lÞÞ under the

Gelfand-Riesz transform. In particular, when ðH,lÞ is semisimple, l � l† ¼ id:

Definition 12. In accordance with the notion of speciality in the context of Frobenius algebras,
one says that ðH, lÞ is a special Hilbertian algebra when the coproduct l† is an isometry or
equivalently when the product l is a coisometry, that is, when l � l† ¼ idH: Let †

cSemðHilbÞ be
the full subcategory of cSemðHilbÞ spanned by these algebras8.

Lemma 27. (Compare to [2, Prop. 14 and 15, pp. 11–12].) If ðH,lÞ is a special Hilbertian algebra,
then jjljjop 	 1 and GðH,lÞ is an orthonormal set. The converse assertion holds when ðH,lÞ
is semisimple.

Proof. Let ðH, lÞ be a special Hilbertian algebra. That jjljjop 	 1 is obvious. Let x be a group-like

element of ðH, lÞ (in particular x 6¼ 0). Since l† is an isometry, jjxjj ¼ jjl†ðxÞjj ¼
hl†ðxÞ,l†ðxÞi12 ¼ hx� x, x� xi12 ¼ ðhx, xihx, xiÞ12 ¼ jjxjj2, so that jjxjj ¼ 1: Let y be also a group-
like element of ðH, lÞ such that x 6¼ y: Then, hx, yi ¼ hl†ðxÞ,l†ðyÞi ¼ hx� x, y� yi ¼ hx, yi2:
Whence hx, yi 2 f0, 1g: In particular, hx, yi ¼ hy, xi: Moreover, jjx� yjj2 ¼ hx� y, x� yi ¼
jjxjj2 þ jjyjj2 � 2hx, yi ¼ 2� 2hx, yi: If hx, yi ¼ 1, then x¼ y, which is a contradiction,
whence hx, yi ¼ 0:

Let us assume that ðH, lÞ is a semisimple Hilbertian algebra, and that GðH,lÞ is an orthonor-
mal family. According to Theorem 22, GðH, lÞ is a Hilbertian basis of H: Let x, y, z be group-
like elements. Then, hlðx� yÞ, zi ¼ hx� y, z � zi ¼ hx, zihy, zi ¼ dx, zdy, z: Therefore lðl†ðxÞÞ ¼
lðx� xÞ ¼ x for each group-like element x, from which it follows that l � l† ¼ id, that is, ðH, lÞ
is special. w

8Since special Hilbertian algebras are in particular objects of cSemðHilb1Þ at first glance it seems more natural to define their
category as the full subcategory †

cSemðHilb1Þ of cSemðHilb1Þ they span. But doing so one forces the isomorphisms to be
unitary transformations and more generally the morphisms to be contractive which can be too strong in some cases (see e.g.,
Remark 15 below).
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Remark 9. In view of Theorem 22, the first assertion of Lemma 27 implies that GðH, lÞ is a
Hilbertian basis of H for a semisimple special Hilbertian algebra ðH, lÞ: Besides the proof of this
first assertion does not make use of commutativity nor of associativity of l.

Corollary 28. Let ðH,lÞ be a special Hilbertian algebra. Then, for each x, y 2 GðH, lÞ,lðx� yÞ �
dx, yx modulo J. In particular, the quotient multiplication on J? is defined by lJ?ðx� yÞ ¼
dx, yx, x, y 2 GðH,lÞ:

Proof. Let x, y, z be group-like elements of ðH,lÞ: Then,
hlðx� yÞ, zi ¼ hx� y, l†ðzÞi

¼ hx, zihy, zi
¼ dx, zdy, z:

ðaccording to Lemma 27Þ
(16)

w

Remark 10. Let ðH,lÞ be a special Hilbertian algebra. Then for each x 2 GðH, lÞ,Cx is both a
closed subcoalgebra (since ðCxÞ? is a closed ideal) and a closed subcoalgebra (since
lðx� xÞ ¼ lðl†ðxÞÞ ¼ x) unitarily isomorphic to C: By Lemma 13, ðCx,ljCxÞ is a special
Hilbertian algebra.

5.2. Special Hilbertian algebras with H�-adjoints

Definition 13. Let ðH,lÞ be a Hilbertian algebra. It is said to have H�-adjoints when there exists

a set-theoretic map ð�Þ] : H ! H, called a map of H�-adjoints, such that hlðx� yÞ, zi ¼
hx, lðy] � zÞi for all x, y, z 2 H:

Remark 11.
1. Let us assume that ðH,lÞ is a Hilbertian algebra with the property that each y 2 H has a

H�-adjoint, that is, there exists w 2 H such that hlðx� yÞ, zi ¼ hx, lðw� zÞi for all x, z 2 H:
Then, ðH, lÞ has H�-adjoints. Indeed a map of H�-adjoints is just a section of the projection
onto the first factor [y2Hfyg � AðyÞ ! H, where for each y, A(y) is the set of all H�-
adjoints of y (the existence of such a section is guaranteed by the axiom of choice).
Conversely, the existence of a map of H�-adjoints implies that each member of the algebra
has a H�-adjoint. Therefore, the two notions are identical.

2. The above definition of a (commutative) Hilbertian algebra with H�-adjoints is slightly dif-
ferent from Ambrose’s definition [5] of H�-algebras (see Section 2.4) since the former are
Hilbertian algebras while the latter are Banach algebras. But in both cases, being an algebra
of one or the other kind is to have a defining property, that is, the requirement of the exist-
ence of H�-adjoints or a map of H�-adjoints. Moreover, the underlying Banach algebra of a
Hilbertian algebra with H�-adjoints is an Ambrose’s H�-algebra.

Remark 12. The annihilator AnnðE,mÞ of a (commutative) Banach algebra (E, m) is the ideal

fx 2 E : mðx, yÞ ¼ 08y 2 Eg: Let ðH,lÞ be a Hilbertian algebra with map of H�-adjoints ð�Þ]:
Then, the following equations hold modulo AnnðH, lbilÞ: For all x, y 2 H,

ðxþ yÞ] � x] þ y], ðaxÞ] � �ax],lbilðx, yÞ] � lbilðx], y]Þ, ðx]Þ] � x, (17)

which equivalently reads as, for all w, lbilðu,wÞ ¼ lbilðv,wÞ, where u � v is any of the
above relations.
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Example 3. ð‘2ðXÞ, lXÞ with map of H�-adjoints f 7! f � :¼ P
x2X f ðxÞdx corresponds to ‘21ðXÞ

from Section 2.4, with 1ðxÞ ¼ 1, x 2 X:
The operation of orthogonal complementation inherits from the defining property of H�-

adjoints a pleasant symmetry between closed ideals.

Lemma 29. Let ðH,lÞ be a Hilbertian algebra with H�-adjoints. If I is a closed ideal of ðH,lÞ,
then I? is a closed ideal too. Moreover, I is maximal if, and only if, I? is minimal.

Proof. Let ð�Þ] be a map of H�-adjoints for ðH, lÞ: Let I be a closed ideal. Let u 2 I, v 2 H and

w 2 I?: Then, hu, lbilðv,wÞi ¼ hu, lbilððv]Þ],wÞi ¼ hlbilðv], uÞ,wi ¼ 0: Therefore, lbilðv,wÞ 2 I?:
Now, let us assume that I is maximal. Let I1 be a closed ideal such that I1 
 I?: Then, I?1 � I so
that, by maximality, I?1 ¼ H or I?1 ¼ I, which is equivalent to I1 ¼ ð0Þ or I1 ¼ I?: Whence I? is
minimal. w

Lemma 30. ([24, Theorem 11.6.12, p. 1210]) For a Hilbertian algebra ðH, lÞ with H�-
adjoints, AnnðH,lbilÞ ¼ J:

Corollary 31. Let ðH, lÞ be a Hilbertian algebra with H�-adjoints. If ðH,lÞ is semisimple, then

there is a unique map of H�-adjoints ð�Þ] for ðH, lÞ. Moreover ð�Þ] : ðH, lÞ ¼ ð �H, �lÞ ! ðH, lÞ
is a morphism of Hilbertian algebras (and in particular is bounded), ð�Þ] � ð�Þ] ¼ idH and

ðð�Þ]Þ† ¼ ð�Þ] (so ð�Þ] is both a conjugate-linear involution and a unitary transformation).

Proof. Uniqueness of the map of H�-adjoints follows from [5, Theorem 2.1, p. 370]. That ð�Þ] :
ð �H, �lbilÞ ! ðH, lbilÞ is a homomorphism of C-algebras and ð�Þ] � ð�Þ] ¼ idH is clear from
Remark 12 since by Lemma 30 the annihilator corresponds to the Jacobson radical. By [18,

Corollary 2.1.10, p. 50], ð�Þ] is bounded. It remains to prove that ðð�Þ]Þ† ¼ ð�Þ] : First of all the
property huv,wi ¼ hv, u]wi implies that AnnðH,lbilÞ ¼ ðH2Þ? where H2 :¼ flbilðu, vÞ : u, v 2
Hg: By semisimplicity it follows that hH2i :¼ fPn

i¼1 lbilðui, viÞ : n 2 N, ui, vi 2 Hg, being the

subspace generated by H2, is dense in H: Now, let u, v,w 2 H: Then, hlbilðv,wÞ, u]i ¼
hw,lbilðu], v]Þi ¼ hlbilðu,wÞ, v]i ¼ hu, ðlbilðv,wÞÞ]i: Whence ðð�Þ]Þ† ¼ ð�Þ] on hH2i so that by
density and continuity, they are equal on H as desired. w

Remark 13. Let ðH, lÞ be a semisimple Hilbertian algebra with H�-adjoints. The uniqueness of
the map of H�-adjoints provided by Corollary 31 reads in the notation from Remark 11.1 as the
fact that A(y) is reduced to a one-point set, namely y], for each y 2 H:

Theorem 32. Let ðH, lÞ be a special Hilbertian algebra with H�-adjoints. Then, ðH,lÞ is semisim-
ple, that is ðH, lÞ ’ ð‘2ðGðH,lÞÞ, lGðH,lÞÞ under the Gelfand-Riesz transform. Moreover denoting

by ð�Þ] the (unique) map of adjoints for ðH,lÞ, one has RðH, lÞðu]Þ ¼ ðRðH, lÞðuÞÞ�, or in other

words, hu], xi ¼ hu, xi, u 2 H, x 2 GðH, lÞ:

Proof. According to Lemma 29, since J is an ideal, J? also is an ideal. Whence, J?? ¼ J is a
closed subcoalgebra by Lemma 15. Thus, J is both a closed subalgebra (since it is an ideal) under
the co-restriction ljJ : J �̂2 J ! J of l, and a subcoalgebra under the co-restriction ðl†ÞjJ : J !
J �̂2 J of l†: According to Lemma 13, ljJ � ðljJ Þ

† ¼ idJ : But lðu� vÞ ¼ 0 for each u, v 2 J by
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Lemma 30, and thus lðpÞ ¼ 0 for each p 2 J � J: By density of J � J and by continuity of l,

ljJ ðf Þ ¼ lðf Þ ¼ 0 for each f 2 J �̂2 J: Because for each u 2 J, l†ðuÞ ¼ ðljJ Þ
†ðuÞ 2 J �̂2 J, u ¼

ljJ ððljJ Þ
†ðuÞÞ ¼ 0: Whence J ¼ ð0Þ, and ðH, lÞ is semisimple.

By Lemma 31, the unique map of H�-adjoints ð�Þ] : ðH, lÞ ! ðH, lÞ is a morphism of

Hilbertian algebras, so ðð�Þ]Þ† ¼ ð�Þ] : ðH,l†Þ ! ð �H, ð�lÞ†Þ is a morphism of coalgebras. As a

matter of fact ðð�Þ]Þ†ðGðH, lÞÞ 
 Gð �H, �lÞ (since ðð�Þ]Þ† is also an isomorphism) by Lemma 25.

But Gð �H, �lÞ ¼ GðH,lÞ: Let x, y 2 GðH,lÞ: Then, since x] 2 GðH,lÞ, dx] , y ¼ hx], yi ¼
hx], yihy, yi ¼ hx] � y, y� yi ¼ hx] � y, l†ðyÞi ¼ hlðx] � yÞ, yi ¼ hy,lðx� yÞi ¼ hy� y, x� yi ¼
hy, xijjyjj2 ¼ hy, xi ¼ dx, y so that x] ¼ x: Now, given u 2 H ¼ clð �2 x 2 GðH,lÞCxÞ, since ð�Þ]
is conjugate-linear, u] ¼ P

x2GðH, lÞ hu, xix] ¼
P

x2GðH, lÞ hu, xix, and thus RðH,lÞðu]Þ ¼P
x2GðH,lÞ hu, xidx ¼ ðRðH,lÞðuÞÞ�: w

Corollary 33. Let ðH, lÞ be a special Hilbertian algebra. It is semisimple if, and only if, it has
H�-adjoints.

Proof. The reverse implication is provided by Theorem 32. Regarding the direct implication, by
Proposition 26, a semisimple and special Hilbertian algebra ðH, lÞ is isomorphic to

ð‘2ðGðH, lÞ, lGðH,lÞÞ under the Gelfand-Riesz transform and the definition u] :¼P
x2GðH,lÞ hu, xix provides a map of H�-adjoints for ðH,lÞ: w

Let semisimple,
†
cSemðHilbÞ be the full subcategory of †

cSemðHilbÞ (Definition 12) spanned by
the semisimple special Hilbertian algebras (or equivalently by special Hilbertian algebras with
H�-adjoints).

Let properH��cBanAlg be the full subcategory of BanAlg spanned by Ambrose’s proper com-
mutative H�-algebras (see Section 2.4).

Let bnd,properH��cBanAlg (resp. unbnd,properH��cBanAlg) be the full subcategory of

properH��cBanAlg spanned by the bounded (resp. unbounded) proper commutative H�-algebras,
i.e., those H�-algebras ðUðHÞ,mÞ such that aðH,mÞ is bounded (resp. unbounded) above (see
Section 2.4).

Semisimple special Hilbertian algebras are essentially the same as bounded proper commuta-
tive H�-algebras since by Theorem 9 together with Corollary 33, and using the fact that the
underlying Banach algebra functor is injective on objects (assuming that the multiplication is con-
tractive) and fully faithful, one obtains the following.

Corollary 34. The restriction of the underlying Banach algebra functor provides an equivalence
between semisimple,

†
cSemðHilbÞ and bnd,properH��cBanAlg. Moreover, no object of

semisimple,
†
cSemðHilbÞ has its underlying Banach algebra isomorphic to some object

of unbnd, properH��cBanAlg:

5.3. Category-theoretic recasting

It is well known and easily checked, that the correspondence X 7! ‘2ðXÞ does not extend to a
functor from Set to Hilb, however it does so when the domain category is Set�,<þ1 as
described below.
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Given a set-theoretic map f : X ! Y , the Banach indicatrix Bf : Y ! N t fþ1g is given by
Bf ðyÞ :¼ jf�1ðfygÞj when the cardinal number into consideration is finite, and þ1 otherwise (cf.
[6, p. 226]).

The objects of Set�,<þ1 are pointed sets ðX, x0Þ, x0 2 X, and a morphism ðX, x0Þ!
f ðY , y0Þ is a

base-point preserving map (f ðx0Þ ¼ y0) such that for all y 6¼ y0,Bf ðyÞ < þ1 and furthermore
jjBf jj1 :¼ supy 6¼y0 Bf ðyÞ < þ1 (observe that jf�1ðfy0gÞj is allowed to be infinite).

Given a pointed set ðX, x0Þ, let ‘2�ðX, x0Þ :¼ fu 2 ‘2ðXÞ : uðx0Þ ¼ 0g ¼ fdx0g?:
Remark 14. ‘2ðX n fx0gÞ ’ ‘2�ðX, x0Þ unitarily. In details the space ‘2ðX n fx0gÞ embeds into
‘2ðXÞ under iðX, x0Þ given by iðX, x0ÞðuÞðxÞ ¼ uðxÞ, for x 6¼ x0, and iðX, x0ÞðuÞðx0Þ ¼ 0, and ‘2ðXÞ
projects onto ‘2ðX n fx0gÞ under rðX, x0Þ given by rðX, x0ÞðuÞ :¼ ujXnf x0 g ¼ u � incl, where incl :

X n fx0g ,! X is the canonical inclusion. The co-restriction iðX, x0Þ : ‘
2ðX n fx0gÞ ! ‘2�ðX, x0Þ and

the restriction rðX, x0Þ : ‘
2
�ðX, x0Þ ! ‘2ðX n fx0gÞ are unitary transformations, inverse one from

the other.
Let f : ðY , y0Þ ! ðX, x0Þ be a morphism in Set�,<þ1, and let u 2 ‘2�ðX, x0Þ: Then u � f 2

‘2�ðY , y0Þ: Indeed, of course uðf ðy0ÞÞ ¼ uðx0Þ ¼ 0: Now let A 
 Y n fy0g be a finite set. Then,P
y2A juðf ðyÞÞj2 ¼

P
x2f ðAÞnfx0g jf�1ðfxgÞjjuðxÞj2 (since uðx0Þ ¼ 0 and f(A) is finite) 	 jjBf jj1P

x2f ðAÞnfx0g juðxÞj
2 	 jjBf jj1jjujj2:

The correspondence u 7! u � f is manifestly linear in u, and since jju � f jj 	 jjBf jj
1
21jjujj a

functor ‘2� : Set
op
�,<þ1 ! Hilb is provided by ‘2�ðf ÞðuÞ :¼ u � f : In particular, for each x 6¼

x0, ‘
2
�ðf ÞðdxÞ ¼

P
y2f�1ðfxgÞ dy and jj‘2�ðf Þjjop 	 jjBf jj

1
21:

For each pointed set ðX, x0Þ, ‘2�ðX, x0Þ is both a closed subalgebra of ð‘2ðXÞ,lXÞ (it is even the

maximal ideal ðCdx0Þ?) and a closed subcoalgebra of ð‘2ðXÞ, l†XÞ (indeed Cdx0 is also a closed
ideal), and by Lemma 13, it is a special Hilbertian algebra on its own right, denoted by
ð‘2�ðX, x0Þ, lðX, x0ÞÞ, (unitarily) isomorphic to ð‘2ðX n fx0gÞ, lXnfx0gÞ (under the isomorphism from

Remark 14), and thus it is semisimple.
Moreover given a morphism f : ðY , y0Þ ! ðX, x0Þ in Set�,<þ1, ðuvÞ � f ¼ ðu � f Þðv � f Þ, where

uv is the pointwise product of u and v (i.e., uv ¼ ðlðX, x0ÞÞbilðu, vÞ), whence ‘2�ðf Þ is a morphism of

Hilbertian algebras from ð‘2�ðX, x0Þ, lðX, x0ÞÞ to ð‘2�ðY , y0Þ, lðY , y0ÞÞ, and ‘2� actually provides a func-

tor from Setop�,<þ1 to †
cSemðHilbÞ (Definition 12).

Remark 15. One observes that ‘2� does not provide a functor from Setop�,<þ1 to †
cSemðHilb1Þ (see

Footnote 8). Let f : ðY , y0Þ ! ðX, x0Þ: Let x 6¼ x0: Then,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijf�1ðfxgÞjp ¼ jjPy2f�1ðfxgÞ dyjj ¼

jj‘2�ðf ÞðdxÞjj 	 jj‘2�ðf Þjjop: Therefore, jjBf jj
1
21 ¼ jj‘2�ðf Þjjop: Moreover, jjBf jj1 	 1 if, and only if,

domðf Þ!f Y is one-to-one, where domðf Þ :¼ [x2Rf f
�1ðfxgÞ 
 Y n fy0g,Rf :¼ fx 2 X n fx0g :

Bf ðxÞ 6¼ 0g:

Remark 16. Let Set<þ1 be the subcategory of sets with maps X!f Y such that supy2Y Bf ðyÞ <
þ1: Let Setop<þ1 !‘

2
†
cSemðHilbÞ be the functor given by X 7! ð‘2ðXÞ,lXÞ and for f 2

Set<þ1ðY ,XÞ, ‘2ðf Þ : u 7! u � f , u 2 ‘2ðXÞ: Let Set<þ1 !ð�Þþ
Set�,<þ1 be the functor X 7! ðX t

f0g, 0Þ, and ðf : X ! YÞ 7! ðfþ : Xþ ! YþÞ with fþðxÞ ¼ f ðxÞ, x 2 X, fþð0Þ ¼ 0: This functor
is injective on objects and faithful but not full. Moreover ‘2� � ð�Þþ and ‘2 are naturally iso-
morphic functors (as in Remark 14).
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In the reverse direction one has the following.

Proposition 35. There is a functor G�:†c SemðHilbÞ ! Setop�,<þ1 whose object component is given
by G�ðH, lÞ :¼ ðGðH, lÞ [ f0g, 0Þ:

Proof. Let ðH, lÞ, ðK, cÞ be special Hilbertian algebras, and let f : ðH,lÞ ! ðK, cÞ be a morphism
of Hilbertian algebras. By Lemma 25, f †ðGðK, cÞ [ f0gÞ 
 GðH,lÞ [ f0g, and one obtains by co-

restriction of f †, a base-point preserving map ðGðK, cÞ [ f0g, 0Þ !G�ðf ÞðGðH,lÞ [ f0g, 0Þ:
Let g :¼ G�ðf Þ:

1. jg�1ðfxgÞj is finite for each x 2 GðH, lÞ : Assume to the contrary that for some x 2 GðH, lÞ
(in particular x 6¼ 0), there are infinitely many y’s in GðK, cÞ such that g(y) ¼ x. Let a choose
pairwise distinct yn 2 GðK, cÞ such that gðynÞ ¼ x, n 
 1: Since fyn : n 
 1g 
 GðK, cÞ, by
Lemma 27 it is an orthonormal set, thus one may define the following member u of K by u :
¼ P

n
1
1
n yn: Whence f †ðuÞ 2 K: By linearity and continuity of f †, f †ðuÞ is the sum of the

summable family ð1n f †ðynÞÞn
1: But for each n, f †ðynÞ ¼ x and the family ð1n xÞn
1 is not sum-
mable in H:

2. Bg is bounded on GðH, lÞ: Since f is assumed bounded, one can consider the associated
bounded sesquilinear form qf † : K�H ! C, given by qf †ðu, vÞ ¼ hf †ðuÞ, vi ([4, p. 21]).
Boundedness of qf † means that there exists some positive real number M such that for each
u 2 K and v 2 H,

jhf †ðuÞ, vij 	 Mjjujjjjvjj:
Let x 2 GðH, lÞ, and let u :¼ P

y2g�1ðfxgÞ y 2 K (recall that g�1ðfxgÞ is finite). Replacing v
by x in the above inequality one gets

jg�1ðfxgÞj ¼ jhf †ðuÞ, xij 	 Mjjujjjjxjj ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jg�1ðfxgÞj

p
:

If g�1ðfxgÞ 6¼ Ø, then jg�1ðfxgÞj 	 M2, so that supx2GðH, lÞ jg�1ðfxgÞj 	 M2:
The above discussion shows that indeed G�ðf Þ : G�ðK, cÞ ! G�ðH,lÞ is a morphism in
Set�,<þ1: Functoriality of this construction is straightforward. w

Proposition 36. ‘2� : Set
op
�,<þ1 ! †

c SemðHilbÞ is a right adjoint of G� :†c SemðHilbÞ ! Setop�,<þ1:

Proof. Let ðX, x0Þ!
f
G�ðH, lÞ be a morphism in Set�,<þ1, where ðH, lÞ is a special Hilbertian

algebra. Let H!f
]

‘2�ðX, x0Þ be the bounded linear map given by the composition

H ���!pJðH, lÞ?
JðH,lÞ? !U ‘2�ðG�ðH, lÞÞ �!‘

2
�ðf Þ

‘2�ðX, x0Þ, where U is the unitary transformation given by
UðxÞ :¼ dx, x 2 GðH, lÞ: Since each of the component maps is a morphism of Hilbertian algebras
(concerning U it is a consequence of Corollary 28 and for pJ? this follows from Lemmas 16 and

17), f ] : ðH, lÞ ! ð‘2�ðX, x0Þ,lðX, x0ÞÞ is a morphism of Hilbertian algebras too. For u 2
‘2�ðX, x0Þ, ðf ]Þ†ðuÞ ¼

P
y2GðH, lÞð

P
x2f�1ðfygÞ uðxÞÞy, so that ðf ]Þ†ðdxÞ ¼ f ðxÞ, x 2 X n fx0g: Let g :

ðH,lÞ ! ð‘2�ðX, x0Þ,lðX, x0ÞÞ be a morphism of Hilbertian algebras such that g†ðdxÞ ¼ f ðxÞ for

each x 2 X n fx0g: Let u 2 H, x 2 X n fx0g: Then, hgðuÞ, dxi ¼ hu, f ðxÞi ¼ hf ]ðuÞ, dxi: Whence
f ] ¼ g: w

Remark 17. The unit of the adjunction from Proposition 36 is given by gðH, lÞ ¼
ðH,lÞ!pJ? J? !U ‘2�ðG�ðH,lÞÞ using the notation from the proof of the aforementioned result. Up

986 L. POINSOT



to the canonical isomorphism ‘2�ðG�ðH, lÞÞ ’ ‘2ðGðH, lÞÞ (Remark 14) gðH, lÞ is nothing else that

the Gelfand-Riesz transformation RðH, lÞ at ðH, lÞ: The counit is given by the obvious bijec-

tion �ðX, x0Þ : G�ð‘2�ðX, x0ÞÞ ¼ ðfdx : x 2 X n fx0gg [ f0g, 0Þ ! ðX, x0Þ:
Let us call special Hilbertian coalgebra a (complex) cocommutative Hilbertian coalgebra ðH, dÞ

with a coisometric multiplication, that is, d† � d ¼ idH: These structures spanned the full subcategory
†
cocCosemðHilbÞ of cocCosemðHilbÞ and the Hilbert adjoint functor co-restricts as an isomorphism

†
cocCosemðHilbÞop !ð�Þ† †

cSemðHilbÞ, whose inverse is denoted by †
cSemðHilbÞ!ð�Þ† †

cocCosemðHilbÞop:
Consider the composite functors

G†
� :¼†

coc CosemðHilbÞ ���!ðð�Þ†Þop †
cSemðHilbÞop !G

op
� Set�,<þ1

and

‘2†� :¼ Set�,<þ1 ���!ð‘2�Þop †
cSemðHilbÞop ����!ðð�Þ†Þop †

cocCosemðHilbÞ:
In details, for f : ðX, x0Þ ! ðY , y0Þ in Set�,<þ1, ‘2†� ðf Þ ¼ ‘2�ðf Þ† is given for u 2 ‘2�ðX, x0Þ by

‘2�ðf Þ†ðuÞ ¼
P

y 6¼y0
ðPx2f�1ðfygÞ uðxÞÞdy: In particular, for x 6¼ x0, ‘

2
�ðf Þ†ðdxÞ ¼ 0 if f ðxÞ ¼ y0 and

‘2�ðf Þ†ðdxÞ ¼ df ðxÞ if f ðxÞ 6¼ y0:

Remark 18. Let ðX, x0Þ!
f ðY , y0Þ be an isomorphism in Set�,<þ1: Then, it induces a usual bijec-

tion X n fx0g!
f
Y n fy0g: For each x 2 X n fx0g, ‘2�ðf�1ÞðdxÞ ¼ dx � f�1 ¼ df ðxÞ ¼ ‘2�ðf Þ†ðdxÞ: It

follows that ‘2�ðf Þ is a unitary transformation.
As a direct consequence of Proposition 36 one has

Corollary 37. ‘2†� is a left adjoint of G†
�:

Remark 19. Let PInj be the category of sets with partial injections ([15]), i.e., the partially
defined functions f : X ! Y which are one-to-one when considered as maps f : domðf Þ 
 X !
Y: PInj embeds into Set�,<þ1 under the functor ð�Þþ that acts on objects as X 7! Xþ :¼
X t f0g, and on partial injections ðf : X ! YÞ 7! ðfþ : Xþ ! YþÞ with fþðxÞ ¼ f ðxÞ, x 2
domðf Þ, fþðxÞ ¼ 0, x 2 Xþ n domðf Þ: By inspection one checks that the ‘2-functor from [15] is

naturally isomorphic to PInj �������!Us��‘2†� �ð�Þþ
Hilb, where †

cocCosemðHilbÞ!Us Hilb is the obvious for-
getful functor.

Lemma 38. Let ðH,lÞ!f ðK, cÞ be a morphism of Hilbertian algebras where ðH, lÞ and ðK, cÞ
both are special and have H�-adjoints. Then, for each u 2 H, f ðu]Þ ¼ f ðuÞ], where ð�Þ] denotes
the (unique) maps of H�-adjoints of both algebras.

Proof. Let u 2 H and let y 2 GðK, cÞ: Then, hf ðu]Þ, yi ¼ hu], f †ðyÞi ¼ hu, f †ðyÞi (by Theorem 32

since f †ðGðK, cÞÞ 
 GðH, lÞ [ f0g) ¼ hf ðuÞ, yi ¼ hf ðuÞ], yi (by Theorem 32). w

Rather than having a property, one may prefer to define “Hilbertian H�-algebras” as algebras
with a structure. We show below that the result is almost the same.

Definition 14. Let I : ðH,lÞ ! ðH,lÞ be a morphism of Hilbertian algebras such that

1. I � �I ¼ idH, I† ¼ �I ,
2. hlðu� vÞ,wi ¼ hv,lðIðuÞ � wÞi, u, v,w 2 H:
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The triple ðH, l, IÞ is referred to as a special Hilbertian H�-algebra when furthermore l � l† ¼
idH: A morphism f : ðH, l, IÞ ! ðK, c, JÞ of special Hilbertian H�-algebras is a morphism f :
ðH,lÞ ! ðK, cÞ of Hilbertian algebras such that f � I ¼ J � f : All of this forms the cat-
egory H� �†

c SemðHilbÞ:

Lemma 39. Let P : H� �†
c SemðHilbÞ ! †

c SemðHilbÞ be the obvious forgetful functor. It factors
through the canonical embedding semisimple,

†
cSemðHilbÞ; ! †

c SemðHilbÞ, and the categories H� �†
c

SemðHilbÞ and semisimple,
†
cSemðHilbÞ are isomorphic under the corresponding co-restriction.

Proof. By definition ðH, lÞ is a special Hilbertian algebra with H�-adjoints (given by I(u), u 2 H),
whence is semisimple (by Theorem 32) for each special Hilbertian H�-algebra ðH, l, IÞ: This pro-
vides the co-restricted functor P : H� �†

c SemðHilbÞ! semisimple,
†
cSemðHilbÞ: That P is an iso-

morphism is a direct consequence of the uniqueness of the map I of H�-adjoints. In more details:
let ðH, lÞ be a semisimple special Hilbertian algebra. By Corollary 33 it is a Hilbertian algebra
with H�-adjoints, and thus there is a unique map ð�Þ? : H ! H of H�-adjoints. It is clear that
VðH,lÞ :¼ ðH,l, ð�Þ�Þ is a special Hilbertian H�-algebra. Moreover given a morphism of

Hilbertian algebras ðH,lÞ!f ðK, cÞ between semisimple special Hilbertian algebras, by Lemma 38,

Vðf Þ :¼ VðH,lÞ!f VðK, cÞ is a morphism of special Hilbertian H�-algebras. Functoriality of
V:semisimple,

†
cSemðHilbÞ ! H� �†

c SemðHilbÞ is clear so is clear that P � V ¼ id and
V � P ¼ id: w

Let us denote cosemisimple,
†
cocCosemðHilbÞ the full subcategory of †

cocCosemðHilbÞ spanned by

the coalgebras ðH, dÞ with ðH, d†Þ semisimple. There is of course the isomorph-

ism ð�Þ†:cosemisimple,
†
cocCosemðHilbÞop’semisimple,

†
cSemðHilbÞ:

The unit of the adjunction from Proposition 36 (see Remark 17) is an isomorphism if, and
only if, the Hilbertian algebra is semisimple. Consequently,

Theorem 40. The category Setop�,<þ1 is equivalent to the isomorphic categories

semisimple,
†
cSemðHilbÞ,H� �†

c SemðHilbÞ and cosemisimple,
†
cocCosemðHilbÞop, under either of the

adjunctions from Proposition 36 or Corollary 37. Setop�,<þ1 is also equivalent
to bnd, properH��cBanAlg:

Corollary 41. Let /: ðH,lÞ ! ðK, cÞ be a morphism between semisimple special Hilbertian alge-
bras. If / is an isomorphism, then / : H ! K is a unitary transformation and / : ðH, l†Þ !
ðK, c†Þ is also a morphism of Hilbertian coalgebras. In particular the only topological isomorphisms
in semisimple,

†
cSemðHilbÞ are unitary and they are automatically also isomorphisms of coalgebras

between the adjoint coalgebras.

Proof. Let ð‘2�ðX, x0Þ, lðX, x0ÞÞ!
w ð‘2�ðY , y0Þ,lðY , y0ÞÞ be an isomorphism in the category †

cSemðHilbÞ:
According to Theorem 40 there exists a unique isomorphism ðY , y0Þ!

f ðX, x0Þ in Set�,<þ1 such
that w ¼ ‘2�ðf Þ: By Remark 18, w is a unitary transformation. Since

ð‘2�ðY , y0Þ,l†ðY , y0ÞÞ ������!
w†¼‘2�ðf Þ†¼w�1

ð‘2�ðX, x0Þ, l†ðX, x0ÞÞ is an isomorphism in cocCosemðHilbÞ, it follows

that its inverse w also is an isomorphism of Hilbertian coalgebras.

Now let ðH,lÞ!/ ðK, cÞ be an isomorphism of semisimple special algebras. There is a unique

isomorphism ð‘2�ðG�ðH, lÞÞ,lG�ðH, lÞÞ!
w ð‘2�ðG�ðK, cÞÞ,lG�ðK, cÞÞ such that the following diagram

commutes in †
cSemðHilbÞ:
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By semisimplicity, the components of the Gelfand-Riesz transform are both unitary transforma-
tions and morphisms of Hilbertian coalgebras (e.g., for RðH, lÞ : given u 2 H, one has
ðRðH, lÞ �̂2 RðH, lÞÞðl†ðuÞÞ ¼

P
x2GðH, lÞhu, xiRðH, lÞðxÞ � RðH, lÞðxÞ ¼

P
x2GðH, lÞhu, xidx � dx ¼

l†G�ðH, lÞðRðH, lÞðuÞÞ), and by the above so is w, and thus also /. w

Remark 20. The category †
cSemðHilbÞ (respectively semisimple,

†
cSemðHilbÞ) is closed under unitary

isomorphisms from cSemðHilbÞ, i.e., if ðH, lÞ ’ ðK, cÞ under such an isomorphism, then either
both algebras are special (respectively, semisimple and special) or none of them are. But they are
not closed under topological isomorphisms from cSemðHilbÞ: For example, for a bounded map
a : X ! ½1, þ1½, a 6� 1, ðð‘2aðXÞ, h�, �iaÞ, lXÞ ’ ð‘2ðXÞ, lXÞ but never unitarily so (by Theorem 9).

Corollary 42. The structures of semisimple special Hilbertian algebras on a given Hilbert space H,

that is, the maps H�̂2 H!l H that turn ðH,lÞ into an object of semisimple,
†
cSemðHilbÞ, are in one-

one correspondence with the Hilbertian bases of H and the corresponding Hilbertian algebras
ðH,lÞ are pairwise (unitarily) isomorphic.

Proof. Given a Hilbertian basis X of H, ðH, lXÞ is a semisimple special Hilbertian algebra, when
lX is given on the basis elements x� y, x, y 2 X, by lXðx� yÞ ¼ dx, yx: The map X 7! ðH, lXÞ
between Hilbertian bases of H and structures of semisimple special Hilbertian algebras on H is
onto since GðH, lÞ is a Hilbert basis of H (Remark 9) and lðg � hÞ ¼ dg, hg, g, h 2 GðH, lÞ
(Corollary 28). It is also one-to-one as GðH, lXÞ ¼ X: The operator on H,U :

u 7! P
y2Yhu,/�1ðyÞiy induced by a bijection / : X ! Y between Hilbertian bases X, Y of H, is

a unitary isomorphism from ðH, lXÞ onto ðH, lYÞ: w

One finally provides a dual equivalence of categories between the category Set<þ1 from
Remark 16 and a subcategory of semisimple special Hilbertian algebras, which is similar to the
Gelfand duality between the opposite of the category of locally compact spaces and proper maps
and that of commutative (nonunital) C�-algebras and proper morphisms ([16, p. 33]).

Let ðH, lÞ!f ðK, cÞ be a morphism in cSemðHilbÞ (here the multiplications are not assumed
contractive). It is said to be proper (see e.g., [16, Theorem 6.6, p. 33]) when ran(f) is not included
in any maximal modular (closed) ideal of ðK, cÞ or alternatively for each y 2 GðK, cÞ, there exists
u 2 H such that hf ðuÞ, yi 6¼ 0: In other words, GðK, cÞ 6
 ker f †: Observe that any isomorphism
of Hilbertian algebras is proper. Since id and the composition of proper morphisms are proper
too, the category cSemðHilbÞproper of commutative Hilbertian algebras and proper morphisms is

available to us, so is its full subcategory †
cSemðHilbÞproper (resp., semisimple,

†
cSemðHilbÞproper)

spanned by special (resp. semisimple special) Hilbertian algebras.

Given a proper morphism ðH, lÞ!f ðK, cÞ, since f † is a morphism of coalgebras,

f †ðGðK, cÞÞ 
 GðH, lÞ according to Lemma 25. Let GðK, cÞ!Gðf ÞGðH, lÞ be the co-restriction of f †

thus obtained. If one furthermore assumes that ðK, cÞ is special, in a way similar to what was
proved for G�ðf Þ in the proof of Proposition 35, it can be shown that Gðf Þ 2
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Set<þ1ðGðK, cÞ,GðH, lÞÞ (see Remark 16). All of this provides a func-

tor †
cSemðHilbÞproper !

G
Setop<þ1:

Given f 2 Set<þ1ðY ,XÞ, h‘2ðf ÞðuÞ, dyi ¼ hu, ‘2ðf Þ†ðdyÞi ¼ hu, df ðyÞi for each y 2 Y and u 2
‘2ðXÞ, so that ð‘2ðXÞ, lXÞ!

‘2ðf Þð‘2ðYÞ, lYÞ is a proper morphism. Whence the functor from Remark

16 co-restricts as Setop<þ1 !‘
2

†
cSemðHilbÞproper:

Proposition 43. ‘2 is a right adjoint of G, and this adjunction restricts to an equivalence of catego-
ries between Setop<þ1 and semisimple,

†
cSemðHilbÞproper:

Proof. Let X!f GðH, lÞ be a morphism in Set<þ1 where ðH, lÞ is a special Hilbertian algebra.

Let us define the morphism of Hilbertian algebras ðH,lÞ!f
]

ð‘2ðXÞ, lXÞ ¼
ðH,lÞ!pJ? ðJ?,lJ?Þ!U ð‘2ðGðH,lÞÞ,lGðH, lÞÞ !

‘2ðf Þð‘2ðXÞ, lXÞ, where U is the unitary isomorphism

given by UðxÞ ¼ dx, x 2 GðH, lÞ: Since ðJ?, ðlJ?Þ†Þ ����!
iJ?¼ðpJ? Þ† ðH, l†Þ is a one-to-one coalgebra mor-

phism, it follows that iJ?ðGðJ?, lJ?ÞÞ 
 GðH,lÞ, so that pJ? is a proper morphism, so is U

because it is an isomorphism. Therefore f ] itself is a proper morphism and it satisfies ðf ]Þ†ðdxÞ ¼
f ðxÞ, x 2 X: Let g : ðH, lÞ ! ð‘2ðXÞ, lXÞ be a proper morphism such that g†ðdxÞ ¼ f ðxÞ, x 2 X:
Then it follows easily that g ¼ f ]: So the adjunction is proved.

The unit of the above adjunction is gðH,lÞ ¼ ðH, lÞ !pJ? J? !U ‘2ðGðH,lÞÞ and the counit is the

obvious bijection �X : Gð‘2ðXÞ, lXÞ ¼ fdx : x 2 Xg ! X: The adjunction restricts to an equiva-
lence exactly when the unit is an isomorphism, i.e., when ðH,lÞ is semisimple. w

The following diagram commutes (this completes Remark 16) up to natural isomorphisms,
where ’ stands for one of the above equivalences of categories, and the rightmost hook shaped
arrow is the obvious (nonfull) embedding functor.

(19)
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